builder: improve accuracy of the -size=full flag

This commit improves accuracy of the -size=full flag in a big way.
Instead of relying on symbol names to figure out by which package
symbols belong, it will instead mostly use DWARF debug information
(specifically, debug line tables and debug information for global
variables) relying on symbols only for some specific things. This is
much more accurate: it also accounts for inlined functions.

For example, here is how it looked previously when compiling a personal
project:

     code  rodata    data     bss |   flash     ram | package
     1902     333       0       0 |    2235       0 | (bootstrap)
       46     256       0       0 |     302       0 | github
        0     454       0       0 |     454       0 | handleHardFault$string
      154      24       4       4 |     182       8 | internal/task
     2498      83       5    2054 |    2586    2059 | machine
        0      16      24     130 |      40     154 | machine$alloc
     1664      32      12       8 |    1708      20 | main
        0       0       0     200 |       0     200 | main$alloc
     2476      79       0      36 |    2555      36 | runtime
      576       0       0       0 |     576       0 | tinygo
     9316    1277      45    2432 |   10638    2477 | (sum)
    11208       -      48    6548 |   11256    6596 | (all)

And here is how it looks now:

     code  rodata    data     bss |   flash     ram | package
  ------------------------------- | --------------- | -------
     1509       0      12      23 |    1521      35 | (unknown)
      660       0       0       0 |     660       0 | C compiler-rt
       58       0       0       0 |      58       0 | C picolibc
        0       0       0    4096 |       0    4096 | C stack
      174       0       0       0 |     174       0 | device/arm
        6       0       0       0 |       6       0 | device/sam
      598     256       0       0 |     854       0 | github.com/aykevl/ledsgo
      320      24       0       4 |     344       4 | internal/task
     1414      99      24    2181 |    1537    2205 | machine
      726     352      12     208 |    1090     220 | main
     3002     542       0      36 |    3544      36 | runtime
      848       0       0       0 |     848       0 | runtime/volatile
       70       0       0       0 |      70       0 | time
      550       0       0       0 |     550       0 | tinygo.org/x/drivers/ws2812
  ------------------------------- | --------------- | -------
     9935    1273      48    6548 |   11256    6596 | total

There are some notable differences:

  * Odd packages like main$alloc and handleHardFault$string are gone,
    instead their code is put in the correct package.
  * C libraries and the stack are now included in the list, they were
    previously part of the (bootstrap) pseudo-package.
  * Unknown bytes are slightly reduced. It should be possible to reduce
    it significantly more in the future: most of it is now caused by
    interface invoke wrappers.
  * Inlined functions are now correctly attributed. For example, the
    runtime/volatile package is normally entirely inlined.
  * There is no difference between (sum) and (all) anymore. A better
    code size algorithm now counts the code/data sizes correctly.
  * And last (but not least) there is a stylistic change: the table now
    looks more like a table. Especially the summary should be clearer
    now.

Future goals:

  * Improve debug information so that the (unknown) pseudo-package is
    reduced in size or even eliminated altogether.
  * Add support for other file formats, most importantly WebAssembly.
  * Perhaps provide a way to expand this report per file, or in a
    machine-readable format like JSON or CSV.
Этот коммит содержится в:
Ayke van Laethem 2021-10-30 03:12:37 +02:00 коммит произвёл Ron Evans
родитель f63c389f1a
коммит 5792f3a1cf
3 изменённых файлов: 360 добавлений и 78 удалений

Просмотреть файл

@ -641,22 +641,31 @@ func Build(pkgName, outpath string, config *compileopts.Config, action func(Buil
}
}
// Print code size if requested.
if config.Options.PrintSizes == "short" || config.Options.PrintSizes == "full" {
sizes, err := loadProgramSize(executable)
packagePathMap := make(map[string]string, len(lprogram.Packages))
for _, pkg := range lprogram.Sorted() {
packagePathMap[pkg.OriginalDir()] = pkg.Pkg.Path()
}
sizes, err := loadProgramSize(executable, packagePathMap)
if err != nil {
return err
}
if config.Options.PrintSizes == "short" {
fmt.Printf(" code data bss | flash ram\n")
fmt.Printf("%7d %7d %7d | %7d %7d\n", sizes.Code, sizes.Data, sizes.BSS, sizes.Code+sizes.Data, sizes.Data+sizes.BSS)
fmt.Printf("%7d %7d %7d | %7d %7d\n", sizes.Code+sizes.ROData, sizes.Data, sizes.BSS, sizes.Flash(), sizes.RAM())
} else {
if !config.Debug() {
fmt.Println("warning: data incomplete, remove the -no-debug flag for more detail")
}
fmt.Printf(" code rodata data bss | flash ram | package\n")
fmt.Printf("------------------------------- | --------------- | -------\n")
for _, name := range sizes.sortedPackageNames() {
pkgSize := sizes.Packages[name]
fmt.Printf("%7d %7d %7d %7d | %7d %7d | %s\n", pkgSize.Code, pkgSize.ROData, pkgSize.Data, pkgSize.BSS, pkgSize.Flash(), pkgSize.RAM(), name)
}
fmt.Printf("%7d %7d %7d %7d | %7d %7d | (sum)\n", sizes.Sum.Code, sizes.Sum.ROData, sizes.Sum.Data, sizes.Sum.BSS, sizes.Sum.Flash(), sizes.Sum.RAM())
fmt.Printf("%7d - %7d %7d | %7d %7d | (all)\n", sizes.Code, sizes.Data, sizes.BSS, sizes.Code+sizes.Data, sizes.Data+sizes.BSS)
fmt.Printf("------------------------------- | --------------- | -------\n")
fmt.Printf("%7d %7d %7d %7d | %7d %7d | total\n", sizes.Code, sizes.ROData, sizes.Data, sizes.BSS, sizes.Code+sizes.ROData+sizes.Data, sizes.Data+sizes.BSS)
}
}

Просмотреть файл

@ -1,16 +1,25 @@
package builder
import (
"debug/dwarf"
"debug/elf"
"encoding/binary"
"io"
"os"
"path/filepath"
"regexp"
"sort"
"strings"
"github.com/tinygo-org/tinygo/goenv"
"tinygo.org/x/go-llvm"
)
// programSize contains size statistics per package of a compiled program.
type programSize struct {
Packages map[string]*packageSize
Sum *packageSize
Packages map[string]packageSize
Code uint64
ROData uint64
Data uint64
BSS uint64
}
@ -26,6 +35,16 @@ func (ps *programSize) sortedPackageNames() []string {
return names
}
// Flash usage in regular microcontrollers.
func (ps *programSize) Flash() uint64 {
return ps.Code + ps.ROData + ps.Data
}
// Static RAM usage in regular microcontrollers.
func (ps *programSize) RAM() uint64 {
return ps.Data + ps.BSS
}
// packageSize contains the size of a package, calculated from the linked object
// file.
type packageSize struct {
@ -45,59 +64,202 @@ func (ps *packageSize) RAM() uint64 {
return ps.Data + ps.BSS
}
type symbolList []elf.Symbol
func (l symbolList) Len() int {
return len(l)
// A mapping of a single chunk of code or data to a file path.
type addressLine struct {
Address uint64
Length uint64 // length of this chunk
File string // file path as stored in DWARF
IsVariable bool // true if this is a variable (or constant), false if it is code
}
func (l symbolList) Less(i, j int) bool {
bind_i := elf.ST_BIND(l[i].Info)
bind_j := elf.ST_BIND(l[j].Info)
if l[i].Value == l[j].Value && bind_i != elf.STB_WEAK && bind_j == elf.STB_WEAK {
// sort weak symbols after non-weak symbols
return true
// Regular expressions to match particular symbol names. These are not stored as
// DWARF variables because they have no mapping to source code global variables.
var (
// Various globals that aren't a variable but nonetheless need to be stored
// somewhere:
// alloc: heap allocations during init interpretation
// pack: data created when storing a constant in an interface for example
// string: buffer behind strings
packageSymbolRegexp = regexp.MustCompile(`\$(alloc|pack|string)(\.[0-9]+)?$`)
// Reflect sidetables. Created by the reflect lowering pass.
// See src/reflect/sidetables.go.
reflectDataRegexp = regexp.MustCompile(`^reflect\.[a-zA-Z]+Sidetable$`)
)
// readProgramSizeFromDWARF reads the source location for each line of code and
// each variable in the program, as far as this is stored in the DWARF debug
// information.
func readProgramSizeFromDWARF(data *dwarf.Data) ([]addressLine, error) {
r := data.Reader()
var lines []*dwarf.LineFile
var addresses []addressLine
for {
e, err := r.Next()
if err != nil {
return nil, err
}
if e == nil {
break
}
switch e.Tag {
case dwarf.TagCompileUnit:
// Found a compile unit.
// We can read the .debug_line section using it, which contains a
// mapping for most instructions to their file/line/column - even
// for inlined functions!
lr, err := data.LineReader(e)
if err != nil {
return nil, err
}
lines = lr.Files()
var lineEntry = dwarf.LineEntry{
EndSequence: true,
}
return l[i].Value < l[j].Value
}
func (l symbolList) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
// Line tables are organized as sequences of line entries until an
// end sequence. A single line table can contain multiple such
// sequences. The last line entry is an EndSequence to indicate the
// end.
for {
// Read the next .debug_line entry.
prevLineEntry := lineEntry
err := lr.Next(&lineEntry)
if err != nil {
if err == io.EOF {
break
}
return nil, err
}
if prevLineEntry.EndSequence && lineEntry.Address == 0 {
// Tombstone value. This symbol has been removed, for
// example by the --gc-sections linker flag. It is still
// here in the debug information because the linker can't
// just remove this reference.
// Read until the next EndSequence so that this sequence is
// skipped.
// For more details, see (among others):
// https://reviews.llvm.org/D84825
for {
err := lr.Next(&lineEntry)
if err != nil {
return nil, err
}
if lineEntry.EndSequence {
break
}
}
}
if !prevLineEntry.EndSequence {
// The chunk describes the code from prevLineEntry to
// lineEntry.
line := addressLine{
Address: prevLineEntry.Address,
Length: lineEntry.Address - prevLineEntry.Address,
File: prevLineEntry.File.Name,
}
if line.Length != 0 {
addresses = append(addresses, line)
}
}
}
case dwarf.TagVariable:
// Global variable (or constant). Most of these are not actually
// stored in the binary, because they have been optimized out. Only
// the ones with a location are still present.
r.SkipChildren()
file := e.AttrField(dwarf.AttrDeclFile)
location := e.AttrField(dwarf.AttrLocation)
globalType := e.AttrField(dwarf.AttrType)
if file == nil || location == nil || globalType == nil {
// Doesn't contain the requested information.
continue
}
// Try to parse the location. While this could in theory be a very
// complex expression, usually it's just a DW_OP_addr opcode
// followed by an address.
locationCode := location.Val.([]uint8)
if locationCode[0] != 3 { // DW_OP_addr
continue
}
var addr uint64
switch len(locationCode) {
case 1 + 2:
addr = uint64(binary.LittleEndian.Uint16(locationCode[1:]))
case 1 + 4:
addr = uint64(binary.LittleEndian.Uint32(locationCode[1:]))
case 1 + 8:
addr = binary.LittleEndian.Uint64(locationCode[1:])
default:
continue // unknown address
}
// Parse the type of the global variable, which (importantly)
// contains the variable size. We're not interested in the type,
// only in the size.
typ, err := data.Type(globalType.Val.(dwarf.Offset))
if err != nil {
return nil, err
}
addresses = append(addresses, addressLine{
Address: addr,
Length: uint64(typ.Size()),
File: lines[file.Val.(int64)].Name,
IsVariable: true,
})
default:
r.SkipChildren()
}
}
return addresses, nil
}
// loadProgramSize calculate a program/data size breakdown of each package for a
// given ELF file.
func loadProgramSize(path string) (*programSize, error) {
// If the file doesn't contain DWARF debug information, the returned program
// size will still have valid summaries but won't have complete size information
// per package.
func loadProgramSize(path string, packagePathMap map[string]string) (*programSize, error) {
// Open the ELF file.
file, err := elf.Open(path)
if err != nil {
return nil, err
}
defer file.Close()
var sumCode uint64
var sumData uint64
var sumBSS uint64
for _, section := range file.Sections {
if section.Flags&elf.SHF_ALLOC == 0 {
continue
// This stores all chunks of addresses found in the binary.
var addresses []addressLine
// Read DWARF information.
// Intentionally ignoring the error here: if DWARF couldn't be loaded, just
// don't load symbol information from DWARF metadata.
data, _ := file.DWARF()
if file.Machine == elf.EM_AVR && strings.Split(llvm.Version, ".")[0] <= "10" {
// Hack to work around broken DWARF support for AVR in LLVM 10.
// This should be removed once support for LLVM 10 is dropped.
data = nil
}
if section.Type != elf.SHT_PROGBITS && section.Type != elf.SHT_NOBITS {
continue
}
if section.Type == elf.SHT_NOBITS {
sumBSS += section.Size
} else if section.Flags&elf.SHF_EXECINSTR != 0 {
sumCode += section.Size
} else if section.Flags&elf.SHF_WRITE != 0 {
sumData += section.Size
if data != nil {
addresses, err = readProgramSizeFromDWARF(data)
if err != nil {
// However, _do_ report an error here. Something must have gone
// wrong while trying to parse DWARF data.
return nil, err
}
}
// Read the ELF symbols for some more chunks of location information.
// Some globals (such as strings) aren't stored in the DWARF debug
// information and therefore need to be obtained in a different way.
allSymbols, err := file.Symbols()
if err != nil {
return nil, err
}
symbols := make([]elf.Symbol, 0, len(allSymbols))
for _, symbol := range allSymbols {
symType := elf.ST_TYPE(symbol.Info)
if symbol.Size == 0 {
@ -106,57 +268,162 @@ func loadProgramSize(path string) (*programSize, error) {
if symType != elf.STT_FUNC && symType != elf.STT_OBJECT && symType != elf.STT_NOTYPE {
continue
}
if symbol.Section >= elf.SectionIndex(len(file.Sections)) {
continue
}
section := file.Sections[symbol.Section]
if section.Flags&elf.SHF_ALLOC == 0 {
continue
}
symbols = append(symbols, symbol)
if packageSymbolRegexp.MatchString(symbol.Name) || reflectDataRegexp.MatchString(symbol.Name) {
addresses = append(addresses, addressLine{
Address: symbol.Value,
Length: symbol.Size,
File: symbol.Name,
IsVariable: true,
})
}
}
sort.Sort(symbolList(symbols))
sizes := map[string]*packageSize{}
var lastSymbolValue uint64
for _, symbol := range symbols {
symType := elf.ST_TYPE(symbol.Info)
//bind := elf.ST_BIND(symbol.Info)
section := file.Sections[symbol.Section]
pkgName := "(bootstrap)"
symName := strings.TrimLeft(symbol.Name, "(*")
dot := strings.IndexByte(symName, '.')
if dot > 0 {
pkgName = symName[:dot]
// Sort the slice of address chunks by address, so that we can iterate
// through it to calculate section sizes.
sort.Slice(addresses, func(i, j int) bool {
if addresses[i].Address == addresses[j].Address {
// Very rarely, there might be duplicate addresses.
// If that happens, sort the largest chunks first.
return addresses[i].Length > addresses[j].Length
}
pkgSize := sizes[pkgName]
if pkgSize == nil {
pkgSize = &packageSize{}
sizes[pkgName] = pkgSize
return addresses[i].Address < addresses[j].Address
})
// Now finally determine the binary/RAM size usage per package by going
// through each allocated section.
sizes := make(map[string]packageSize)
for _, section := range file.Sections {
if section.Flags&elf.SHF_ALLOC == 0 {
continue
}
if section.Type != elf.SHT_PROGBITS && section.Type != elf.SHT_NOBITS {
continue
}
if section.Name == ".stack" {
// This is a bit ugly, but I don't think there is a way to mark the
// stack section in a linker script.
// We store the C stack as a pseudo-section.
sizes["C stack"] = packageSize{
BSS: section.Size,
}
continue
}
if lastSymbolValue != symbol.Value || lastSymbolValue == 0 {
if symType == elf.STT_FUNC {
pkgSize.Code += symbol.Size
} else if section.Flags&elf.SHF_WRITE != 0 {
if section.Type == elf.SHT_NOBITS {
pkgSize.BSS += symbol.Size
// .bss
readSection(section, addresses, func(path string, size uint64, isVariable bool) {
field := sizes[path]
field.BSS += size
sizes[path] = field
}, packagePathMap)
} else if section.Type == elf.SHT_PROGBITS && section.Flags&elf.SHF_EXECINSTR != 0 {
// .text
readSection(section, addresses, func(path string, size uint64, isVariable bool) {
field := sizes[path]
if isVariable {
field.ROData += size
} else {
pkgSize.Data += symbol.Size
field.Code += size
}
} else {
pkgSize.ROData += symbol.Size
sizes[path] = field
}, packagePathMap)
} else if section.Type == elf.SHT_PROGBITS && section.Flags&elf.SHF_WRITE != 0 {
// .data
readSection(section, addresses, func(path string, size uint64, isVariable bool) {
field := sizes[path]
field.Data += size
sizes[path] = field
}, packagePathMap)
} else if section.Type == elf.SHT_PROGBITS {
// .rodata
readSection(section, addresses, func(path string, size uint64, isVariable bool) {
field := sizes[path]
field.ROData += size
sizes[path] = field
}, packagePathMap)
}
}
lastSymbolValue = symbol.Value
}
sum := &packageSize{}
// ...and summarize the results.
program := &programSize{
Packages: sizes,
}
for _, pkg := range sizes {
sum.Code += pkg.Code
sum.ROData += pkg.ROData
sum.Data += pkg.Data
sum.BSS += pkg.BSS
program.Code += pkg.Code
program.ROData += pkg.ROData
program.Data += pkg.Data
program.BSS += pkg.BSS
}
return &programSize{Packages: sizes, Code: sumCode, Data: sumData, BSS: sumBSS, Sum: sum}, nil
return program, nil
}
// readSection determines for each byte in this section to which package it
// belongs. It reports this usage through the addSize callback.
func readSection(section *elf.Section, addresses []addressLine, addSize func(string, uint64, bool), packagePathMap map[string]string) {
// The addr variable tracks at which address we are while going through this
// section. We start at the beginning.
addr := section.Addr
sectionEnd := section.Addr + section.Size
for _, line := range addresses {
if line.Address < section.Addr || line.Address+line.Length >= sectionEnd {
// Check that this line is entirely within the section.
// Don't bother dealing with line entries that cross sections (that
// seems rather unlikely anyway).
continue
}
if addr < line.Address {
// There is a gap: there is a space between the current and the
// previous line entry.
addSize("(unknown)", line.Address-addr, false)
}
if addr > line.Address+line.Length {
// The current line is already covered by a previous line entry.
// Simply skip it.
continue
}
// At this point, addr falls within the current line (probably at the
// start).
length := line.Length
if addr > line.Address {
// There is some overlap: the previous line entry already covered
// part of this line entry. So reduce the length to add to the
// remaining bit of the line entry.
length = line.Length - (addr - line.Address)
}
// Finally, mark this chunk of memory as used by the given package.
addSize(findPackagePath(line.File, packagePathMap), length, line.IsVariable)
addr = line.Address + line.Length
}
if addr < sectionEnd {
// There is a gap at the end of the section.
addSize("(unknown)", sectionEnd-addr, false)
}
}
// findPackagePath returns the Go package (or a pseudo package) for the given
// path. It uses some heuristics, for example for some C libraries.
func findPackagePath(path string, packagePathMap map[string]string) string {
// Check whether this path is part of one of the compiled packages.
packagePath, ok := packagePathMap[filepath.Dir(path)]
if !ok {
if strings.HasPrefix(path, filepath.Join(goenv.Get("TINYGOROOT"), "lib")) {
// Emit C libraries (in the lib subdirectory of TinyGo) as a single
// package, with a "C" prefix. For example: "C compiler-rt" for the
// compiler runtime library from LLVM.
packagePath = "C " + strings.Split(strings.TrimPrefix(path, filepath.Join(goenv.Get("TINYGOROOT"), "lib")), string(os.PathSeparator))[1]
} else if packageSymbolRegexp.MatchString(path) {
// Parse symbol names like main$alloc or runtime$string.
packagePath = path[:strings.LastIndex(path, "$")]
} else if reflectDataRegexp.MatchString(path) {
// Parse symbol names like reflect.structTypesSidetable.
packagePath = "Go reflect data"
} else {
// This is some other path. Not sure what it is, so just emit its directory.
packagePath = filepath.Dir(path) // fallback
}
}
return packagePath
}

Просмотреть файл

@ -292,6 +292,12 @@ func (p *Program) Parse() error {
return nil
}
// OriginalDir returns the real directory name. It is the same as p.Dir except
// that if it is part of the cached GOROOT, its real location is returned.
func (p *Package) OriginalDir() string {
return strings.TrimSuffix(p.program.getOriginalPath(p.Dir+string(os.PathSeparator)), string(os.PathSeparator))
}
// parseFile is a wrapper around parser.ParseFile.
func (p *Package) parseFile(path string, mode parser.Mode) (*ast.File, error) {
originalPath := p.program.getOriginalPath(path)