machine/rp2040: refactor PWM code. fix Period calculation
Этот коммит содержится в:
родитель
348a02d697
коммит
bf0b05e32c
2 изменённых файлов: 83 добавлений и 63 удалений
|
@ -18,6 +18,12 @@ func CPUFrequency() uint32 {
|
||||||
return 125 * MHz
|
return 125 * MHz
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Returns the period of a clock cycle for the raspberry pi pico in nanoseconds.
|
||||||
|
// Used in PWM API.
|
||||||
|
func cpuPeriod() uint32 {
|
||||||
|
return 1e9 / CPUFrequency()
|
||||||
|
}
|
||||||
|
|
||||||
// clockIndex identifies a hardware clock
|
// clockIndex identifies a hardware clock
|
||||||
type clockIndex uint8
|
type clockIndex uint8
|
||||||
|
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
//go:build rp2040
|
||||||
// +build rp2040
|
// +build rp2040
|
||||||
|
|
||||||
package machine
|
package machine
|
||||||
|
@ -5,12 +6,13 @@ package machine
|
||||||
import (
|
import (
|
||||||
"device/rp"
|
"device/rp"
|
||||||
"errors"
|
"errors"
|
||||||
|
"math"
|
||||||
"runtime/volatile"
|
"runtime/volatile"
|
||||||
"unsafe"
|
"unsafe"
|
||||||
)
|
)
|
||||||
|
|
||||||
var (
|
var (
|
||||||
ErrPeriodTooBig = errors.New("period outside valid range 1..4e9ns")
|
ErrBadPeriod = errors.New("period outside valid range 8ns..268ms")
|
||||||
)
|
)
|
||||||
|
|
||||||
const (
|
const (
|
||||||
|
@ -50,8 +52,21 @@ func getPWMGroup(index uintptr) *pwmGroup {
|
||||||
return (*pwmGroup)(unsafe.Pointer(uintptr(unsafe.Pointer(rp.PWM)) + 0x14*index))
|
return (*pwmGroup)(unsafe.Pointer(uintptr(unsafe.Pointer(rp.PWM)) + 0x14*index))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Hardware Pulse Width Modulation (PWM) API
|
||||||
// PWM peripherals available on RP2040. Each peripheral has 2 pins available for
|
// PWM peripherals available on RP2040. Each peripheral has 2 pins available for
|
||||||
// a total of 16 available PWM outputs. Some pins may not be available on some boards.
|
// a total of 16 available PWM outputs. Some pins may not be available on some boards.
|
||||||
|
//
|
||||||
|
// The RP2040 PWM block has 8 identical slices. Each slice can drive two PWM output signals, or
|
||||||
|
// measure the frequency or duty cycle of an input signal. This gives a total of up to 16 controllable
|
||||||
|
// PWM outputs. All 30 GPIOs can be driven by the PWM block
|
||||||
|
//
|
||||||
|
// The PWM hardware functions by continuously comparing the input value to a free-running counter. This produces a
|
||||||
|
// toggling output where the amount of time spent at the high output level is proportional to the input value. The fraction of
|
||||||
|
// time spent at the high signal level is known as the duty cycle of the signal.
|
||||||
|
//
|
||||||
|
// The default behaviour of a PWM slice is to count upward until the wrap value (\ref pwm_config_set_wrap) is reached, and then
|
||||||
|
// immediately wrap to 0. PWM slices also offer a phase-correct mode, where the counter starts to count downward after
|
||||||
|
// reaching TOP, until it reaches 0 again.
|
||||||
var (
|
var (
|
||||||
PWM0 = getPWMGroup(0)
|
PWM0 = getPWMGroup(0)
|
||||||
PWM1 = getPWMGroup(1)
|
PWM1 = getPWMGroup(1)
|
||||||
|
@ -94,30 +109,23 @@ func (pwm *pwmGroup) peripheral() uint8 {
|
||||||
return uint8((uintptr(unsafe.Pointer(pwm)) - uintptr(unsafe.Pointer(rp.PWM))) / 0x14)
|
return uint8((uintptr(unsafe.Pointer(pwm)) - uintptr(unsafe.Pointer(rp.PWM))) / 0x14)
|
||||||
}
|
}
|
||||||
|
|
||||||
// SetPeriod updates the period of this PWM peripheral.
|
// SetPeriod updates the period of this PWM peripheral in nanoseconds.
|
||||||
// To set a particular frequency, use the following formula:
|
// To set a particular frequency, use the following formula:
|
||||||
//
|
//
|
||||||
// period = 1e9 / frequency
|
// period = 1e9 / frequency
|
||||||
//
|
//
|
||||||
// If you use a period of 0, a period that works well for LEDs will be picked.
|
// Where frequency is in hertz. If you use a period of 0, a period
|
||||||
|
// that works well for LEDs will be picked.
|
||||||
//
|
//
|
||||||
// SetPeriod will not change the prescaler, but also won't change the current
|
// SetPeriod will try not to modify TOP if possible to reach the target period.
|
||||||
// value in any of the channels. This means that you may need to update the
|
// If the period is unattainable with current TOP SetPeriod will modify TOP
|
||||||
// value for the particular channel.
|
// by the bare minimum to reach the target period. It will also enable phase
|
||||||
//
|
// correct to reach periods above 130ms.
|
||||||
// Note that you cannot pick any arbitrary period after the PWM peripheral has
|
|
||||||
// been configured. If you want to switch between frequencies, pick the lowest
|
|
||||||
// frequency (longest period) once when calling Configure and adjust the
|
|
||||||
// frequency here as needed.
|
|
||||||
func (p *pwmGroup) SetPeriod(period uint64) error {
|
func (p *pwmGroup) SetPeriod(period uint64) error {
|
||||||
if period > 0xffff_ffff {
|
|
||||||
return ErrPeriodTooBig
|
|
||||||
}
|
|
||||||
if period == 0 {
|
if period == 0 {
|
||||||
period = 1e5
|
period = 1e5
|
||||||
}
|
}
|
||||||
p.setPeriod(period)
|
return p.setPeriod(period)
|
||||||
return nil
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Top returns the current counter top, for use in duty cycle calculation.
|
// Top returns the current counter top, for use in duty cycle calculation.
|
||||||
|
@ -135,14 +143,14 @@ func (p *pwmGroup) Counter() uint32 {
|
||||||
return (p.CTR.Get() & rp.PWM_CH0_CTR_CH0_CTR_Msk) >> rp.PWM_CH0_CTR_CH0_CTR_Pos
|
return (p.CTR.Get() & rp.PWM_CH0_CTR_CH0_CTR_Msk) >> rp.PWM_CH0_CTR_CH0_CTR_Pos
|
||||||
}
|
}
|
||||||
|
|
||||||
// Period returns the used PWM period in nanoseconds. It might deviate slightly
|
// Period returns the used PWM period in nanoseconds.
|
||||||
// from the configured period due to rounding.
|
|
||||||
func (p *pwmGroup) Period() uint64 {
|
func (p *pwmGroup) Period() uint64 {
|
||||||
periodPerCycle := getPeriod()
|
periodPerCycle := cpuPeriod()
|
||||||
top := p.getWrap()
|
top := p.getWrap()
|
||||||
phc := p.getPhaseCorrect()
|
phc := p.getPhaseCorrect()
|
||||||
Int, frac := p.getClockDiv()
|
Int, frac := p.getClockDiv()
|
||||||
return uint64((Int + frac/16) * (top + 1) * (phc + 1) * periodPerCycle) // cycles = (TOP+1) * (CSRPHCorrect + 1) * (DIV_INT + DIV_FRAC/16)
|
// Line below can overflow if operations done without care.
|
||||||
|
return (16*uint64(Int) + uint64(frac)) * uint64((top+1)*(phc+1)*periodPerCycle) / 16 // cycles = (TOP+1) * (CSRPHCorrect + 1) * (DIV_INT + DIV_FRAC/16)
|
||||||
}
|
}
|
||||||
|
|
||||||
// SetInverting sets whether to invert the output of this channel.
|
// SetInverting sets whether to invert the output of this channel.
|
||||||
|
@ -180,6 +188,12 @@ func (p *pwmGroup) SetTop(top uint32) {
|
||||||
p.setWrap(uint16(top))
|
p.setWrap(uint16(top))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// SetCounter sets counter control register. Max value is 16bit (0xffff).
|
||||||
|
// Useful for synchronising two different PWM peripherals.
|
||||||
|
func (p *pwmGroup) SetCounter(ctr uint32) {
|
||||||
|
p.CTR.Set(ctr)
|
||||||
|
}
|
||||||
|
|
||||||
// Enable enables or disables PWM peripheral channels.
|
// Enable enables or disables PWM peripheral channels.
|
||||||
func (p *pwmGroup) Enable(enable bool) {
|
func (p *pwmGroup) Enable(enable bool) {
|
||||||
p.enable(enable)
|
p.enable(enable)
|
||||||
|
@ -190,29 +204,6 @@ func (p *pwmGroup) IsEnabled() (enabled bool) {
|
||||||
return (p.CSR.Get()&rp.PWM_CH0_CSR_EN_Msk)>>rp.PWM_CH0_CSR_EN_Pos != 0
|
return (p.CSR.Get()&rp.PWM_CH0_CSR_EN_Msk)>>rp.PWM_CH0_CSR_EN_Pos != 0
|
||||||
}
|
}
|
||||||
|
|
||||||
// Hardware Pulse Width Modulation (PWM) API
|
|
||||||
//
|
|
||||||
// The RP2040 PWM block has 8 identical slices. Each slice can drive two PWM output signals, or
|
|
||||||
// measure the frequency or duty cycle of an input signal. This gives a total of up to 16 controllable
|
|
||||||
// PWM outputs. All 30 GPIOs can be driven by the PWM block
|
|
||||||
//
|
|
||||||
// The PWM hardware functions by continuously comparing the input value to a free-running counter. This produces a
|
|
||||||
// toggling output where the amount of time spent at the high output level is proportional to the input value. The fraction of
|
|
||||||
// time spent at the high signal level is known as the duty cycle of the signal.
|
|
||||||
//
|
|
||||||
// The default behaviour of a PWM slice is to count upward until the wrap value (\ref pwm_config_set_wrap) is reached, and then
|
|
||||||
// immediately wrap to 0. PWM slices also offer a phase-correct mode, where the counter starts to count downward after
|
|
||||||
// reaching TOP, until it reaches 0 again.
|
|
||||||
type pwms struct {
|
|
||||||
slice pwmGroup
|
|
||||||
hw *rp.PWM_Type
|
|
||||||
}
|
|
||||||
|
|
||||||
// Handle to all pwm peripheral registers.
|
|
||||||
var _PWM = pwms{
|
|
||||||
hw: rp.PWM,
|
|
||||||
}
|
|
||||||
|
|
||||||
// Initialise a PWM with settings from a configuration object.
|
// Initialise a PWM with settings from a configuration object.
|
||||||
// If start is true then PWM starts on initialization.
|
// If start is true then PWM starts on initialization.
|
||||||
func (pwm *pwmGroup) init(config PWMConfig, start bool) error {
|
func (pwm *pwmGroup) init(config PWMConfig, start bool) error {
|
||||||
|
@ -253,24 +244,53 @@ func (pwm *pwmGroup) setDivMode(mode uint32) {
|
||||||
pwm.CSR.ReplaceBits(mode<<rp.PWM_CH0_CSR_DIVMODE_Pos, rp.PWM_CH0_CSR_DIVMODE_Msk, 0)
|
pwm.CSR.ReplaceBits(mode<<rp.PWM_CH0_CSR_DIVMODE_Pos, rp.PWM_CH0_CSR_DIVMODE_Msk, 0)
|
||||||
}
|
}
|
||||||
|
|
||||||
// setPeriod sets the pwm peripheral period (frequency). Calculates DIV_INT and sets it from following equation:
|
// setPeriod sets the pwm peripheral period (frequency). Calculates DIV_INT,DIV_FRAC and sets it from following equation:
|
||||||
// cycles = (TOP+1) * (CSRPHCorrect + 1) * (DIV_INT + DIV_FRAC/16)
|
// cycles = (TOP+1) * (CSRPHCorrect + 1) * (DIV_INT + DIV_FRAC/16)
|
||||||
// where cycles is amount of clock cycles per PWM period.
|
// where cycles is amount of clock cycles per PWM period.
|
||||||
func (pwm *pwmGroup) setPeriod(period uint64) {
|
func (pwm *pwmGroup) setPeriod(period uint64) error {
|
||||||
targetPeriod := uint32(period)
|
// This period calculation algorithm consists of
|
||||||
periodPerCycle := getPeriod()
|
// 1. Calculating best-fit prescale at a slightly lower-than-max TOP value
|
||||||
top := pwm.getWrap()
|
// 2. Calculate TOP value to reach target period given the calculated prescale
|
||||||
phc := pwm.getPhaseCorrect()
|
// 3. Apply calculated Prescale from step 1 and calculated Top from step 2
|
||||||
_, frac := pwm.getClockDiv()
|
const (
|
||||||
|
maxTop = math.MaxUint16
|
||||||
|
// start algorithm at 95% Top. This allows us to undershoot period with prescale.
|
||||||
|
topStart = 95 * maxTop / 100
|
||||||
|
milliseconds = 1_000_000_000
|
||||||
|
// Maximum Period is 268369920ns on rp2040, given by (16*255+15)*8*(1+0xffff)*(1+1)/16
|
||||||
|
// With no phase shift max period is half of this value.
|
||||||
|
maxPeriod = 268 * milliseconds
|
||||||
|
)
|
||||||
|
|
||||||
|
if period > maxPeriod || period < 8 {
|
||||||
|
return ErrBadPeriod
|
||||||
|
}
|
||||||
|
if period > maxPeriod/2 {
|
||||||
|
pwm.setPhaseCorrect(true) // Must enable Phase correct to reach large periods.
|
||||||
|
}
|
||||||
|
|
||||||
// clearing above expression:
|
// clearing above expression:
|
||||||
// DIV_INT = cycles / ( (TOP+1) * (CSRPHCorrect+1) ) - DIV_FRAC/16
|
// DIV_INT + DIV_FRAC/16 = cycles / ( (TOP+1) * (CSRPHCorrect+1) ) // DIV_FRAC/16 is always 0 in this equation
|
||||||
// where cycles must be converted to time:
|
// where cycles must be converted to time:
|
||||||
// target_period = cycles * period_per_cycle ==> cycles = target_period/period_per_cycle
|
// target_period = cycles * period_per_cycle ==> cycles = target_period/period_per_cycle
|
||||||
Int := targetPeriod/((1+phc)*periodPerCycle*(1+top)) - frac/16
|
periodPerCycle := uint64(cpuPeriod())
|
||||||
if Int > 0xff {
|
phc := uint64(pwm.getPhaseCorrect())
|
||||||
Int = 0xff
|
rhs := 16 * period / ((1 + phc) * periodPerCycle * (1 + topStart)) // right-hand-side of equation, scaled so frac is not divided
|
||||||
|
whole := rhs / 16
|
||||||
|
frac := rhs % 16
|
||||||
|
if whole > 0xff {
|
||||||
|
whole = 0xff
|
||||||
}
|
}
|
||||||
pwm.setClockDiv(uint8(Int), 0)
|
|
||||||
|
// Step 2 is acquiring a better top value. Clearing the equation:
|
||||||
|
// TOP = cycles / ( (DIVINT+DIVFRAC/16) * (CSRPHCorrect+1) ) - 1
|
||||||
|
top := 16*period/((16*whole+frac)*periodPerCycle*(1+phc)) - 1
|
||||||
|
if top > maxTop {
|
||||||
|
top = maxTop
|
||||||
|
}
|
||||||
|
pwm.SetTop(uint32(top))
|
||||||
|
pwm.setClockDiv(uint8(whole), uint8(frac))
|
||||||
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
// Int is integer value to reduce counting rate by. Must be greater than or equal to 1. DIV_INT is bits 4:11 (8 bits).
|
// Int is integer value to reduce counting rate by. Must be greater than or equal to 1. DIV_INT is bits 4:11 (8 bits).
|
||||||
|
@ -360,9 +380,9 @@ func (pwm *pwmGroup) getPhaseCorrect() (phCorrect uint32) {
|
||||||
return (pwm.CSR.Get() & rp.PWM_CH0_CSR_PH_CORRECT_Msk) >> rp.PWM_CH0_CSR_PH_CORRECT_Pos
|
return (pwm.CSR.Get() & rp.PWM_CH0_CSR_PH_CORRECT_Msk) >> rp.PWM_CH0_CSR_PH_CORRECT_Pos
|
||||||
}
|
}
|
||||||
|
|
||||||
func (pwm *pwmGroup) getClockDiv() (Int, frac uint32) {
|
func (pwm *pwmGroup) getClockDiv() (Int, frac uint8) {
|
||||||
div := pwm.DIV.Get()
|
div := pwm.DIV.Get()
|
||||||
return (div & rp.PWM_CH0_DIV_INT_Msk) >> rp.PWM_CH0_DIV_INT_Pos, (div & rp.PWM_CH0_DIV_FRAC_Msk) >> rp.PWM_CH0_DIV_FRAC_Pos
|
return uint8((div & rp.PWM_CH0_DIV_INT_Msk) >> rp.PWM_CH0_DIV_INT_Pos), uint8((div & rp.PWM_CH0_DIV_FRAC_Msk) >> rp.PWM_CH0_DIV_FRAC_Pos)
|
||||||
}
|
}
|
||||||
|
|
||||||
// pwmGPIOToSlice Determine the PWM channel that is attached to the specified GPIO.
|
// pwmGPIOToSlice Determine the PWM channel that is attached to the specified GPIO.
|
||||||
|
@ -376,9 +396,3 @@ func pwmGPIOToSlice(gpio Pin) (slicenum uint8) {
|
||||||
func pwmGPIOToChannel(gpio Pin) (channel uint8) {
|
func pwmGPIOToChannel(gpio Pin) (channel uint8) {
|
||||||
return uint8(gpio) & 1
|
return uint8(gpio) & 1
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the period of a clock cycle for the raspberry pi pico in nanoseconds.
|
|
||||||
func getPeriod() uint32 {
|
|
||||||
const periodIn uint32 = 1e9 / (125 * MHz)
|
|
||||||
return periodIn
|
|
||||||
}
|
|
||||||
|
|
Загрузка…
Создание таблицы
Сослаться в новой задаче