stm32: move f103 (bluepill) to common i2c code

Этот коммит содержится в:
Kenneth Bell 2021-03-19 22:45:56 -07:00 коммит произвёл Ron Evans
родитель a075cbedf5
коммит b5205cc3ca
4 изменённых файлов: 47 добавлений и 429 удалений

Просмотреть файл

@ -85,6 +85,6 @@ const (
// I2C pins
const (
SDA_PIN = PB7
SCL_PIN = PB6
I2C0_SDA_PIN = PB7
I2C0_SCL_PIN = PB6
)

Просмотреть файл

@ -120,6 +120,6 @@ const (
// I2C pins
const (
SCL_PIN = PB6
SDA_PIN = PB7
I2C0_SCL_PIN = PB6
I2C0_SDA_PIN = PB7
)

Просмотреть файл

@ -1,4 +1,4 @@
// +build stm32,!stm32f103,!stm32f7x2,!stm32l5x2,!stm32l0
// +build stm32,!stm32f7x2,!stm32l5x2,!stm32l0
package machine

Просмотреть файл

@ -197,10 +197,6 @@ func (spi SPI) configurePins(config SPIConfig) {
//---------- I2C related types and code
type I2C struct {
Bus *stm32.I2C_Type
}
// There are 2 I2C interfaces on the STM32F103xx.
// Since the first interface is named I2C1, both I2C0 and I2C1 refer to I2C1.
// TODO: implement I2C2.
@ -209,451 +205,73 @@ var (
I2C0 = I2C1
)
// I2CConfig is used to store config info for I2C.
type I2CConfig struct {
Frequency uint32
SCL Pin
SDA Pin
type I2C struct {
Bus *stm32.I2C_Type
}
// Configure is intended to setup the I2C interface.
func (i2c I2C) Configure(config I2CConfig) error {
// Default I2C bus speed is 100 kHz.
if config.Frequency == 0 {
config.Frequency = TWI_FREQ_100KHZ
}
// enable clock for I2C
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_I2C1EN)
// I2C1 pins
switch config.SDA {
case PB9:
config.SCL = PB8
func (i2c I2C) configurePins(config I2CConfig) {
if config.SDA == PB9 {
// use alternate I2C1 pins PB8/PB9 via AFIO mapping
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_AFIOEN)
stm32.AFIO.MAPR.SetBits(stm32.AFIO_MAPR_I2C1_REMAP)
default:
// use default I2C1 pins PB6/PB7
config.SDA = SDA_PIN
config.SCL = SCL_PIN
}
config.SDA.Configure(PinConfig{Mode: PinOutput50MHz + PinOutputModeAltOpenDrain})
config.SCL.Configure(PinConfig{Mode: PinOutput50MHz + PinOutputModeAltOpenDrain})
}
// Disable the selected I2C peripheral to configure
i2c.Bus.CR1.ClearBits(stm32.I2C_CR1_PE)
func (i2c I2C) getFreqRange(config I2CConfig) uint32 {
// pclk1 clock speed is main frequency divided by PCLK1 prescaler (div 2)
pclk1 := CPUFrequency() / 2
// set freqency range to PCLK1 clock speed in MHz
// aka setting the value 36 means to use 36 MHz clock
pclk1Mhz := pclk1 / 1000000
i2c.Bus.CR2.SetBits(pclk1Mhz)
switch config.Frequency {
case TWI_FREQ_100KHZ:
// Normal mode speed calculation
ccr := pclk1 / (config.Frequency * 2)
i2c.Bus.CCR.Set(ccr)
// duty cycle 2
i2c.Bus.CCR.ClearBits(stm32.I2C_CCR_DUTY)
// frequency standard mode
i2c.Bus.CCR.ClearBits(stm32.I2C_CCR_F_S)
// Set Maximum Rise Time for standard mode
i2c.Bus.TRISE.Set(pclk1Mhz)
case TWI_FREQ_400KHZ:
// Fast mode speed calculation
ccr := pclk1 / (config.Frequency * 3)
i2c.Bus.CCR.Set(ccr)
// duty cycle 2
i2c.Bus.CCR.ClearBits(stm32.I2C_CCR_DUTY)
// frequency fast mode
i2c.Bus.CCR.SetBits(stm32.I2C_CCR_F_S)
// Set Maximum Rise Time for fast mode
i2c.Bus.TRISE.Set(((pclk1Mhz * 300) / 1000))
}
// re-enable the selected I2C peripheral
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_PE)
return nil
return pclk1 / 1000000
}
// Tx does a single I2C transaction at the specified address.
// It clocks out the given address, writes the bytes in w, reads back len(r)
// bytes and stores them in r, and generates a stop condition on the bus.
func (i2c I2C) Tx(addr uint16, w, r []byte) error {
var err error
if len(w) != 0 {
// start transmission for writing
err = i2c.signalStart()
if err != nil {
return err
}
// send address
err = i2c.sendAddress(uint8(addr), true)
if err != nil {
return err
}
for _, b := range w {
err = i2c.WriteByte(b)
if err != nil {
return err
}
}
// sending stop here for write
err = i2c.signalStop()
if err != nil {
return err
}
func (i2c I2C) getRiseTime(config I2CConfig) uint32 {
// These bits must be programmed with the maximum SCL rise time given in the
// I2C bus specification, incremented by 1.
// For instance: in Sm mode, the maximum allowed SCL rise time is 1000 ns.
// If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to 0x08
// and PCLK1 = 125 ns, therefore the TRISE[5:0] bits must be programmed with
// 09h (1000 ns / 125 ns = 8 + 1)
freqRange := i2c.getFreqRange(config)
if config.Frequency > 100000 {
// fast mode (Fm) adjustment
freqRange *= 300
freqRange /= 1000
}
if len(r) != 0 {
// re-start transmission for reading
err = i2c.signalStart()
if err != nil {
return err
}
// 1 byte
switch len(r) {
case 1:
// send address
err = i2c.sendAddress(uint8(addr), false)
if err != nil {
return err
}
// Disable ACK of received data
i2c.Bus.CR1.ClearBits(stm32.I2C_CR1_ACK)
// clear timeout here
timeout := i2cTimeout
for !i2c.Bus.SR2.HasBits(stm32.I2C_SR2_MSL | stm32.I2C_SR2_BUSY) {
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
// Generate stop condition
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_STOP)
timeout = i2cTimeout
for !i2c.Bus.SR1.HasBits(stm32.I2C_SR1_RxNE) {
timeout--
if timeout == 0 {
return errI2CReadTimeout
}
}
// Read and return data byte from I2C data register
r[0] = byte(i2c.Bus.DR.Get())
// wait for stop
return i2c.waitForStop()
case 2:
// enable pos
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_POS)
// Enable ACK of received data
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_ACK)
// send address
err = i2c.sendAddress(uint8(addr), false)
if err != nil {
return err
}
// clear address here
timeout := i2cTimeout
for !i2c.Bus.SR2.HasBits(stm32.I2C_SR2_MSL | stm32.I2C_SR2_BUSY) {
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
// Disable ACK of received data
i2c.Bus.CR1.ClearBits(stm32.I2C_CR1_ACK)
// wait for btf. we need a longer timeout here than normal.
timeout = 1000
for !i2c.Bus.SR1.HasBits(stm32.I2C_SR1_BTF) {
timeout--
if timeout == 0 {
return errI2CReadTimeout
}
}
// Generate stop condition
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_STOP)
// read the 2 bytes by reading twice.
r[0] = byte(i2c.Bus.DR.Get())
r[1] = byte(i2c.Bus.DR.Get())
// wait for stop
err = i2c.waitForStop()
//disable pos
i2c.Bus.CR1.ClearBits(stm32.I2C_CR1_POS)
return err
case 3:
// Enable ACK of received data
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_ACK)
// send address
err = i2c.sendAddress(uint8(addr), false)
if err != nil {
return err
}
// clear address here
timeout := i2cTimeout
for !i2c.Bus.SR2.HasBits(stm32.I2C_SR2_MSL | stm32.I2C_SR2_BUSY) {
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
// Enable ACK of received data
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_ACK)
// wait for btf. we need a longer timeout here than normal.
timeout = 1000
for !i2c.Bus.SR1.HasBits(stm32.I2C_SR1_BTF) {
timeout--
if timeout == 0 {
return errI2CReadTimeout
}
}
// Disable ACK of received data
i2c.Bus.CR1.ClearBits(stm32.I2C_CR1_ACK)
// read the first byte
r[0] = byte(i2c.Bus.DR.Get())
timeout = 1000
for !i2c.Bus.SR1.HasBits(stm32.I2C_SR1_BTF) {
timeout--
if timeout == 0 {
return errI2CReadTimeout
}
}
// Generate stop condition
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_STOP)
// read the last 2 bytes by reading twice.
r[1] = byte(i2c.Bus.DR.Get())
r[2] = byte(i2c.Bus.DR.Get())
// wait for stop
return i2c.waitForStop()
default:
// more than 3 bytes of data to read
// send address
err = i2c.sendAddress(uint8(addr), false)
if err != nil {
return err
}
// clear address here
timeout := i2cTimeout
for !i2c.Bus.SR2.HasBits(stm32.I2C_SR2_MSL | stm32.I2C_SR2_BUSY) {
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
for i := 0; i < len(r)-3; i++ {
// Enable ACK of received data
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_ACK)
// wait for btf. we need a longer timeout here than normal.
timeout = 1000
for !i2c.Bus.SR1.HasBits(stm32.I2C_SR1_BTF) {
timeout--
if timeout == 0 {
return errI2CReadTimeout
}
}
// read the next byte
r[i] = byte(i2c.Bus.DR.Get())
}
// wait for btf. we need a longer timeout here than normal.
timeout = 1000
for !i2c.Bus.SR1.HasBits(stm32.I2C_SR1_BTF) {
timeout--
if timeout == 0 {
return errI2CReadTimeout
}
}
// Disable ACK of received data
i2c.Bus.CR1.ClearBits(stm32.I2C_CR1_ACK)
// get third from last byte
r[len(r)-3] = byte(i2c.Bus.DR.Get())
// Generate stop condition
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_STOP)
// get second from last byte
r[len(r)-2] = byte(i2c.Bus.DR.Get())
timeout = i2cTimeout
for !i2c.Bus.SR1.HasBits(stm32.I2C_SR1_RxNE) {
timeout--
if timeout == 0 {
return errI2CReadTimeout
}
}
// get last byte
r[len(r)-1] = byte(i2c.Bus.DR.Get())
// wait for stop
return i2c.waitForStop()
}
}
return nil
return (freqRange + 1) << stm32.I2C_TRISE_TRISE_Pos
}
const i2cTimeout = 1000
// signalStart sends a start signal.
func (i2c I2C) signalStart() error {
// Wait until I2C is not busy
timeout := i2cTimeout
for i2c.Bus.SR2.HasBits(stm32.I2C_SR2_BUSY) {
timeout--
if timeout == 0 {
return errI2CSignalStartTimeout
func (i2c I2C) getSpeed(config I2CConfig) uint32 {
ccr := func(pclk uint32, freq uint32, coeff uint32) uint32 {
return (((pclk - 1) / (freq * coeff)) + 1) & stm32.I2C_CCR_CCR_Msk
}
sm := func(pclk uint32, freq uint32) uint32 { // standard mode (Sm)
if s := ccr(pclk, freq, 2); s < 4 {
return 4
} else {
return s
}
}
// clear stop
i2c.Bus.CR1.ClearBits(stm32.I2C_CR1_STOP)
// Generate start condition
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_START)
// Wait for I2C EV5 aka SB flag.
timeout = i2cTimeout
for !i2c.Bus.SR1.HasBits(stm32.I2C_SR1_SB) {
timeout--
if timeout == 0 {
return errI2CSignalStartTimeout
fm := func(pclk uint32, freq uint32, duty uint8) uint32 { // fast mode (Fm)
if duty == DutyCycle2 {
return ccr(pclk, freq, 3)
} else {
return ccr(pclk, freq, 25) | stm32.I2C_CCR_DUTY
}
}
return nil
}
// signalStop sends a stop signal and waits for it to succeed.
func (i2c I2C) signalStop() error {
// Generate stop condition
i2c.Bus.CR1.SetBits(stm32.I2C_CR1_STOP)
// wait for stop
return i2c.waitForStop()
}
// waitForStop waits after a stop signal.
func (i2c I2C) waitForStop() error {
// Wait until I2C is stopped
timeout := i2cTimeout
for i2c.Bus.SR1.HasBits(stm32.I2C_SR1_STOPF) {
timeout--
if timeout == 0 {
return errI2CSignalStopTimeout
}
}
return nil
}
// Send address of device we want to talk to
func (i2c I2C) sendAddress(address uint8, write bool) error {
data := (address << 1)
if !write {
data |= 1 // set read flag
}
i2c.Bus.DR.Set(uint32(data))
// Wait for I2C EV6 event.
// Destination device acknowledges address
timeout := i2cTimeout
if write {
// EV6 which is ADDR flag.
for !i2c.Bus.SR1.HasBits(stm32.I2C_SR1_ADDR) {
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
timeout = i2cTimeout
for !i2c.Bus.SR2.HasBits(stm32.I2C_SR2_MSL | stm32.I2C_SR2_BUSY | stm32.I2C_SR2_TRA) {
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
clock := CPUFrequency() / 2
if config.Frequency <= 100000 {
return sm(clock, config.Frequency)
} else {
// I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED which is ADDR flag.
for !i2c.Bus.SR1.HasBits(stm32.I2C_SR1_ADDR) {
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
s := fm(clock, config.Frequency, config.DutyCycle)
if (s & stm32.I2C_CCR_CCR_Msk) == 0 {
return 1
} else {
return s | stm32.I2C_CCR_F_S
}
}
return nil
}
// WriteByte writes a single byte to the I2C bus.
func (i2c I2C) WriteByte(data byte) error {
// Send data byte
i2c.Bus.DR.Set(uint32(data))
// Wait for I2C EV8_2 when data has been physically shifted out and
// output on the bus.
// I2C_EVENT_MASTER_BYTE_TRANSMITTED is TXE flag.
timeout := i2cTimeout
for !i2c.Bus.SR1.HasBits(stm32.I2C_SR1_TxE) {
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
return nil
}