Support for STM32L0 MCUs and Dragino LGT92 device (#1561)

machine/stm32l0: add support for stm32l0 family and Dragino LGT92 Board
Этот коммит содержится в:
Fauchon 2021-01-08 22:27:25 +01:00 коммит произвёл GitHub
родитель a4d0877cf0
коммит 65caf777dd
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
11 изменённых файлов: 707 добавлений и 3 удалений

Просмотреть файл

@ -297,6 +297,8 @@ smoketest:
@$(MD5SUM) test.hex @$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=pinetime-devkit0 examples/blinky1 $(TINYGO) build -size short -o test.hex -target=pinetime-devkit0 examples/blinky1
@$(MD5SUM) test.hex @$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=lgt92 examples/blinky1
@$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=x9pro examples/blinky1 $(TINYGO) build -size short -o test.hex -target=x9pro examples/blinky1
@$(MD5SUM) test.hex @$(MD5SUM) test.hex
$(TINYGO) build -size short -o test.hex -target=pca10056-s140v7 examples/blinky1 $(TINYGO) build -size short -o test.hex -target=pca10056-s140v7 examples/blinky1

80
src/machine/board_lgt92.go Обычный файл
Просмотреть файл

@ -0,0 +1,80 @@
// +build lgt92
package machine
import (
"device/stm32"
"runtime/interrupt"
)
const (
LED1 = PA12
LED2 = PA8
LED3 = PA11
LED_RED = LED1
LED_BLUE = LED2
LED_GREEN = LED3
// Default led
LED = LED1
BUTTON = PB14
// LG GPS module
GPS_STANDBY_PIN = PB3
GPS_RESET_PIN = PB4
GPS_POWER_PIN = PB5
MEMS_ACCEL_CS = PE3
MEMS_ACCEL_INT1 = PE0
MEMS_ACCEL_INT2 = PE1
// SPI
SPI1_SCK_PIN = PA5
SPI1_SDI_PIN = PA6
SPI1_SDO_PIN = PA7
SPI0_SCK_PIN = SPI1_SCK_PIN
SPI0_SDI_PIN = SPI1_SDI_PIN
SPI0_SDO_PIN = SPI1_SDO_PIN
// LORA RFM95 Radio
RFM95_DIO0_PIN = PC13
//TinyGo UART is MCU LPUSART1
UART_RX_PIN = PA13
UART_TX_PIN = PA14
//TinyGo UART1 is MCU USART1
UART1_RX_PIN = PB6
UART1_TX_PIN = PB7
)
var (
// Console UART (LPUSART1)
UART0 = UART{
Buffer: NewRingBuffer(),
Bus: stm32.LPUSART1,
AltFuncSelector: 6,
}
// Gps UART
UART1 = UART{
Buffer: NewRingBuffer(),
Bus: stm32.USART1,
AltFuncSelector: 0,
}
// SPI
SPI0 = SPI{
Bus: stm32.SPI1,
}
SPI1 = &SPI0
)
func init() {
// Enable UARTs Interrupts
UART0.Interrupt = interrupt.New(stm32.IRQ_AES_RNG_LPUART1, UART0.handleInterrupt)
UART1.Interrupt = interrupt.New(stm32.IRQ_USART1, UART1.handleInterrupt)
}

Просмотреть файл

@ -1,4 +1,4 @@
// +build avr nrf sam stm32,!stm32f407,!stm32f7x2 fe310 k210 // +build avr nrf sam stm32,!stm32f407,!stm32f7x2,!stm32l0 fe310 k210
package machine package machine

Просмотреть файл

@ -1,4 +1,4 @@
// +build stm32,!stm32f103xx,!stm32f407,!stm32f7x2 // +build stm32,!stm32f103xx,!stm32f407,!stm32f7x2,!stm32l0
package machine package machine

Просмотреть файл

@ -1,4 +1,4 @@
// +build stm32,!stm32f7 // +build stm32,!stm32f7,!stm32l0
package machine package machine

288
src/machine/machine_stm32l0.go Обычный файл
Просмотреть файл

@ -0,0 +1,288 @@
// +build stm32l0
package machine
// Peripheral abstraction layer for the stm32l0
import (
"device/stm32"
"runtime/interrupt"
"unsafe"
)
func CPUFrequency() uint32 {
return 32000000
}
const (
PA0 = portA + 0
PA1 = portA + 1
PA2 = portA + 2
PA3 = portA + 3
PA4 = portA + 4
PA5 = portA + 5
PA6 = portA + 6
PA7 = portA + 7
PA8 = portA + 8
PA9 = portA + 9
PA10 = portA + 10
PA11 = portA + 11
PA12 = portA + 12
PA13 = portA + 13
PA14 = portA + 14
PA15 = portA + 15
PB0 = portB + 0
PB1 = portB + 1
PB2 = portB + 2
PB3 = portB + 3
PB4 = portB + 4
PB5 = portB + 5
PB6 = portB + 6
PB7 = portB + 7
PB8 = portB + 8
PB9 = portB + 9
PB10 = portB + 10
PB11 = portB + 11
PB12 = portB + 12
PB13 = portB + 13
PB14 = portB + 14
PB15 = portB + 15
PC0 = portC + 0
PC1 = portC + 1
PC2 = portC + 2
PC3 = portC + 3
PC4 = portC + 4
PC5 = portC + 5
PC6 = portC + 6
PC7 = portC + 7
PC8 = portC + 8
PC9 = portC + 9
PC10 = portC + 10
PC11 = portC + 11
PC12 = portC + 12
PC13 = portC + 13
PC14 = portC + 14
PC15 = portC + 15
PD0 = portD + 0
PD1 = portD + 1
PD2 = portD + 2
PD3 = portD + 3
PD4 = portD + 4
PD5 = portD + 5
PD6 = portD + 6
PD7 = portD + 7
PD8 = portD + 8
PD9 = portD + 9
PD10 = portD + 10
PD11 = portD + 11
PD12 = portD + 12
PD13 = portD + 13
PD14 = portD + 14
PD15 = portD + 15
PE0 = portE + 0
PE1 = portE + 1
PE2 = portE + 2
PE3 = portE + 3
PE4 = portE + 4
PE5 = portE + 5
PE6 = portE + 6
PE7 = portE + 7
PE8 = portE + 8
PE9 = portE + 9
PE10 = portE + 10
PE11 = portE + 11
PE12 = portE + 12
PE13 = portE + 13
PE14 = portE + 14
PE15 = portE + 15
PH0 = portH + 0
PH1 = portH + 1
)
func (p Pin) getPort() *stm32.GPIO_Type {
switch p / 16 {
case 0:
return stm32.GPIOA
case 1:
return stm32.GPIOB
case 2:
return stm32.GPIOC
case 3:
return stm32.GPIOD
case 4:
return stm32.GPIOE
case 7:
return stm32.GPIOH
default:
panic("machine: unknown port")
}
}
// enableClock enables the clock for this desired GPIO port.
func (p Pin) enableClock() {
switch p / 16 {
case 0:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPAEN)
case 1:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPBEN)
case 2:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPCEN)
case 3:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPDEN)
case 4:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPEEN)
case 7:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPHEN)
default:
panic("machine: unknown port")
}
}
// Enable peripheral clock
func enableAltFuncClock(bus unsafe.Pointer) {
switch bus {
case unsafe.Pointer(stm32.DAC): // DAC interface clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_DACEN)
case unsafe.Pointer(stm32.PWR): // Power interface clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_PWREN)
case unsafe.Pointer(stm32.I2C3): // I2C3 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_I2C3EN)
case unsafe.Pointer(stm32.I2C2): // I2C2 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_I2C2EN)
case unsafe.Pointer(stm32.I2C1): // I2C1 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_I2C1EN)
case unsafe.Pointer(stm32.USART5): // UART5 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_USART5EN)
case unsafe.Pointer(stm32.USART4): // UART4 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_USART4EN)
case unsafe.Pointer(stm32.USART2): // USART2 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_USART2EN)
case unsafe.Pointer(stm32.SPI2): // SPI2 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_SPI2EN)
case unsafe.Pointer(stm32.LPUSART1): // LPUSART1 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_LPUART1EN)
case unsafe.Pointer(stm32.WWDG): // Window watchdog clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_WWDGEN)
case unsafe.Pointer(stm32.TIM7): // TIM7 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM7EN)
case unsafe.Pointer(stm32.TIM6): // TIM6 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM6EN)
case unsafe.Pointer(stm32.TIM3): // TIM3 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM3EN)
case unsafe.Pointer(stm32.TIM2): // TIM2 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM2EN)
case unsafe.Pointer(stm32.SYSCFG_COMP): // System configuration controller clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_SYSCFGEN)
case unsafe.Pointer(stm32.SPI1): // SPI1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_SPI1EN)
case unsafe.Pointer(stm32.ADC): // ADC clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_ADCEN)
case unsafe.Pointer(stm32.USART1): // USART1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_USART1EN)
}
}
//---------- UART related types and code
// UART representation
type UART struct {
Buffer *RingBuffer
Bus *stm32.USART_Type
Interrupt interrupt.Interrupt
AltFuncSelector stm32.AltFunc
}
// Configure the UART.
func (uart UART) configurePins(config UARTConfig) {
// enable the alternate functions on the TX and RX pins
config.TX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTTX}, uart.AltFuncSelector)
config.RX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTRX}, uart.AltFuncSelector)
}
// UART baudrate calc based on the bus and clockspeed
func (uart UART) getBaudRateDivisor(baudRate uint32) uint32 {
var clock, rate uint32
switch uart.Bus {
case stm32.LPUSART1:
clock = CPUFrequency() / 2 // APB1 Frequency
rate = uint32((256 * clock) / baudRate)
case stm32.USART1:
clock = CPUFrequency() / 2 // APB2 Frequency
rate = uint32(clock / baudRate)
case stm32.USART2:
clock = CPUFrequency() / 2 // APB1 Frequency
rate = uint32(clock / baudRate)
}
return rate
}
//---------- SPI related types and code
// SPI on the STM32Fxxx using MODER / alternate function pins
type SPI struct {
Bus *stm32.SPI_Type
AltFuncSelector stm32.AltFunc
}
// Set baud rate for SPI
func (spi SPI) getBaudRate(config SPIConfig) uint32 {
var conf uint32
localFrequency := config.Frequency
// Default
if config.Frequency == 0 {
config.Frequency = 4e6
}
if spi.Bus != stm32.SPI1 {
// Assume it's SPI2 or SPI3 on APB1 at 1/2 the clock frequency of APB2, so
// we want to pretend to request 2x the baudrate asked for
localFrequency = localFrequency * 2
}
// set frequency dependent on PCLK prescaler. Since these are rather weird
// speeds due to the CPU freqency, pick a range up to that frquency for
// clients to use more human-understandable numbers, e.g. nearest 100KHz
// These are based on APB2 clock frquency (84MHz on the discovery board)
// TODO: also include the MCU/APB clock setting in the equation
switch {
case localFrequency < 328125:
conf = stm32.SPI_PCLK_256
case localFrequency < 656250:
conf = stm32.SPI_PCLK_128
case localFrequency < 1312500:
conf = stm32.SPI_PCLK_64
case localFrequency < 2625000:
conf = stm32.SPI_PCLK_32
case localFrequency < 5250000:
conf = stm32.SPI_PCLK_16
case localFrequency < 10500000:
conf = stm32.SPI_PCLK_8
// NOTE: many SPI components won't operate reliably (or at all) above 10MHz
// Check the datasheet of the part
case localFrequency < 21000000:
conf = stm32.SPI_PCLK_4
case localFrequency < 42000000:
conf = stm32.SPI_PCLK_2
default:
// None of the specific baudrates were selected; choose the lowest speed
conf = stm32.SPI_PCLK_256
}
return conf << stm32.SPI_CR1_BR_Pos
}
// Configure SPI pins for input output and clock
func (spi SPI) configurePins(config SPIConfig) {
config.SCK.ConfigureAltFunc(PinConfig{Mode: PinModeSPICLK}, spi.AltFuncSelector)
config.SDO.ConfigureAltFunc(PinConfig{Mode: PinModeSPISDO}, spi.AltFuncSelector)
config.SDI.ConfigureAltFunc(PinConfig{Mode: PinModeSPISDI}, spi.AltFuncSelector)
}

64
src/machine/machine_stm32l0_uart.go Обычный файл
Просмотреть файл

@ -0,0 +1,64 @@
// +build stm32,stm32l0
package machine
// Peripheral abstraction layer for UARTs on the stm32 family.
import (
"device/stm32"
"runtime/interrupt"
"unsafe"
)
// Configure the UART.
func (uart UART) Configure(config UARTConfig) {
// Default baud rate to 115200.
if config.BaudRate == 0 {
config.BaudRate = 115200
}
// Set the GPIO pins to defaults if they're not set
if config.TX == 0 && config.RX == 0 {
config.TX = UART_TX_PIN
config.RX = UART_RX_PIN
}
// Enable USART clock
enableAltFuncClock(unsafe.Pointer(uart.Bus))
uart.configurePins(config)
// Set baud rate
uart.SetBaudRate(config.BaudRate)
// Enable USART port, tx, rx and rx interrupts
uart.Bus.CR1.Set(stm32.USART_CR1_TE | stm32.USART_CR1_RE | stm32.USART_CR1_RXNEIE | stm32.USART_CR1_UE)
// Enable RX IRQ
uart.Interrupt.SetPriority(0xc0)
uart.Interrupt.Enable()
}
// handleInterrupt should be called from the appropriate interrupt handler for
// this UART instance.
func (uart *UART) handleInterrupt(interrupt.Interrupt) {
uart.Receive(byte((uart.Bus.RDR.Get() & 0xFF)))
}
// SetBaudRate sets the communication speed for the UART. Defer to chip-specific
// routines for calculation
func (uart UART) SetBaudRate(br uint32) {
divider := uart.getBaudRateDivisor(br)
uart.Bus.BRR.Set(divider)
}
// WriteByte writes a byte of data to the UART.
func (uart UART) WriteByte(c byte) error {
uart.Bus.TDR.Set(uint32(c))
for !uart.Bus.ISR.HasBits(stm32.USART_ISR_TXE) {
}
return nil
}

230
src/runtime/runtime_stm32l0.go Обычный файл
Просмотреть файл

@ -0,0 +1,230 @@
// +build stm32,stm32l0
package runtime
import (
"device/arm"
"device/stm32"
"machine"
"runtime/interrupt"
"runtime/volatile"
)
const (
// Sets PCLK1
RCC_CFGR_PPRE1_DIV_NONE = 0x00000000
RCC_CFGR_PPRE1_DIV_2 = 0x00000400
RCC_CFGR_PPRE1_DIV_4 = 0x00000500
RCC_CFGR_PPRE1_DIV_8 = 0x00000600
RCC_CFGR_PPRE1_DIV_16 = 0x00000700
// Sets PCLK2
RCC_CFGR_PPRE2_DIV_NONE = 0x00000000
RCC_CFGR_PPRE2_DIV_2 = 0x00002000
RCC_CFGR_PPRE2_DIV_4 = 0x00002800
RCC_CFGR_PPRE2_DIV_8 = 0x00003000
RCC_CFGR_PPRE2_DIV_16 = 0x00003800
)
func init() {
initCLK()
initRTC()
initTIM()
machine.UART0.Configure(machine.UARTConfig{})
}
func putchar(c byte) {
machine.UART0.WriteByte(c)
}
// initCLK sets clock to 32MHz
// SEE: https://github.com/WRansohoff/STM32x0_timer_example/blob/master/src/main.c
func initCLK() {
// Set the Flash ACR to use 1 wait-state
// enable the prefetch buffer and pre-read for performance
stm32.Flash.ACR.SetBits(stm32.Flash_ACR_LATENCY | stm32.Flash_ACR_PRFTEN | stm32.Flash_ACR_PRE_READ)
// Set presaclers so half system clock (PCLKx = HCLK/2)
stm32.RCC.CFGR.SetBits(RCC_CFGR_PPRE1_DIV_2)
stm32.RCC.CFGR.SetBits(RCC_CFGR_PPRE2_DIV_2)
// Enable the HSI16 oscillator, since the L0 series boots to the MSI one.
stm32.RCC.CR.SetBits(stm32.RCC_CR_HSI16ON)
// Wait for HSI16 to be ready
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_HSI16RDYF) {
}
// Configure the PLL to use HSI16 with a PLLDIV of 2 and PLLMUL of 4.
stm32.RCC.CFGR.SetBits(0x01<<stm32.RCC_CFGR_PLLDIV_Pos | 0x01<<stm32.RCC_CFGR_PLLMUL_Pos)
stm32.RCC.CFGR.ClearBits(0x02<<stm32.RCC_CFGR_PLLDIV_Pos | 0x0E<<stm32.RCC_CFGR_PLLMUL_Pos)
stm32.RCC.CFGR.ClearBits(stm32.RCC_CFGR_PLLSRC)
// Enable PLL
stm32.RCC.CR.SetBits(stm32.RCC_CR_PLLON)
// Wait for PLL to be ready
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_PLLRDY) {
}
// Use PLL As System clock
stm32.RCC.CFGR.SetBits(0x3)
}
var (
timestamp timeUnit // microseconds since boottime
timerLastCounter uint64
)
var timerWakeup volatile.Register8
func initRTC() {
// Enable power
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_PWREN)
// access to backup register
stm32.PWR.CR.SetBits(stm32.PWR_CR_DBP)
// Enable LSE
stm32.RCC.CSR.SetBits(stm32.RCC_CSR_LSEON)
// wait until LSE is ready
for !stm32.RCC.CSR.HasBits(stm32.RCC_CSR_LSERDY) {
}
// Select Clock Source LSE
stm32.RCC.CSR.SetBits(0x01 << stm32.RCC_CSR_RTCSEL_Pos)
stm32.RCC.CSR.ClearBits(0x02 << stm32.RCC_CSR_RTCSEL_Pos)
// Enable clock
stm32.RCC.CSR.SetBits(stm32.RCC_CSR_RTCEN)
stm32.RTC.WPR.Set(0xCA) // Enable Write Access for RTC Registers
stm32.RTC.WPR.Set(0x53) // Enable Write Access for RTC Registers
stm32.RTC.ISR.SetBits(stm32.RTC_ISR_INIT) // Enable init phase
// Wait for initialization state
for !stm32.RTC.ISR.HasBits(stm32.RTC_ISR_INITF) {
}
stm32.RTC.PRER.Set(0x003F0270) // set prescaler, 40kHz/64 => 625Hz, 625Hz/625 => 1Hz
// Set initial date
//RTC->TR = RTC_TR_PM | 0;
stm32.RTC.ISR.ClearBits(stm32.RTC_ISR_INIT) // Disable init phase
stm32.RTC.WPR.Set(0xFE) // Disable Write Access for RTC Registers
stm32.RTC.WPR.Set(0x64) // Disable Write Access for RTC Registers
}
// Enable the TIM3 clock.
func initTIM() {
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM3EN)
intr := interrupt.New(stm32.IRQ_TIM3, handleTIM3)
intr.SetPriority(0xc3)
intr.Enable()
}
const asyncScheduler = false
func ticksToNanoseconds(ticks timeUnit) int64 {
return int64(ticks) * 1000
}
func nanosecondsToTicks(ns int64) timeUnit {
return timeUnit(ns / 1000)
}
// sleepTicks should sleep for specific number of microseconds.
func sleepTicks(d timeUnit) {
for d != 0 {
ticks() // update timestamp
ticks := uint32(d) // current scaling only supports 100 usec to 6553 msec
timerSleep(ticks)
d -= timeUnit(ticks)
}
}
// number of ticks (microseconds) since start.
func ticks() timeUnit {
// Read twice to force shadow register cache update
rSubSec := stm32.RTC.SSR.Get() & stm32.RTC_SSR_SS_Msk
rSubSec = stm32.RTC.SSR.Get() & stm32.RTC_SSR_SS_Msk
rDate := stm32.RTC.DR.Get()
rDate = stm32.RTC.DR.Get()
rDate++
rTime := stm32.RTC.TR.Get()
rTime = stm32.RTC.TR.Get()
prediv := stm32.RTC.PRER.Get() & stm32.RTC_PRER_PREDIV_S_Msk
var tsec uint64
// Timestamp in seconds
tsec = uint64(((rTime & 0x300000) >> 20) * 36000) // Hours Tens
tsec += uint64(((rTime & 0xf0000) >> 16) * 3600) // Hours Units
tsec += uint64(((rTime & 0x7000) >> 12) * 600) // Minutes Tens
tsec += uint64(((rTime & 0xf00) >> 8) * 60) // Minutes Units
tsec += uint64(((rTime & 0x70) >> 4) * 10) // Second Tens
tsec += uint64(rTime & 0xf) // Seconds Units
//Second fraction in milliseconds
ssec := uint64((1000 * (prediv - rSubSec)) / (prediv + 1))
timerCounter := uint64(tsec * 1000) // Timestamp in millis
timerCounter += ssec // Add sub-seconds
timerCounter *= 1000 // Convert to micros
// change since last measurement
offset := (timerCounter - timerLastCounter)
timerLastCounter = timerCounter
timestamp += timeUnit(offset)
return timestamp
}
// ticks are in microseconds
func timerSleep(ticks uint32) {
timerWakeup.Set(0)
// prescale counter down from 32mhz to 10khz aka 0.1 ms frequency.
clk := machine.CPUFrequency() / 2
stm32.TIM3.PSC.Set(clk/10000 - 1)
// Set duty aka duration.
// STM32 dividers use n-1, i.e. n counts from 0 to n-1.
// As a result, with these prescaler settings,
// the minimum allowed duration is 200 microseconds.
if ticks < 200 {
ticks = 200
}
stm32.TIM3.ARR.Set(ticks/100 - 1) // convert from microseconds to 0.1 ms
// Enable the hardware interrupt.
stm32.TIM3.DIER.SetBits(stm32.TIM_DIER_UIE)
// Enable the timer.
stm32.TIM3.CR1.SetBits(stm32.TIM_CR1_CEN)
// wait till timer wakes up
for timerWakeup.Get() == 0 {
arm.Asm("wfi")
}
}
func handleTIM3(interrupt.Interrupt) {
if stm32.TIM3.SR.HasBits(stm32.TIM_SR_UIF) {
// Disable the timer.
stm32.TIM3.CR1.ClearBits(stm32.TIM_CR1_CEN)
// clear the update flag
stm32.TIM3.SR.ClearBits(stm32.TIM_SR_UIF)
// timer was triggered
timerWakeup.Set(1)
}
}

12
targets/lgt92.json Обычный файл
Просмотреть файл

@ -0,0 +1,12 @@
{
"inherits": [
"stm32l0x2"
],
"build-tags": [
"lgt92"
],
"linkerscript": "targets/stm32l072czt6.ld",
"flash-method": "openocd",
"openocd-interface": "stlink-v2",
"openocd-target": "stm32f0x"
}

10
targets/stm32l072czt6.ld Обычный файл
Просмотреть файл

@ -0,0 +1,10 @@
MEMORY
{
FLASH_TEXT (rw) : ORIGIN = 0x08000000, LENGTH = 128K
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 20K
}
_stack_size = 2K;
INCLUDE "targets/arm.ld"

18
targets/stm32l0x2.json Обычный файл
Просмотреть файл

@ -0,0 +1,18 @@
{
"inherits": [
"cortex-m"
],
"llvm-target": "armv6m-none-eabi",
"build-tags": [
"stm32l0",
"stm32l0x2",
"stm32"
],
"cflags": [
"--target=armv6m-none-eabi",
"-Qunused-arguments"
],
"extra-files": [
"src/device/stm32/stm32l0x2.s"
]
}