stm32: add blues wireless swan

Этот коммит содержится в:
Kenneth Bell 2022-01-09 17:03:04 +00:00 коммит произвёл Ron Evans
родитель 21c76c0cb0
коммит 14ce531498
11 изменённых файлов: 421 добавлений и 249 удалений

Просмотреть файл

@ -462,6 +462,8 @@ ifneq ($(STM32), 0)
@$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=lorae5 examples/blinky1
@$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=swan examples/blinky1
@$(MD5SUM) test.hex
endif
ifneq ($(AVR), 0)
$(TINYGO) build -size short -o test.hex -target=atmega1284p examples/serial

Просмотреть файл

@ -79,6 +79,7 @@ The following 79 microcontroller boards are currently supported:
* [Arduino Zero](https://store.arduino.cc/usa/arduino-zero)
* [BBC micro:bit](https://microbit.org/)
* [BBC micro:bit v2](https://microbit.org/new-microbit/)
* [blues wireless Swan](https://blues.io/products/swan/)
* [Digispark](http://digistump.com/products/1)
* [Dragino LoRaWAN GPS Tracker LGT-92](http://www.dragino.com/products/lora-lorawan-end-node/item/142-lgt-92.html)
* [ESP32 - Core board](https://www.espressif.com/en/products/socs/esp32)

63
src/machine/board_swan.go Обычный файл
Просмотреть файл

@ -0,0 +1,63 @@
//go:build swan
// +build swan
package machine
import (
"device/stm32"
"runtime/interrupt"
)
const (
// LED on the SWAN
LED = PE2
// UART pins
// PA9 and PA10 are connected to the SWAN Tx/Rx
UART_TX_PIN = PA9
UART_RX_PIN = PA10
// I2C pins
// PB6 is SCL
// PB7 is SDA
I2C0_SCL_PIN = PB6
I2C0_SDA_PIN = PB7
// SPI pins
SPI1_SCK_PIN = PD1
SPI1_SDI_PIN = PB14
SPI1_SDO_PIN = PB15
SPI0_SCK_PIN = SPI1_SCK_PIN
SPI0_SDI_PIN = SPI1_SDI_PIN
SPI0_SDO_PIN = SPI1_SDO_PIN
)
var (
// USART1 is connected to the TX/RX pins
UART1 = &_UART1
_UART1 = UART{
Buffer: NewRingBuffer(),
Bus: stm32.USART1,
TxAltFuncSelector: 7,
RxAltFuncSelector: 7,
}
DefaultUART = UART1
// I2C1 is documented, alias to I2C0 as well
I2C1 = &I2C{
Bus: stm32.I2C1,
AltFuncSelector: 4,
}
I2C0 = I2C1
// SPI1 is documented, alias to SPI0 as well
SPI1 = &SPI{
Bus: stm32.SPI2,
AltFuncSelector: 5,
}
SPI0 = SPI1
)
func init() {
UART1.Interrupt = interrupt.New(stm32.IRQ_USART1, _UART1.handleInterrupt)
}

Просмотреть файл

@ -117,6 +117,25 @@ const (
PE15 = portE + 15
)
// IRQs are defined here as they vary in the SVDs, but do have consistent mapping
// to Timer Interrupts.
const (
irq_TIM1_BRK_TIM15 = 24
irq_TIM1_UP_TIM16 = 25
irq_TIM1_TRG_COM_TIM17 = 26
irq_TIM1_CC = 27
irq_TIM2 = 28
irq_TIM3 = 29
irq_TIM4 = 30
irq_TIM5 = 50
irq_TIM6 = 54
irq_TIM7 = 55
irq_TIM8_BRK = 43
irq_TIM8_UP = 44
irq_TIM8_TRG_COM = 45
irq_TIM8_CC = 46
)
func (p Pin) getPort() *stm32.GPIO_Type {
switch p / 16 {
case 0:
@ -185,8 +204,6 @@ func enableAltFuncClock(bus unsafe.Pointer) {
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_TIM2EN)
case unsafe.Pointer(stm32.LPTIM2): // LPTIM2 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_LPTIM2EN)
case unsafe.Pointer(stm32.I2C4): // I2C4 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_I2C4EN)
case unsafe.Pointer(stm32.LPUART1): // LPUART1 clock enable
stm32.RCC.APB1ENR2.SetBits(stm32.RCC_APB1ENR2_LPUART1EN)
case unsafe.Pointer(stm32.TIM16): // TIM16 clock enable
@ -258,6 +275,29 @@ func (p Pin) registerInterrupt() interrupt.Interrupt {
return interrupt.Interrupt{}
}
//---------- UART related code
// Configure the UART.
func (uart *UART) configurePins(config UARTConfig) {
// enable the alternate functions on the TX and RX pins
config.TX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTTX}, uart.TxAltFuncSelector)
config.RX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTRX}, uart.RxAltFuncSelector)
}
// UART baudrate calc based on the bus and clockspeed
// NOTE: keep this in sync with the runtime/runtime_stm32l5x2.go clock init code
func (uart *UART) getBaudRateDivisor(baudRate uint32) uint32 {
return (CPUFrequency() / baudRate)
}
// Register names vary by ST processor, these are for STM L5
func (uart *UART) setRegisters() {
uart.rxReg = &uart.Bus.RDR
uart.txReg = &uart.Bus.TDR
uart.statusReg = &uart.Bus.ISR
uart.txEmptyFlag = stm32.USART_ISR_TXE
}
//---------- SPI related types and code
// SPI on the STM32Fxxx using MODER / alternate function pins
@ -445,19 +485,19 @@ var (
func (t *TIM) registerUPInterrupt() interrupt.Interrupt {
switch t {
case &TIM1:
return interrupt.New(stm32.IRQ_TIM1_UP_TIM16, TIM1.handleUPInterrupt)
return interrupt.New(irq_TIM1_UP_TIM16, TIM1.handleUPInterrupt)
case &TIM2:
return interrupt.New(stm32.IRQ_TIM2, TIM2.handleUPInterrupt)
return interrupt.New(irq_TIM2, TIM2.handleUPInterrupt)
case &TIM3:
return interrupt.New(stm32.IRQ_TIM3, TIM3.handleUPInterrupt)
return interrupt.New(irq_TIM3, TIM3.handleUPInterrupt)
case &TIM6:
return interrupt.New(stm32.IRQ_TIM6_DACUNDER, TIM6.handleUPInterrupt)
return interrupt.New(irq_TIM6, TIM6.handleUPInterrupt)
case &TIM7:
return interrupt.New(stm32.IRQ_TIM7, TIM7.handleUPInterrupt)
return interrupt.New(irq_TIM7, TIM7.handleUPInterrupt)
case &TIM15:
return interrupt.New(stm32.IRQ_TIM1_BRK_TIM15, TIM15.handleUPInterrupt)
return interrupt.New(irq_TIM1_BRK_TIM15, TIM15.handleUPInterrupt)
case &TIM16:
return interrupt.New(stm32.IRQ_TIM1_UP_TIM16, TIM16.handleUPInterrupt)
return interrupt.New(irq_TIM1_UP_TIM16, TIM16.handleUPInterrupt)
}
return interrupt.Interrupt{}
@ -466,19 +506,19 @@ func (t *TIM) registerUPInterrupt() interrupt.Interrupt {
func (t *TIM) registerOCInterrupt() interrupt.Interrupt {
switch t {
case &TIM1:
return interrupt.New(stm32.IRQ_TIM1_CC, TIM1.handleUPInterrupt)
return interrupt.New(irq_TIM1_CC, TIM1.handleUPInterrupt)
case &TIM2:
return interrupt.New(stm32.IRQ_TIM2, TIM2.handleOCInterrupt)
return interrupt.New(irq_TIM2, TIM2.handleOCInterrupt)
case &TIM3:
return interrupt.New(stm32.IRQ_TIM3, TIM3.handleOCInterrupt)
return interrupt.New(irq_TIM3, TIM3.handleOCInterrupt)
case &TIM6:
return interrupt.New(stm32.IRQ_TIM6_DACUNDER, TIM6.handleOCInterrupt)
return interrupt.New(irq_TIM6, TIM6.handleOCInterrupt)
case &TIM7:
return interrupt.New(stm32.IRQ_TIM7, TIM7.handleOCInterrupt)
return interrupt.New(irq_TIM7, TIM7.handleOCInterrupt)
case &TIM15:
return interrupt.New(stm32.IRQ_TIM1_BRK_TIM15, TIM15.handleOCInterrupt)
return interrupt.New(irq_TIM1_BRK_TIM15, TIM15.handleOCInterrupt)
case &TIM16:
return interrupt.New(stm32.IRQ_TIM1_UP_TIM16, TIM16.handleOCInterrupt)
return interrupt.New(irq_TIM1_UP_TIM16, TIM16.handleOCInterrupt)
}
return interrupt.Interrupt{}

Просмотреть файл

@ -1,13 +1,10 @@
//go:build stm32l4x2
// +build stm32l4x2
package machine
// Peripheral abstraction layer for the stm32l4x2
import (
"device/stm32"
)
func CPUFrequency() uint32 {
return 80000000
}
@ -18,29 +15,6 @@ func CPUFrequency() uint32 {
const APB1_TIM_FREQ = 80e6 // 80MHz
const APB2_TIM_FREQ = 80e6 // 80MHz
//---------- UART related code
// Configure the UART.
func (uart *UART) configurePins(config UARTConfig) {
// enable the alternate functions on the TX and RX pins
config.TX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTTX}, uart.TxAltFuncSelector)
config.RX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTRX}, uart.RxAltFuncSelector)
}
// UART baudrate calc based on the bus and clockspeed
// NOTE: keep this in sync with the runtime/runtime_stm32l5x2.go clock init code
func (uart *UART) getBaudRateDivisor(baudRate uint32) uint32 {
return (CPUFrequency() / baudRate)
}
// Register names vary by ST processor, these are for STM L5
func (uart *UART) setRegisters() {
uart.rxReg = &uart.Bus.RDR
uart.txReg = &uart.Bus.TDR
uart.statusReg = &uart.Bus.ISR
uart.txEmptyFlag = stm32.USART_ISR_TXE
}
//---------- I2C related code
// Gets the value for TIMINGR register

26
src/machine/machine_stm32l4x5.go Обычный файл
Просмотреть файл

@ -0,0 +1,26 @@
//go:build stm32l4x5
// +build stm32l4x5
package machine
// Peripheral abstraction layer for the stm32l4x5
func CPUFrequency() uint32 {
return 120e6
}
// Internal use: configured speed of the APB1 and APB2 timers, this should be kept
// in sync with any changes to runtime package which configures the oscillators
// and clock frequencies
const APB1_TIM_FREQ = 120e6 // 120MHz
const APB2_TIM_FREQ = 120e6 // 120MHz
//---------- I2C related code
// Gets the value for TIMINGR register
func (i2c *I2C) getFreqRange() uint32 {
// This is a 'magic' value calculated by STM32CubeMX
// for 120MHz PCLK1.
// TODO: Do calculations based on PCLK1
return 0x307075B1
}

219
src/runtime/runtime_stm32l4.go Обычный файл
Просмотреть файл

@ -0,0 +1,219 @@
//go:build stm32 && stm32l4
// +build stm32,stm32l4
package runtime
import (
"device/stm32"
"machine"
)
const (
PWR_CR1_VOS_0 = 1 << stm32.PWR_CR1_VOS_Pos
PWR_CR1_VOS_1 = 2 << stm32.PWR_CR1_VOS_Pos
PWR_REGULATOR_VOLTAGE_SCALE1 = PWR_CR1_VOS_0
PWR_REGULATOR_VOLTAGE_SCALE2 = PWR_CR1_VOS_1
FLASH_LATENCY_0 = 0
FLASH_LATENCY_1 = 1
FLASH_LATENCY_2 = 2
FLASH_LATENCY_3 = 3
FLASH_LATENCY_4 = 4
RCC_PLLP_DIV2 = 2
RCC_PLLP_DIV7 = 7
RCC_PLLQ_DIV2 = 2
RCC_PLLR_DIV2 = 2
RCC_CFGR_SWS_MSI = 0x0
RCC_CFGR_SWS_PLL = 0xC
RCC_PLLSOURCE_MSI = 1
RCC_PLL_SYSCLK = stm32.RCC_PLLCFGR_PLLREN
)
type arrtype = uint32
func init() {
initCLK()
machine.Serial.Configure(machine.UARTConfig{})
initTickTimer(&machine.TIM15)
}
func putchar(c byte) {
machine.Serial.WriteByte(c)
}
func initCLK() {
// PWR_CLK_ENABLE
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_PWREN)
_ = stm32.RCC.APB1ENR1.Get()
// Disable Backup domain protection
if !stm32.PWR.CR1.HasBits(stm32.PWR_CR1_DBP) {
stm32.PWR.CR1.SetBits(stm32.PWR_CR1_DBP)
for !stm32.PWR.CR1.HasBits(stm32.PWR_CR1_DBP) {
}
}
// Set LSE Drive to LOW
stm32.RCC.BDCR.ReplaceBits(0, stm32.RCC_BDCR_LSEDRV_Msk, 0)
// Initialize the High-Speed External Oscillator
initOsc()
// PWR_VOLTAGESCALING_CONFIG
stm32.PWR.CR1.ReplaceBits(0, stm32.PWR_CR1_VOS_Msk, 0)
_ = stm32.PWR.CR1.Get()
// Set flash wait states (min 5 latency units) based on clock
if (stm32.FLASH.ACR.Get() & 0xF) < 5 {
stm32.FLASH.ACR.ReplaceBits(5, 0xF, 0)
}
// Ensure HCLK does not exceed max during transition
stm32.RCC.CFGR.ReplaceBits(8<<stm32.RCC_CFGR_HPRE_Pos, stm32.RCC_CFGR_HPRE_Msk, 0)
// Set SYSCLK source and wait
// (3 = RCC_SYSCLKSOURCE_PLLCLK, 2=RCC_CFGR_SWS_Pos)
stm32.RCC.CFGR.ReplaceBits(3, stm32.RCC_CFGR_SW_Msk, 0)
for stm32.RCC.CFGR.Get()&(3<<2) != (3 << 2) {
}
// Set HCLK
// (0 = RCC_SYSCLKSOURCE_PLLCLK)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_HPRE_Msk, 0)
// Set flash wait states (max 5 latency units) based on clock
if (stm32.FLASH.ACR.Get() & 0xF) > 5 {
stm32.FLASH.ACR.ReplaceBits(5, 0xF, 0)
}
// Set APB1 and APB2 clocks (0 = DIV1)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_PPRE1_Msk, 0)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_PPRE2_Msk, 0)
}
func initOsc() {
sysclkSource := stm32.RCC.CFGR.Get() & stm32.RCC_CFGR_SWS_Msk
pllConfig := stm32.RCC.PLLCFGR.Get() & stm32.RCC_PLLCFGR_PLLSRC_Msk
// Enable MSI, adjusting flash latency
if sysclkSource == RCC_CFGR_SWS_MSI ||
(sysclkSource == RCC_CFGR_SWS_PLL && pllConfig == RCC_PLLSOURCE_MSI) {
if MSIRANGE > getMSIRange() {
setFlashLatencyFromMSIRange(MSIRANGE)
setMSIFreq(MSIRANGE, 0)
} else {
setMSIFreq(MSIRANGE, 0)
if sysclkSource == RCC_CFGR_SWS_MSI {
setFlashLatencyFromMSIRange(MSIRANGE)
}
}
} else {
stm32.RCC.CR.SetBits(stm32.RCC_CR_MSION)
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_MSIRDY) {
}
setMSIFreq(MSIRANGE, 0)
}
// Enable LSE, wait until ready
stm32.RCC.BDCR.SetBits(stm32.RCC_BDCR_LSEON)
for !stm32.RCC.BDCR.HasBits(stm32.RCC_BDCR_LSEON) {
}
// Disable the PLL, wait until disabled
stm32.RCC.CR.ClearBits(stm32.RCC_CR_PLLON)
for stm32.RCC.CR.HasBits(stm32.RCC_CR_PLLRDY) {
}
// Configure the PLL
stm32.RCC.PLLCFGR.ReplaceBits(
(1)| // 1 = RCC_PLLSOURCE_MSI
(PLL_M-1)<<stm32.RCC_PLLCFGR_PLLM_Pos|
(PLL_N<<stm32.RCC_PLLCFGR_PLLN_Pos)|
(((PLL_Q>>1)-1)<<stm32.RCC_PLLCFGR_PLLQ_Pos)|
(((PLL_R>>1)-1)<<stm32.RCC_PLLCFGR_PLLR_Pos)|
(PLL_P<<stm32.RCC_PLLCFGR_PLLP_Pos),
stm32.RCC_PLLCFGR_PLLSRC_Msk|stm32.RCC_PLLCFGR_PLLM_Msk|
stm32.RCC_PLLCFGR_PLLN_Msk|stm32.RCC_PLLCFGR_PLLP_Msk|
stm32.RCC_PLLCFGR_PLLR_Msk|stm32.RCC_PLLCFGR_PLLP_Msk,
0)
// Enable the PLL and PLL System Clock Output, wait until ready
stm32.RCC.CR.SetBits(stm32.RCC_CR_PLLON)
stm32.RCC.PLLCFGR.SetBits(stm32.RCC_PLLCFGR_PLLREN) // = RCC_PLL_SYSCLK
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_PLLRDY) {
}
// Enable system clock output
stm32.RCC.PLLCFGR.SetBits(RCC_PLL_SYSCLK)
}
func getMSIRange() uint32 {
if stm32.RCC.CR.HasBits(stm32.RCC_CR_MSIRGSEL) {
return (stm32.RCC.CR.Get() & stm32.RCC_CR_MSIRANGE_Msk) >> stm32.RCC_CR_MSIRANGE_Pos
}
return (stm32.RCC.CSR.Get() & stm32.RCC_CSR_MSISRANGE_Msk) >> stm32.RCC_CSR_MSISRANGE_Pos
}
func setMSIFreq(r uint32, calibration uint32) {
stm32.RCC.CR.SetBits(stm32.RCC_CR_MSIRGSEL)
stm32.RCC.CR.ReplaceBits(r<<stm32.RCC_CR_MSIRANGE_Pos, stm32.RCC_CR_MSIRANGE_Msk, 0)
stm32.RCC.ICSCR.ReplaceBits(calibration<<stm32.RCC_ICSCR_MSITRIM_Pos, stm32.RCC_ICSCR_MSITRIM_Msk, 0)
}
func setFlashLatencyFromMSIRange(r uint32) {
var vos uint32
if pwrIsClkEnabled() {
vos = pwrExGetVoltageRange()
} else {
pwrClkEnable()
vos = pwrExGetVoltageRange()
pwrClkDisable()
}
latency := uint32(FLASH_LATENCY_0)
if vos == PWR_REGULATOR_VOLTAGE_SCALE1 {
if r > stm32.RCC_CR_MSIRANGE_Range16M {
if r > stm32.RCC_CR_MSIRANGE_Range32M {
latency = FLASH_LATENCY_2
} else {
latency = FLASH_LATENCY_1
}
}
} else if r > stm32.RCC_CR_MSIRANGE_Range16M {
latency = FLASH_LATENCY_3
} else {
if r == stm32.RCC_CR_MSIRANGE_Range16M {
latency = FLASH_LATENCY_2
} else if r == stm32.RCC_CR_MSIRANGE_Range8M {
latency = FLASH_LATENCY_1
}
}
stm32.FLASH.ACR.ReplaceBits(latency, stm32.Flash_ACR_LATENCY_Msk, 0)
}
func pwrIsClkEnabled() bool {
return stm32.RCC.APB1ENR1.HasBits(stm32.RCC_APB1ENR1_PWREN)
}
func pwrClkEnable() {
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_PWREN)
}
func pwrClkDisable() {
stm32.RCC.APB1ENR1.ClearBits(stm32.RCC_APB1ENR1_PWREN)
}
func pwrExGetVoltageRange() uint32 {
return stm32.PWR.CR1.Get() & stm32.PWR_CR1_VOS_Msk
}

Просмотреть файл

@ -1,10 +1,10 @@
//go:build stm32 && stm32l4x2
// +build stm32,stm32l4x2
package runtime
import (
"device/stm32"
"machine"
)
/*
@ -26,209 +26,4 @@ const (
PLL_R = RCC_PLLR_DIV2
MSIRANGE = stm32.RCC_CR_MSIRANGE_Range4M
PWR_CR1_VOS_0 = 1 << stm32.PWR_CR1_VOS_Pos
PWR_CR1_VOS_1 = 2 << stm32.PWR_CR1_VOS_Pos
PWR_REGULATOR_VOLTAGE_SCALE1 = PWR_CR1_VOS_0
PWR_REGULATOR_VOLTAGE_SCALE2 = PWR_CR1_VOS_1
FLASH_LATENCY_0 = 0
FLASH_LATENCY_1 = 1
FLASH_LATENCY_2 = 2
FLASH_LATENCY_3 = 3
FLASH_LATENCY_4 = 4
RCC_PLLP_DIV7 = 7
RCC_PLLQ_DIV2 = 2
RCC_PLLR_DIV2 = 2
RCC_CFGR_SWS_MSI = 0x0
RCC_CFGR_SWS_PLL = 0xC
RCC_PLLSOURCE_MSI = 1
RCC_PLL_SYSCLK = stm32.RCC_PLLCFGR_PLLREN
)
func init() {
initCLK()
machine.Serial.Configure(machine.UARTConfig{})
initTickTimer(&machine.TIM15)
}
func putchar(c byte) {
machine.Serial.WriteByte(c)
}
func initCLK() {
// PWR_CLK_ENABLE
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_PWREN)
_ = stm32.RCC.APB1ENR1.Get()
// Disable Backup domain protection
if !stm32.PWR.CR1.HasBits(stm32.PWR_CR1_DBP) {
stm32.PWR.CR1.SetBits(stm32.PWR_CR1_DBP)
for !stm32.PWR.CR1.HasBits(stm32.PWR_CR1_DBP) {
}
}
// Set LSE Drive to LOW
stm32.RCC.BDCR.ReplaceBits(0, stm32.RCC_BDCR_LSEDRV_Msk, 0)
// Initialize the High-Speed External Oscillator
initOsc()
// PWR_VOLTAGESCALING_CONFIG
stm32.PWR.CR1.ReplaceBits(0, stm32.PWR_CR1_VOS_Msk, 0)
_ = stm32.PWR.CR1.Get()
// Set flash wait states (min 5 latency units) based on clock
if (stm32.FLASH.ACR.Get() & 0xF) < 5 {
stm32.FLASH.ACR.ReplaceBits(5, 0xF, 0)
}
// Ensure HCLK does not exceed max during transition
stm32.RCC.CFGR.ReplaceBits(8<<stm32.RCC_CFGR_HPRE_Pos, stm32.RCC_CFGR_HPRE_Msk, 0)
// Set SYSCLK source and wait
// (3 = RCC_SYSCLKSOURCE_PLLCLK, 2=RCC_CFGR_SWS_Pos)
stm32.RCC.CFGR.ReplaceBits(3, stm32.RCC_CFGR_SW_Msk, 0)
for stm32.RCC.CFGR.Get()&(3<<2) != (3 << 2) {
}
// Set HCLK
// (0 = RCC_SYSCLKSOURCE_PLLCLK)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_HPRE_Msk, 0)
// Set flash wait states (max 5 latency units) based on clock
if (stm32.FLASH.ACR.Get() & 0xF) > 5 {
stm32.FLASH.ACR.ReplaceBits(5, 0xF, 0)
}
// Set APB1 and APB2 clocks (0 = DIV1)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_PPRE1_Msk, 0)
stm32.RCC.CFGR.ReplaceBits(0, stm32.RCC_CFGR_PPRE2_Msk, 0)
}
func initOsc() {
sysclkSource := stm32.RCC.CFGR.Get() & stm32.RCC_CFGR_SWS_Msk
pllConfig := stm32.RCC.PLLCFGR.Get() & stm32.RCC_PLLCFGR_PLLSRC_Msk
// Enable MSI, adjusting flash latency
if sysclkSource == RCC_CFGR_SWS_MSI ||
(sysclkSource == RCC_CFGR_SWS_PLL && pllConfig == RCC_PLLSOURCE_MSI) {
if MSIRANGE > getMSIRange() {
setFlashLatencyFromMSIRange(MSIRANGE)
setMSIFreq(MSIRANGE, 0)
} else {
setMSIFreq(MSIRANGE, 0)
if sysclkSource == RCC_CFGR_SWS_MSI {
setFlashLatencyFromMSIRange(MSIRANGE)
}
}
} else {
stm32.RCC.CR.SetBits(stm32.RCC_CR_MSION)
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_MSIRDY) {
}
setMSIFreq(MSIRANGE, 0)
}
// Enable LSE, wait until ready
stm32.RCC.BDCR.SetBits(stm32.RCC_BDCR_LSEON)
for !stm32.RCC.BDCR.HasBits(stm32.RCC_BDCR_LSEON) {
}
// Disable the PLL, wait until disabled
stm32.RCC.CR.ClearBits(stm32.RCC_CR_PLLON)
for stm32.RCC.CR.HasBits(stm32.RCC_CR_PLLRDY) {
}
// Configure the PLL
stm32.RCC.PLLCFGR.ReplaceBits(
(1)| // 1 = RCC_PLLSOURCE_MSI
(PLL_M-1)<<stm32.RCC_PLLCFGR_PLLM_Pos|
(PLL_N<<stm32.RCC_PLLCFGR_PLLN_Pos)|
(((PLL_Q>>1)-1)<<stm32.RCC_PLLCFGR_PLLQ_Pos)|
(((PLL_R>>1)-1)<<stm32.RCC_PLLCFGR_PLLR_Pos)|
(PLL_P<<stm32.RCC_PLLCFGR_PLLPDIV_Pos),
stm32.RCC_PLLCFGR_PLLSRC_Msk|stm32.RCC_PLLCFGR_PLLM_Msk|
stm32.RCC_PLLCFGR_PLLN_Msk|stm32.RCC_PLLCFGR_PLLP_Msk|
stm32.RCC_PLLCFGR_PLLR_Msk|stm32.RCC_PLLCFGR_PLLPDIV_Msk,
0)
// Enable the PLL and PLL System Clock Output, wait until ready
stm32.RCC.CR.SetBits(stm32.RCC_CR_PLLON)
stm32.RCC.PLLCFGR.SetBits(stm32.RCC_PLLCFGR_PLLREN) // = RCC_PLL_SYSCLK
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_PLLRDY) {
}
// Enable system clock output
stm32.RCC.PLLCFGR.SetBits(RCC_PLL_SYSCLK)
}
func getMSIRange() uint32 {
if stm32.RCC.CR.HasBits(stm32.RCC_CR_MSIRGSEL) {
return (stm32.RCC.CR.Get() & stm32.RCC_CR_MSIRANGE_Msk) >> stm32.RCC_CR_MSIRANGE_Pos
}
return (stm32.RCC.CSR.Get() & stm32.RCC_CSR_MSISRANGE_Msk) >> stm32.RCC_CSR_MSISRANGE_Pos
}
func setMSIFreq(r uint32, calibration uint32) {
stm32.RCC.CR.SetBits(stm32.RCC_CR_MSIRGSEL)
stm32.RCC.CR.ReplaceBits(r<<stm32.RCC_CR_MSIRANGE_Pos, stm32.RCC_CR_MSIRANGE_Msk, 0)
stm32.RCC.ICSCR.ReplaceBits(calibration<<stm32.RCC_ICSCR_MSITRIM_Pos, stm32.RCC_ICSCR_MSITRIM_Msk, 0)
}
func setFlashLatencyFromMSIRange(r uint32) {
var vos uint32
if pwrIsClkEnabled() {
vos = pwrExGetVoltageRange()
} else {
pwrClkEnable()
vos = pwrExGetVoltageRange()
pwrClkDisable()
}
latency := uint32(FLASH_LATENCY_0)
if vos == PWR_REGULATOR_VOLTAGE_SCALE1 {
if r > stm32.RCC_CR_MSIRANGE_Range16M {
if r > stm32.RCC_CR_MSIRANGE_Range32M {
latency = FLASH_LATENCY_2
} else {
latency = FLASH_LATENCY_1
}
}
} else if r > stm32.RCC_CR_MSIRANGE_Range16M {
latency = FLASH_LATENCY_3
} else {
if r == stm32.RCC_CR_MSIRANGE_Range16M {
latency = FLASH_LATENCY_2
} else if r == stm32.RCC_CR_MSIRANGE_Range8M {
latency = FLASH_LATENCY_1
}
}
stm32.FLASH.ACR.ReplaceBits(latency, stm32.Flash_ACR_LATENCY_Msk, 0)
}
func pwrIsClkEnabled() bool {
return stm32.RCC.APB1ENR1.HasBits(stm32.RCC_APB1ENR1_PWREN)
}
func pwrClkEnable() {
stm32.RCC.APB1ENR1.SetBits(stm32.RCC_APB1ENR1_PWREN)
}
func pwrClkDisable() {
stm32.RCC.APB1ENR1.ClearBits(stm32.RCC_APB1ENR1_PWREN)
}
func pwrExGetVoltageRange() uint32 {
return stm32.PWR.CR1.Get() & stm32.PWR_CR1_VOS_Msk
}

29
src/runtime/runtime_stm32l4x5.go Обычный файл
Просмотреть файл

@ -0,0 +1,29 @@
//go:build stm32 && stm32l4x5
// +build stm32,stm32l4x5
package runtime
import (
"device/stm32"
)
/*
clock settings
+-------------+-----------+
| LSE | 32.768khz |
| SYSCLK | 120mhz |
| HCLK | 120mhz |
| APB1(PCLK1) | 120mhz |
| APB2(PCLK2) | 120mhz |
+-------------+-----------+
*/
const (
HSE_STARTUP_TIMEOUT = 0x0500
PLL_M = 1
PLL_N = 60
PLL_P = RCC_PLLP_DIV2
PLL_Q = RCC_PLLQ_DIV2
PLL_R = RCC_PLLR_DIV2
MSIRANGE = stm32.RCC_CR_MSIRANGE_Range4M
)

10
targets/stm32l4x5.ld Обычный файл
Просмотреть файл

@ -0,0 +1,10 @@
MEMORY
{
FLASH_TEXT (rx) : ORIGIN = 0x08000000, LENGTH = 2048K
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 640K
}
_stack_size = 4K;
INCLUDE "targets/arm.ld"

13
targets/swan.json Обычный файл
Просмотреть файл

@ -0,0 +1,13 @@
{
"inherits": ["cortex-m4"],
"build-tags": ["swan", "stm32l4r5", "stm32l4x5", "stm32l4", "stm32"],
"serial": "uart",
"linkerscript": "targets/stm32l4x5.ld",
"extra-files": [
"src/device/stm32/stm32l4x5.s"
],
"flash-method": "command",
"flash-command": "dfu-util --alt 0 --dfuse-address 0x08000000 --download {bin}",
"openocd-interface": "stlink",
"openocd-target": "stm32l4x"
}