compiler: implement complex division
This is hard to do correctly, so copy the relevant files from the Go compiler itself. For related discussions: * https://github.com/golang/go/issues/14644 * https://github.com/golang/go/issues/29846
Этот коммит содержится в:
родитель
d7460b945e
коммит
4ae4ef5e12
6 изменённых файлов: 138 добавлений и 1 удалений
3
LICENSE
3
LICENSE
|
@ -1,5 +1,8 @@
|
|||
Copyright (c) 2018-2019 TinyGo Authors. All rights reserved.
|
||||
|
||||
TinyGo includes portions of the Go standard library.
|
||||
Copyright (c) 2009-2019 The Go Authors. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
|
|
@ -1856,8 +1856,20 @@ func (c *Compiler) parseBinOp(op token.Token, typ types.Type, x, y llvm.Value, p
|
|||
cplx = c.builder.CreateInsertValue(cplx, r, 0, "")
|
||||
cplx = c.builder.CreateInsertValue(cplx, i, 1, "")
|
||||
return cplx, nil
|
||||
case token.QUO:
|
||||
// Complex division.
|
||||
// Do this in a library call because it's too difficult to do
|
||||
// inline.
|
||||
switch r1.Type().TypeKind() {
|
||||
case llvm.FloatTypeKind:
|
||||
return c.createRuntimeCall("complex64div", []llvm.Value{x, y}, ""), nil
|
||||
case llvm.DoubleTypeKind:
|
||||
return c.createRuntimeCall("complex128div", []llvm.Value{x, y}, ""), nil
|
||||
default:
|
||||
panic("unexpected complex type")
|
||||
}
|
||||
default:
|
||||
return llvm.Value{}, c.makeError(pos, "todo: binop on complex number: "+op.String())
|
||||
panic("binop on complex: " + op.String())
|
||||
}
|
||||
} else if typ.Info()&types.IsBoolean != 0 {
|
||||
// Operations on booleans
|
||||
|
|
65
src/runtime/complex.go
Обычный файл
65
src/runtime/complex.go
Обычный файл
|
@ -0,0 +1,65 @@
|
|||
// Copyright 2010 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package runtime
|
||||
|
||||
// inf2one returns a signed 1 if f is an infinity and a signed 0 otherwise.
|
||||
// The sign of the result is the sign of f.
|
||||
func inf2one(f float64) float64 {
|
||||
g := 0.0
|
||||
if isInf(f) {
|
||||
g = 1.0
|
||||
}
|
||||
return copysign(g, f)
|
||||
}
|
||||
|
||||
func complex64div(n complex64, m complex64) complex64 {
|
||||
return complex64(complex128div(complex128(n), complex128(m)))
|
||||
}
|
||||
|
||||
func complex128div(n complex128, m complex128) complex128 {
|
||||
var e, f float64 // complex(e, f) = n/m
|
||||
|
||||
// Algorithm for robust complex division as described in
|
||||
// Robert L. Smith: Algorithm 116: Complex division. Commun. ACM 5(8): 435 (1962).
|
||||
if abs(real(m)) >= abs(imag(m)) {
|
||||
ratio := imag(m) / real(m)
|
||||
denom := real(m) + ratio*imag(m)
|
||||
e = (real(n) + imag(n)*ratio) / denom
|
||||
f = (imag(n) - real(n)*ratio) / denom
|
||||
} else {
|
||||
ratio := real(m) / imag(m)
|
||||
denom := imag(m) + ratio*real(m)
|
||||
e = (real(n)*ratio + imag(n)) / denom
|
||||
f = (imag(n)*ratio - real(n)) / denom
|
||||
}
|
||||
|
||||
if isNaN(e) && isNaN(f) {
|
||||
// Correct final result to infinities and zeros if applicable.
|
||||
// Matches C99: ISO/IEC 9899:1999 - G.5.1 Multiplicative operators.
|
||||
|
||||
a, b := real(n), imag(n)
|
||||
c, d := real(m), imag(m)
|
||||
|
||||
switch {
|
||||
case m == 0 && (!isNaN(a) || !isNaN(b)):
|
||||
e = copysign(inf, c) * a
|
||||
f = copysign(inf, c) * b
|
||||
|
||||
case (isInf(a) || isInf(b)) && isFinite(c) && isFinite(d):
|
||||
a = inf2one(a)
|
||||
b = inf2one(b)
|
||||
e = inf * (a*c + b*d)
|
||||
f = inf * (b*c - a*d)
|
||||
|
||||
case (isInf(c) || isInf(d)) && isFinite(a) && isFinite(b):
|
||||
c = inf2one(c)
|
||||
d = inf2one(d)
|
||||
e = 0 * (a*c + b*d)
|
||||
f = 0 * (b*c - a*d)
|
||||
}
|
||||
}
|
||||
|
||||
return complex(e, f)
|
||||
}
|
53
src/runtime/float.go
Обычный файл
53
src/runtime/float.go
Обычный файл
|
@ -0,0 +1,53 @@
|
|||
// Copyright 2017 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package runtime
|
||||
|
||||
import "unsafe"
|
||||
|
||||
var inf = float64frombits(0x7FF0000000000000)
|
||||
|
||||
// isNaN reports whether f is an IEEE 754 ``not-a-number'' value.
|
||||
func isNaN(f float64) (is bool) {
|
||||
// IEEE 754 says that only NaNs satisfy f != f.
|
||||
return f != f
|
||||
}
|
||||
|
||||
// isFinite reports whether f is neither NaN nor an infinity.
|
||||
func isFinite(f float64) bool {
|
||||
return !isNaN(f - f)
|
||||
}
|
||||
|
||||
// isInf reports whether f is an infinity.
|
||||
func isInf(f float64) bool {
|
||||
return !isNaN(f) && !isFinite(f)
|
||||
}
|
||||
|
||||
// Abs returns the absolute value of x.
|
||||
//
|
||||
// Special cases are:
|
||||
// Abs(±Inf) = +Inf
|
||||
// Abs(NaN) = NaN
|
||||
func abs(x float64) float64 {
|
||||
const sign = 1 << 63
|
||||
return float64frombits(float64bits(x) &^ sign)
|
||||
}
|
||||
|
||||
// copysign returns a value with the magnitude
|
||||
// of x and the sign of y.
|
||||
func copysign(x, y float64) float64 {
|
||||
const sign = 1 << 63
|
||||
return float64frombits(float64bits(x)&^sign | float64bits(y)&sign)
|
||||
}
|
||||
|
||||
// Float64bits returns the IEEE 754 binary representation of f.
|
||||
func float64bits(f float64) uint64 {
|
||||
return *(*uint64)(unsafe.Pointer(&f))
|
||||
}
|
||||
|
||||
// Float64frombits returns the floating point number corresponding
|
||||
// the IEEE 754 binary representation b.
|
||||
func float64frombits(b uint64) float64 {
|
||||
return *(*float64)(unsafe.Pointer(&b))
|
||||
}
|
2
testdata/float.go
предоставленный
2
testdata/float.go
предоставленный
|
@ -62,8 +62,10 @@ func main() {
|
|||
println("complex64 add: ", c64 + -3+8i)
|
||||
println("complex64 sub: ", c64 - -3+8i)
|
||||
println("complex64 mul: ", c64 * -3+8i)
|
||||
println("complex64 div: ", c64 / -3+8i)
|
||||
c128 = -5+2i
|
||||
println("complex128 add:", c128 + 2+6i)
|
||||
println("complex128 sub:", c128 - 2+6i)
|
||||
println("complex128 mul:", c128 * 2+6i)
|
||||
println("complex128 div:", c128 / 2+6i)
|
||||
}
|
||||
|
|
2
testdata/float.txt
предоставленный
2
testdata/float.txt
предоставленный
|
@ -26,6 +26,8 @@
|
|||
complex64 add: (+2.000000e+000+1.000000e+001i)
|
||||
complex64 sub: (+8.000000e+000+1.000000e+001i)
|
||||
complex64 mul: (-1.500000e+001+2.000000e+000i)
|
||||
complex64 div: (-1.666667e+000+7.333333e+000i)
|
||||
complex128 add: (-3.000000e+000+8.000000e+000i)
|
||||
complex128 sub: (-7.000000e+000+8.000000e+000i)
|
||||
complex128 mul: (-1.000000e+001+1.000000e+001i)
|
||||
complex128 div: (-2.500000e+000+7.000000e+000i)
|
||||
|
|
Загрузка…
Создание таблицы
Сослаться в новой задаче