compiler,runtime: implement non-blocking selects

Blocking selects are much more complicated, so let's do non-blocking
ones first.
Этот коммит содержится в:
Ayke van Laethem 2019-06-08 19:21:29 +02:00 коммит произвёл Ron Evans
родитель 8890a0f3c8
коммит b7197bcaae
5 изменённых файлов: 291 добавлений и 25 удалений

Просмотреть файл

@ -85,3 +85,154 @@ func (c *Compiler) emitChanClose(frame *Frame, param ssa.Value) {
ch := c.getValue(frame, param)
c.createRuntimeCall("chanClose", []llvm.Value{ch}, "")
}
// emitSelect emits all IR necessary for a select statements. That's a
// non-trivial amount of code because select is very complex to implement.
func (c *Compiler) emitSelect(frame *Frame, expr *ssa.Select) llvm.Value {
if len(expr.States) == 0 {
// Shortcuts for some simple selects.
llvmType := c.getLLVMType(expr.Type())
if expr.Blocking {
// Blocks forever:
// select {}
c.createRuntimeCall("deadlockStub", nil, "")
return llvm.Undef(llvmType)
} else {
// No-op:
// select {
// default:
// }
retval := llvm.Undef(llvmType)
retval = c.builder.CreateInsertValue(retval, llvm.ConstInt(c.intType, 0xffffffffffffffff, true), 0, "")
return retval // {-1, false}
}
}
// This code create a (stack-allocated) slice containing all the select
// cases and then calls runtime.chanSelect to perform the actual select
// statement.
// Simple selects (blocking and with just one case) are already transformed
// into regular chan operations during SSA construction so we don't have to
// optimize such small selects.
// Go through all the cases. Create the selectStates slice and and
// determine the receive buffer size and alignment.
recvbufSize := uint64(0)
recvbufAlign := 0
hasReceives := false
var selectStates []llvm.Value
chanSelectStateType := c.getLLVMRuntimeType("chanSelectState")
for _, state := range expr.States {
ch := c.getValue(frame, state.Chan)
selectState := c.getZeroValue(chanSelectStateType)
selectState = c.builder.CreateInsertValue(selectState, ch, 0, "")
switch state.Dir {
case types.RecvOnly:
// Make sure the receive buffer is big enough and has the correct alignment.
llvmType := c.getLLVMType(state.Chan.Type().(*types.Chan).Elem())
if size := c.targetData.TypeAllocSize(llvmType); size > recvbufSize {
recvbufSize = size
}
if align := c.targetData.ABITypeAlignment(llvmType); align > recvbufAlign {
recvbufAlign = align
}
hasReceives = true
case types.SendOnly:
// Store this value in an alloca and put a pointer to this alloca
// in the send state.
sendValue := c.getValue(frame, state.Send)
alloca := c.createEntryBlockAlloca(sendValue.Type(), "select.send.value")
c.builder.CreateStore(sendValue, alloca)
ptr := c.builder.CreateBitCast(alloca, c.i8ptrType, "")
selectState = c.builder.CreateInsertValue(selectState, ptr, 1, "")
default:
panic("unreachable")
}
selectStates = append(selectStates, selectState)
}
// Create a receive buffer, where the received value will be stored.
recvbuf := llvm.Undef(c.i8ptrType)
if hasReceives {
allocaType := llvm.ArrayType(c.ctx.Int8Type(), int(recvbufSize))
recvbufAlloca := c.builder.CreateAlloca(allocaType, "select.recvbuf.alloca")
recvbufAlloca.SetAlignment(recvbufAlign)
recvbuf = c.builder.CreateGEP(recvbufAlloca, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
}, "select.recvbuf")
}
// Create the states slice (allocated on the stack).
statesAllocaType := llvm.ArrayType(chanSelectStateType, len(selectStates))
statesAlloca := c.builder.CreateAlloca(statesAllocaType, "select.states.alloca")
for i, state := range selectStates {
// Set each slice element to the appropriate channel.
gep := c.builder.CreateGEP(statesAlloca, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), uint64(i), false),
}, "")
c.builder.CreateStore(state, gep)
}
statesPtr := c.builder.CreateGEP(statesAlloca, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
}, "select.states")
statesLen := llvm.ConstInt(c.uintptrType, uint64(len(selectStates)), false)
// Convert the 'blocking' flag on this select into a LLVM value.
blockingInt := uint64(0)
if expr.Blocking {
blockingInt = 1
}
blockingValue := llvm.ConstInt(c.ctx.Int1Type(), blockingInt, false)
// Do the select in the runtime.
results := c.createRuntimeCall("chanSelect", []llvm.Value{
recvbuf,
statesPtr, statesLen, statesLen, // []chanSelectState
blockingValue,
}, "")
// The result value does not include all the possible received values,
// because we can't load them in advance. Instead, the *ssa.Extract
// instruction will treat a *ssa.Select specially and load it there inline.
// Store the receive alloca in a sidetable until we hit this extract
// instruction.
if frame.selectRecvBuf == nil {
frame.selectRecvBuf = make(map[*ssa.Select]llvm.Value)
}
frame.selectRecvBuf[expr] = recvbuf
return results
}
// getChanSelectResult returns the special values from a *ssa.Extract expression
// when extracting a value from a select statement (*ssa.Select). Because
// *ssa.Select cannot load all values in advance, it does this later in the
// *ssa.Extract expression.
func (c *Compiler) getChanSelectResult(frame *Frame, expr *ssa.Extract) llvm.Value {
if expr.Index == 0 {
// index
value := c.getValue(frame, expr.Tuple)
index := c.builder.CreateExtractValue(value, expr.Index, "")
if index.Type().IntTypeWidth() < c.intType.IntTypeWidth() {
index = c.builder.CreateSExt(index, c.intType, "")
}
return index
} else if expr.Index == 1 {
// comma-ok
value := c.getValue(frame, expr.Tuple)
return c.builder.CreateExtractValue(value, expr.Index, "")
} else {
// Select statements are (index, ok, ...) where ... is a number of
// received values, depending on how many receive statements there
// are. They are all combined into one alloca (because only one
// receive can proceed at a time) so we'll get that alloca, bitcast
// it to the correct type, and dereference it.
recvbuf := frame.selectRecvBuf[expr.Tuple.(*ssa.Select)]
typ := llvm.PointerType(c.getLLVMType(expr.Type()), 0)
ptr := c.builder.CreateBitCast(recvbuf, typ, "")
return c.builder.CreateLoad(ptr, "")
}
}

Просмотреть файл

@ -84,6 +84,7 @@ type Frame struct {
deferFuncs map[*ir.Function]int
deferInvokeFuncs map[string]int
deferClosureFuncs map[*ir.Function]int
selectRecvBuf map[*ssa.Select]llvm.Value
}
type Phi struct {
@ -1445,9 +1446,11 @@ func (c *Compiler) parseExpr(frame *Frame, expr ssa.Value) (llvm.Value, error) {
x := c.getValue(frame, expr.X)
return c.parseConvert(expr.X.Type(), expr.Type(), x, expr.Pos())
case *ssa.Extract:
if _, ok := expr.Tuple.(*ssa.Select); ok {
return c.getChanSelectResult(frame, expr), nil
}
value := c.getValue(frame, expr.Tuple)
result := c.builder.CreateExtractValue(value, expr.Index, "")
return result, nil
return c.builder.CreateExtractValue(value, expr.Index, ""), nil
case *ssa.Field:
value := c.getValue(frame, expr.X)
if s := expr.X.Type().Underlying().(*types.Struct); s.NumFields() > 2 && s.Field(0).Name() == "C union" {
@ -1696,25 +1699,7 @@ func (c *Compiler) parseExpr(frame *Frame, expr ssa.Value) (llvm.Value, error) {
c.builder.CreateStore(c.getZeroValue(iteratorType), it)
return it, nil
case *ssa.Select:
if len(expr.States) == 0 {
// Shortcuts for some simple selects.
llvmType := c.getLLVMType(expr.Type())
if expr.Blocking {
// Blocks forever:
// select {}
c.createRuntimeCall("deadlockStub", nil, "")
return llvm.Undef(llvmType), nil
} else {
// No-op:
// select {
// default:
// }
retval := llvm.Undef(llvmType)
retval = c.builder.CreateInsertValue(retval, llvm.ConstInt(c.intType, 0xffffffffffffffff, true), 0, "")
return retval, nil // {-1, false}
}
}
return llvm.Undef(c.getLLVMType(expr.Type())), c.makeError(expr.Pos(), "unimplemented: "+expr.String())
return c.emitSelect(frame, expr), nil
case *ssa.Slice:
if expr.Max != nil {
return llvm.Value{}, c.makeError(expr.Pos(), "todo: full slice expressions (with max): "+expr.Type().String())

Просмотреть файл

@ -29,17 +29,27 @@ import (
type channel struct {
elementSize uint16 // the size of one value in this channel
state uint8
state chanState
blocked *coroutine
}
type chanState uint8
const (
chanStateEmpty = iota
chanStateEmpty chanState = iota
chanStateRecv
chanStateSend
chanStateClosed
)
// chanSelectState is a single channel operation (send/recv) in a select
// statement. The value pointer is either nil (for receives) or points to the
// value to send (for sends).
type chanSelectState struct {
ch *channel
value unsafe.Pointer
}
func deadlockStub()
// chanSend sends a single value over the channel. If this operation can
@ -144,3 +154,63 @@ func chanClose(ch *channel) {
ch.state = chanStateClosed
}
}
// chanSelect is the runtime implementation of the select statement. This is
// perhaps the most complicated statement in the Go spec. It returns the
// selected index and the 'comma-ok' value.
//
// TODO: do this in a round-robin fashion (as specified in the Go spec) instead
// of picking the first one that can proceed.
func chanSelect(recvbuf unsafe.Pointer, states []chanSelectState, blocking bool) (uintptr, bool) {
// See whether we can receive from one of the channels.
for i, state := range states {
if state.ch == nil {
// A nil channel blocks forever, so don't consider it here.
continue
}
if state.value == nil {
// A receive operation.
switch state.ch.state {
case chanStateSend:
// We can receive immediately.
sender := state.ch.blocked
senderPromise := sender.promise()
memcpy(recvbuf, senderPromise.ptr, uintptr(state.ch.elementSize))
state.ch.blocked = senderPromise.next
senderPromise.next = nil
activateTask(sender)
if state.ch.blocked == nil {
state.ch.state = chanStateEmpty
}
return uintptr(i), true // commaOk = true
case chanStateClosed:
// Receive the zero value.
memzero(recvbuf, uintptr(state.ch.elementSize))
return uintptr(i), false // commaOk = false
}
} else {
// A send operation: state.value is not nil.
switch state.ch.state {
case chanStateRecv:
receiver := state.ch.blocked
receiverPromise := receiver.promise()
memcpy(receiverPromise.ptr, state.value, uintptr(state.ch.elementSize))
receiverPromise.data = 1 // commaOk = true
state.ch.blocked = receiverPromise.next
receiverPromise.next = nil
activateTask(receiver)
if state.ch.blocked == nil {
state.ch.state = chanStateEmpty
}
return uintptr(i), false
case chanStateClosed:
runtimePanic("send on closed channel")
}
}
}
if !blocking {
return ^uintptr(0), false
}
panic("unimplemented: blocking select")
}

57
testdata/channel.go предоставленный
Просмотреть файл

@ -48,10 +48,63 @@ func main() {
}
println("sum(100):", sum)
// Test select
// Test simple selects.
go selectDeadlock()
go selectNoOp()
// Test select with a single send operation (transformed into chan send).
ch = make(chan int)
go fastreceiver(ch)
select {
case ch <- 5:
println("select one sent")
}
close(ch)
// Test select with a single recv operation (transformed into chan recv).
select {
case n := <-ch:
println("select one n:", n)
}
// Test select recv with channel that has one entry.
ch = make(chan int)
go func(ch chan int) {
ch <- 55
}(ch)
time.Sleep(time.Millisecond)
select {
case make(chan int) <- 3:
println("unreachable")
case n := <-ch:
println("select n from chan:", n)
case n := <-make(chan int):
println("unreachable:", n)
}
// Test select recv with closed channel.
close(ch)
select {
case make(chan int) <- 3:
println("unreachable")
case n := <-ch:
println("select n from closed chan:", n)
case n := <-make(chan int):
println("unreachable:", n)
}
// Test select send.
ch = make(chan int)
go fastreceiver(ch)
time.Sleep(time.Millisecond)
select {
case ch <- 235:
println("select send")
case n := <-make(chan int):
println("unreachable:", n)
}
close(ch)
// Allow goroutines to exit.
time.Sleep(time.Microsecond)
}
@ -68,7 +121,7 @@ func sender(ch chan int) {
}
func sendComplex(ch chan complex128) {
ch <- 7+10.5i
ch <- 7 + 10.5i
}
func fastsender(ch chan int) {

7
testdata/channel.txt предоставленный
Просмотреть файл

@ -23,3 +23,10 @@ sum(100): 4950
deadlocking
select no-op
after no-op
select one sent
sum: 5
select one n: 0
select n from chan: 55
select n from closed chan: 0
select send
sum: 235