avr: use register wrappers that use runtime/volatile.*Uint8 calls

This avoids the //go:volatile pragma on types in Go source code, at
least for AVR targets.
Этот коммит содержится в:
Ayke van Laethem 2019-05-10 22:25:24 +02:00 коммит произвёл Ron Evans
родитель 6f6afb0515
коммит e0cf74e638
5 изменённых файлов: 116 добавлений и 76 удалений

Просмотреть файл

@ -10,15 +10,15 @@ import (
func (p GPIO) Configure(config GPIOConfig) { func (p GPIO) Configure(config GPIOConfig) {
if config.Mode == GPIO_OUTPUT { // set output bit if config.Mode == GPIO_OUTPUT { // set output bit
if p.Pin < 8 { if p.Pin < 8 {
*avr.DDRD |= 1 << p.Pin avr.DDRD.SetBits(1 << p.Pin)
} else { } else {
*avr.DDRB |= 1 << (p.Pin - 8) avr.DDRB.SetBits(1 << (p.Pin - 8))
} }
} else { // configure input: clear output bit } else { // configure input: clear output bit
if p.Pin < 8 { if p.Pin < 8 {
*avr.DDRD &^= 1 << p.Pin avr.DDRD.ClearBits(1 << p.Pin)
} else { } else {
*avr.DDRB &^= 1 << (p.Pin - 8) avr.DDRB.ClearBits(1 << (p.Pin - 8))
} }
} }
} }
@ -26,15 +26,15 @@ func (p GPIO) Configure(config GPIOConfig) {
// Get returns the current value of a GPIO pin. // Get returns the current value of a GPIO pin.
func (p GPIO) Get() bool { func (p GPIO) Get() bool {
if p.Pin < 8 { if p.Pin < 8 {
val := *avr.PIND & (1 << p.Pin) val := avr.PIND.Get() & (1 << p.Pin)
return (val > 0) return (val > 0)
} else { } else {
val := *avr.PINB & (1 << (p.Pin - 8)) val := avr.PINB.Get() & (1 << (p.Pin - 8))
return (val > 0) return (val > 0)
} }
} }
func (p GPIO) getPortMask() (*avr.RegValue, uint8) { func (p GPIO) getPortMask() (*avr.Register8, uint8) {
if p.Pin < 8 { if p.Pin < 8 {
return avr.PORTD, 1 << p.Pin return avr.PORTD, 1 << p.Pin
} else { } else {
@ -45,64 +45,64 @@ func (p GPIO) getPortMask() (*avr.RegValue, uint8) {
// InitPWM initializes the registers needed for PWM. // InitPWM initializes the registers needed for PWM.
func InitPWM() { func InitPWM() {
// use waveform generation // use waveform generation
*avr.TCCR0A |= avr.TCCR0A_WGM00 avr.TCCR0A.SetBits(avr.TCCR0A_WGM00)
// set timer 0 prescale factor to 64 // set timer 0 prescale factor to 64
*avr.TCCR0B |= avr.TCCR0B_CS01 | avr.TCCR0B_CS00 avr.TCCR0B.SetBits(avr.TCCR0B_CS01 | avr.TCCR0B_CS00)
// set timer 1 prescale factor to 64 // set timer 1 prescale factor to 64
*avr.TCCR1B |= avr.TCCR1B_CS11 avr.TCCR1B.SetBits(avr.TCCR1B_CS11)
// put timer 1 in 8-bit phase correct pwm mode // put timer 1 in 8-bit phase correct pwm mode
*avr.TCCR1A |= avr.TCCR1A_WGM10 avr.TCCR1A.SetBits(avr.TCCR1A_WGM10)
// set timer 2 prescale factor to 64 // set timer 2 prescale factor to 64
*avr.TCCR2B |= avr.TCCR2B_CS22 avr.TCCR2B.SetBits(avr.TCCR2B_CS22)
// configure timer 2 for phase correct pwm (8-bit) // configure timer 2 for phase correct pwm (8-bit)
*avr.TCCR2A |= avr.TCCR2A_WGM20 avr.TCCR2A.SetBits(avr.TCCR2A_WGM20)
} }
// Configure configures a PWM pin for output. // Configure configures a PWM pin for output.
func (pwm PWM) Configure() { func (pwm PWM) Configure() {
if pwm.Pin < 8 { if pwm.Pin < 8 {
*avr.DDRD |= 1 << pwm.Pin avr.DDRD.SetBits(1 << pwm.Pin)
} else { } else {
*avr.DDRB |= 1 << (pwm.Pin - 8) avr.DDRB.SetBits(1 << (pwm.Pin - 8))
} }
} }
// Set turns on the duty cycle for a PWM pin using the provided value. On the AVR this is normally a // Set turns on the duty cycle for a PWM pin using the provided value. On the AVR this is normally a
// 8-bit value ranging from 0 to 255. // 8-bit value ranging from 0 to 255.
func (pwm PWM) Set(value uint16) { func (pwm PWM) Set(value uint16) {
value8 := value >> 8 value8 := uint8(value >> 8)
switch pwm.Pin { switch pwm.Pin {
case 3: case 3:
// connect pwm to pin on timer 2, channel B // connect pwm to pin on timer 2, channel B
*avr.TCCR2A |= avr.TCCR2A_COM2B1 avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1)
*avr.OCR2B = avr.RegValue(value8) // set pwm duty avr.OCR2B.Set(value8) // set pwm duty
case 5: case 5:
// connect pwm to pin on timer 0, channel B // connect pwm to pin on timer 0, channel B
*avr.TCCR0A |= avr.TCCR0A_COM0B1 avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1)
*avr.OCR0B = avr.RegValue(value8) // set pwm duty avr.OCR0B.Set(value8) // set pwm duty
case 6: case 6:
// connect pwm to pin on timer 0, channel A // connect pwm to pin on timer 0, channel A
*avr.TCCR0A |= avr.TCCR0A_COM0A1 avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1)
*avr.OCR0A = avr.RegValue(value8) // set pwm duty avr.OCR0A.Set(value8) // set pwm duty
case 9: case 9:
// connect pwm to pin on timer 1, channel A // connect pwm to pin on timer 1, channel A
*avr.TCCR1A |= avr.TCCR1A_COM1A1 avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1)
// this is a 16-bit value, but we only currently allow the low order bits to be set // this is a 16-bit value, but we only currently allow the low order bits to be set
*avr.OCR1AL = avr.RegValue(value8) // set pwm duty avr.OCR1AL.Set(value8) // set pwm duty
case 10: case 10:
// connect pwm to pin on timer 1, channel B // connect pwm to pin on timer 1, channel B
*avr.TCCR1A |= avr.TCCR1A_COM1B1 avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1)
// this is a 16-bit value, but we only currently allow the low order bits to be set // this is a 16-bit value, but we only currently allow the low order bits to be set
*avr.OCR1BL = avr.RegValue(value8) // set pwm duty avr.OCR1BL.Set(value8) // set pwm duty
case 11: case 11:
// connect pwm to pin on timer 2, channel A // connect pwm to pin on timer 2, channel A
*avr.TCCR2A |= avr.TCCR2A_COM2A1 avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1)
*avr.OCR2A = avr.RegValue(value8) // set pwm duty avr.OCR2A.Set(value8) // set pwm duty
default: default:
panic("Invalid PWM pin") panic("Invalid PWM pin")
} }
@ -121,19 +121,19 @@ func (i2c I2C) Configure(config I2CConfig) {
} }
// Activate internal pullups for twi. // Activate internal pullups for twi.
*avr.PORTC |= (avr.DIDR0_ADC4D | avr.DIDR0_ADC5D) avr.PORTC.SetBits((avr.DIDR0_ADC4D | avr.DIDR0_ADC5D))
// Initialize twi prescaler and bit rate. // Initialize twi prescaler and bit rate.
*avr.TWSR |= (avr.TWSR_TWPS0 | avr.TWSR_TWPS1) avr.TWSR.SetBits((avr.TWSR_TWPS0 | avr.TWSR_TWPS1))
// twi bit rate formula from atmega128 manual pg. 204: // twi bit rate formula from atmega128 manual pg. 204:
// SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR)) // SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))
// NOTE: TWBR should be 10 or higher for master mode. // NOTE: TWBR should be 10 or higher for master mode.
// It is 72 for a 16mhz board with 100kHz TWI // It is 72 for a 16mhz board with 100kHz TWI
*avr.TWBR = avr.RegValue(((CPU_FREQUENCY / config.Frequency) - 16) / 2) avr.TWBR.Set(uint8(((CPU_FREQUENCY / config.Frequency) - 16) / 2))
// Enable twi module. // Enable twi module.
*avr.TWCR = avr.TWCR_TWEN avr.TWCR.Set(avr.TWCR_TWEN)
} }
// Tx does a single I2C transaction at the specified address. // Tx does a single I2C transaction at the specified address.
@ -162,10 +162,10 @@ func (i2c I2C) Tx(addr uint16, w, r []byte) error {
// start starts an I2C communication session. // start starts an I2C communication session.
func (i2c I2C) start(address uint8, write bool) { func (i2c I2C) start(address uint8, write bool) {
// Clear TWI interrupt flag, put start condition on SDA, and enable TWI. // Clear TWI interrupt flag, put start condition on SDA, and enable TWI.
*avr.TWCR = (avr.TWCR_TWINT | avr.TWCR_TWSTA | avr.TWCR_TWEN) avr.TWCR.Set((avr.TWCR_TWINT | avr.TWCR_TWSTA | avr.TWCR_TWEN))
// Wait till start condition is transmitted. // Wait till start condition is transmitted.
for (*avr.TWCR & avr.TWCR_TWINT) == 0 { for (avr.TWCR.Get() & avr.TWCR_TWINT) == 0 {
} }
// Write 7-bit shifted peripheral address. // Write 7-bit shifted peripheral address.
@ -179,36 +179,36 @@ func (i2c I2C) start(address uint8, write bool) {
// stop ends an I2C communication session. // stop ends an I2C communication session.
func (i2c I2C) stop() { func (i2c I2C) stop() {
// Send stop condition. // Send stop condition.
*avr.TWCR = (avr.TWCR_TWEN | avr.TWCR_TWINT | avr.TWCR_TWSTO) avr.TWCR.Set(avr.TWCR_TWEN | avr.TWCR_TWINT | avr.TWCR_TWSTO)
// Wait for stop condition to be executed on bus. // Wait for stop condition to be executed on bus.
for (*avr.TWCR & avr.TWCR_TWSTO) == 0 { for (avr.TWCR.Get() & avr.TWCR_TWSTO) == 0 {
} }
} }
// writeByte writes a single byte to the I2C bus. // writeByte writes a single byte to the I2C bus.
func (i2c I2C) writeByte(data byte) { func (i2c I2C) writeByte(data byte) {
// Write data to register. // Write data to register.
*avr.TWDR = avr.RegValue(data) avr.TWDR.Set(data)
// Clear TWI interrupt flag and enable TWI. // Clear TWI interrupt flag and enable TWI.
*avr.TWCR = (avr.TWCR_TWEN | avr.TWCR_TWINT) avr.TWCR.Set(avr.TWCR_TWEN | avr.TWCR_TWINT)
// Wait till data is transmitted. // Wait till data is transmitted.
for (*avr.TWCR & avr.TWCR_TWINT) == 0 { for (avr.TWCR.Get() & avr.TWCR_TWINT) == 0 {
} }
} }
// readByte reads a single byte from the I2C bus. // readByte reads a single byte from the I2C bus.
func (i2c I2C) readByte() byte { func (i2c I2C) readByte() byte {
// Clear TWI interrupt flag and enable TWI. // Clear TWI interrupt flag and enable TWI.
*avr.TWCR = (avr.TWCR_TWEN | avr.TWCR_TWINT | avr.TWCR_TWEA) avr.TWCR.Set(avr.TWCR_TWEN | avr.TWCR_TWINT | avr.TWCR_TWEA)
// Wait till read request is transmitted. // Wait till read request is transmitted.
for (*avr.TWCR & avr.TWCR_TWINT) == 0 { for (avr.TWCR.Get() & avr.TWCR_TWINT) == 0 {
} }
return byte(*avr.TWDR) return byte(avr.TWDR.Get())
} }
// UART on the AVR. // UART on the AVR.
@ -226,32 +226,32 @@ func (uart UART) Configure(config UARTConfig) {
// https://www.microchip.com/webdoc/AVRLibcReferenceManual/FAQ_1faq_wrong_baud_rate.html // https://www.microchip.com/webdoc/AVRLibcReferenceManual/FAQ_1faq_wrong_baud_rate.html
// ((F_CPU + UART_BAUD_RATE * 8L) / (UART_BAUD_RATE * 16L) - 1) // ((F_CPU + UART_BAUD_RATE * 8L) / (UART_BAUD_RATE * 16L) - 1)
ps := ((CPU_FREQUENCY+config.BaudRate*8)/(config.BaudRate*16) - 1) ps := ((CPU_FREQUENCY+config.BaudRate*8)/(config.BaudRate*16) - 1)
*avr.UBRR0H = avr.RegValue(ps >> 8) avr.UBRR0H.Set(uint8(ps >> 8))
*avr.UBRR0L = avr.RegValue(ps & 0xff) avr.UBRR0L.Set(uint8(ps & 0xff))
// enable RX, TX and RX interrupt // enable RX, TX and RX interrupt
*avr.UCSR0B = avr.UCSR0B_RXEN0 | avr.UCSR0B_TXEN0 | avr.UCSR0B_RXCIE0 avr.UCSR0B.Set(avr.UCSR0B_RXEN0 | avr.UCSR0B_TXEN0 | avr.UCSR0B_RXCIE0)
// 8-bits data // 8-bits data
*avr.UCSR0C = avr.UCSR0C_UCSZ01 | avr.UCSR0C_UCSZ00 avr.UCSR0C.Set(avr.UCSR0C_UCSZ01 | avr.UCSR0C_UCSZ00)
} }
// WriteByte writes a byte of data to the UART. // WriteByte writes a byte of data to the UART.
func (uart UART) WriteByte(c byte) error { func (uart UART) WriteByte(c byte) error {
// Wait until UART buffer is not busy. // Wait until UART buffer is not busy.
for (*avr.UCSR0A & avr.UCSR0A_UDRE0) == 0 { for (avr.UCSR0A.Get() & avr.UCSR0A_UDRE0) == 0 {
} }
*avr.UDR0 = avr.RegValue(c) // send char avr.UDR0.Set(c) // send char
return nil return nil
} }
//go:interrupt USART_RX_vect //go:interrupt USART_RX_vect
func handleUSART_RX() { func handleUSART_RX() {
// Read register to clear it. // Read register to clear it.
data := *avr.UDR0 data := avr.UDR0.Get()
// Ensure no error. // Ensure no error.
if (*avr.UCSR0A & (avr.UCSR0A_FE0 | avr.UCSR0A_DOR0 | avr.UCSR0A_UPE0)) == 0 { if (avr.UCSR0A.Get() & (avr.UCSR0A_FE0 | avr.UCSR0A_DOR0 | avr.UCSR0A_UPE0)) == 0 {
// Put data from UDR register into buffer. // Put data from UDR register into buffer.
UART0.Receive(byte(data)) UART0.Receive(byte(data))
} }

Просмотреть файл

@ -9,19 +9,19 @@ import (
// Configure sets the pin to input or output. // Configure sets the pin to input or output.
func (p GPIO) Configure(config GPIOConfig) { func (p GPIO) Configure(config GPIOConfig) {
if config.Mode == GPIO_OUTPUT { // set output bit if config.Mode == GPIO_OUTPUT { // set output bit
*avr.DDRB |= 1 << p.Pin avr.DDRB.SetBits(1 << p.Pin)
} else { // configure input: clear output bit } else { // configure input: clear output bit
*avr.DDRB &^= 1 << p.Pin avr.DDRB.ClearBits(1 << p.Pin)
} }
} }
func (p GPIO) getPortMask() (*avr.RegValue, uint8) { func (p GPIO) getPortMask() (*avr.Register8, uint8) {
return avr.PORTB, 1 << p.Pin return avr.PORTB, 1 << p.Pin
} }
// Get returns the current value of a GPIO pin. // Get returns the current value of a GPIO pin.
func (p GPIO) Get() bool { func (p GPIO) Get() bool {
val := *avr.PINB & (1 << p.Pin) val := avr.PINB.Get() & (1 << p.Pin)
return (val > 0) return (val > 0)
} }

Просмотреть файл

@ -17,10 +17,10 @@ const (
func (p GPIO) Set(value bool) { func (p GPIO) Set(value bool) {
if value { // set bits if value { // set bits
port, mask := p.PortMaskSet() port, mask := p.PortMaskSet()
*port = mask port.Set(mask)
} else { // clear bits } else { // clear bits
port, mask := p.PortMaskClear() port, mask := p.PortMaskClear()
*port = mask port.Set(mask)
} }
} }
@ -30,9 +30,9 @@ func (p GPIO) Set(value bool) {
// Warning: there are no separate pin set/clear registers on the AVR. The // Warning: there are no separate pin set/clear registers on the AVR. The
// returned mask is only valid as long as no other pin in the same port has been // returned mask is only valid as long as no other pin in the same port has been
// changed. // changed.
func (p GPIO) PortMaskSet() (*avr.RegValue, avr.RegValue) { func (p GPIO) PortMaskSet() (*avr.Register8, uint8) {
port, mask := p.getPortMask() port, mask := p.getPortMask()
return port, *port | avr.RegValue(mask) return port, port.Get() | mask
} }
// Return the register and mask to disable a given port. This can be used to // Return the register and mask to disable a given port. This can be used to
@ -41,18 +41,18 @@ func (p GPIO) PortMaskSet() (*avr.RegValue, avr.RegValue) {
// Warning: there are no separate pin set/clear registers on the AVR. The // Warning: there are no separate pin set/clear registers on the AVR. The
// returned mask is only valid as long as no other pin in the same port has been // returned mask is only valid as long as no other pin in the same port has been
// changed. // changed.
func (p GPIO) PortMaskClear() (*avr.RegValue, avr.RegValue) { func (p GPIO) PortMaskClear() (*avr.Register8, uint8) {
port, mask := p.getPortMask() port, mask := p.getPortMask()
return port, *port &^ avr.RegValue(mask) return port, port.Get() &^ mask
} }
// InitADC initializes the registers needed for ADC. // InitADC initializes the registers needed for ADC.
func InitADC() { func InitADC() {
// set a2d prescaler so we are inside the desired 50-200 KHz range at 16MHz. // set a2d prescaler so we are inside the desired 50-200 KHz range at 16MHz.
*avr.ADCSRA |= (avr.ADCSRA_ADPS2 | avr.ADCSRA_ADPS1 | avr.ADCSRA_ADPS0) avr.ADCSRA.SetBits(avr.ADCSRA_ADPS2 | avr.ADCSRA_ADPS1 | avr.ADCSRA_ADPS0)
// enable a2d conversions // enable a2d conversions
*avr.ADCSRA |= avr.ADCSRA_ADEN avr.ADCSRA.SetBits(avr.ADCSRA_ADEN)
} }
// Configure configures a ADCPin to be able to be used to read data. // Configure configures a ADCPin to be able to be used to read data.
@ -68,18 +68,16 @@ func (a ADC) Get() uint16 {
// set the ADLAR bit (left-adjusted result) to get a value scaled to 16 // set the ADLAR bit (left-adjusted result) to get a value scaled to 16
// bits. This has the same effect as shifting the return value left by 6 // bits. This has the same effect as shifting the return value left by 6
// bits. // bits.
*avr.ADMUX = avr.RegValue(avr.ADMUX_REFS0 | avr.ADMUX_ADLAR | (a.Pin & 0x07)) avr.ADMUX.Set(avr.ADMUX_REFS0 | avr.ADMUX_ADLAR | (a.Pin & 0x07))
// start the conversion // start the conversion
*avr.ADCSRA |= avr.ADCSRA_ADSC avr.ADCSRA.SetBits(avr.ADCSRA_ADSC)
// ADSC is cleared when the conversion finishes // ADSC is cleared when the conversion finishes
for ok := true; ok; ok = (*avr.ADCSRA & avr.ADCSRA_ADSC) > 0 { for ok := true; ok; ok = (avr.ADCSRA.Get() & avr.ADCSRA_ADSC) > 0 {
} }
low := uint16(*avr.ADCL) return uint16(avr.ADCL.Get()) | uint16(avr.ADCH.Get())<<8
high := uint16(*avr.ADCH)
return uint16(low) | uint16(high<<8)
} }
// I2C on AVR. // I2C on AVR.

Просмотреть файл

@ -17,19 +17,19 @@ func sleepWDT(period uint8) {
avr.Asm("cli") avr.Asm("cli")
avr.Asm("wdr") avr.Asm("wdr")
// Start timed sequence. // Start timed sequence.
*avr.WDTCSR |= avr.WDTCSR_WDCE | avr.WDTCSR_WDE avr.WDTCSR.SetBits(avr.WDTCSR_WDCE | avr.WDTCSR_WDE)
// Enable WDT and set new timeout // Enable WDT and set new timeout
*avr.WDTCSR = avr.WDTCSR_WDIE | avr.RegValue(period) avr.WDTCSR.SetBits(avr.WDTCSR_WDIE | period)
avr.Asm("sei") avr.Asm("sei")
// Set sleep mode to idle and enable sleep mode. // Set sleep mode to idle and enable sleep mode.
// Note: when using something other than idle, the UART won't work // Note: when using something other than idle, the UART won't work
// correctly. This needs to be fixed, though, so we can truly sleep. // correctly. This needs to be fixed, though, so we can truly sleep.
*avr.SMCR = (0 << 1) | avr.SMCR_SE avr.SMCR.Set((0 << 1) | avr.SMCR_SE)
// go to sleep // go to sleep
avr.Asm("sleep") avr.Asm("sleep")
// disable sleep // disable sleep
*avr.SMCR = 0 avr.SMCR.Set(0)
} }

Просмотреть файл

@ -151,12 +151,54 @@ def writeGo(outdir, device):
// {description} // {description}
package {pkgName} package {pkgName}
import "unsafe" import (
"runtime/volatile"
"unsafe"
)
// Special type that causes loads/stores to be volatile (necessary for // Special type that causes loads/stores to be volatile (necessary for
// memory-mapped registers). // memory-mapped registers).
//go:volatile type Register8 struct {{
type RegValue uint8 Reg uint8
}}
// Get returns the value in the register. It is the volatile equivalent of:
//
// *r.Reg
//
//go:inline
func (r *Register8) Get() uint8 {{
return volatile.LoadUint8(&r.Reg)
}}
// Set updates the register value. It is the volatile equivalent of:
//
// *r.Reg = value
//
//go:inline
func (r *Register8) Set(value uint8) {{
volatile.StoreUint8(&r.Reg, value)
}}
// SetBits reads the register, sets the given bits, and writes it back. It is
// the volatile equivalent of:
//
// r.Reg |= value
//
//go:inline
func (r *Register8) SetBits(value uint8) {{
volatile.StoreUint8(&r.Reg, volatile.LoadUint8(&r.Reg) | value)
}}
// ClearBits reads the register, clears the given bits, and writes it back. It
// is the volatile equivalent of:
//
// r.Reg &^= value
//
//go:inline
func (r *Register8) ClearBits(value uint8) {{
volatile.StoreUint8(&r.Reg, volatile.LoadUint8(&r.Reg) &^ value)
}}
// Some information about this device. // Some information about this device.
const ( const (
@ -179,7 +221,7 @@ const (
out.write('\n\t// {description}\n'.format(**peripheral)) out.write('\n\t// {description}\n'.format(**peripheral))
for register in peripheral['registers']: for register in peripheral['registers']:
for variant in register['variants']: for variant in register['variants']:
out.write('\t{name} = (*RegValue)(unsafe.Pointer(uintptr(0x{address:x})))\n'.format(**variant)) out.write('\t{name} = (*Register8)(unsafe.Pointer(uintptr(0x{address:x})))\n'.format(**variant))
out.write(')\n') out.write(')\n')
for peripheral in device.peripherals: for peripheral in device.peripherals: