reflect: add support for struct types

Этот коммит содержится в:
Ayke van Laethem 2019-08-08 14:41:52 +02:00 коммит произвёл Ron Evans
родитель 5012be337f
коммит e2c8654237
9 изменённых файлов: 654 добавлений и 134 удалений

Просмотреть файл

@ -53,21 +53,28 @@ func (c *Compiler) getTypeCode(typ types.Type) llvm.Value {
// Some type classes contain more information for underlying types or // Some type classes contain more information for underlying types or
// element types. Store it directly in the typecode global to make // element types. Store it directly in the typecode global to make
// reflect lowering simpler. // reflect lowering simpler.
var elementType types.Type var references llvm.Value
switch typ := typ.(type) { switch typ := typ.(type) {
case *types.Named: case *types.Named:
elementType = typ.Underlying() references = c.getTypeCode(typ.Underlying())
case *types.Chan: case *types.Chan:
elementType = typ.Elem() references = c.getTypeCode(typ.Elem())
case *types.Pointer: case *types.Pointer:
elementType = typ.Elem() references = c.getTypeCode(typ.Elem())
case *types.Slice: case *types.Slice:
elementType = typ.Elem() references = c.getTypeCode(typ.Elem())
case *types.Struct:
// Take a pointer to the typecodeID of the first field (if it exists).
structGlobal := c.makeStructTypeFields(typ)
references = llvm.ConstGEP(structGlobal, []llvm.Value{
llvm.ConstInt(llvm.Int32Type(), 0, false),
llvm.ConstInt(llvm.Int32Type(), 0, false),
})
} }
if elementType != nil { if !references.IsNil() {
// Set the 'references' field of the runtime.typecodeID struct. // Set the 'references' field of the runtime.typecodeID struct.
globalValue := c.getZeroValue(global.Type().ElementType()) globalValue := c.getZeroValue(global.Type().ElementType())
globalValue = llvm.ConstInsertValue(globalValue, c.getTypeCode(elementType), []uint32{0}) globalValue = llvm.ConstInsertValue(globalValue, references, []uint32{0})
global.SetInitializer(globalValue) global.SetInitializer(globalValue)
global.SetLinkage(llvm.PrivateLinkage) global.SetLinkage(llvm.PrivateLinkage)
} }
@ -76,6 +83,48 @@ func (c *Compiler) getTypeCode(typ types.Type) llvm.Value {
return global return global
} }
// makeStructTypeFields creates a new global that stores all type information
// related to this struct type, and returns the resulting global. This global is
// actually an array of all the fields in the structs.
func (c *Compiler) makeStructTypeFields(typ *types.Struct) llvm.Value {
// The global is an array of runtime.structField structs.
runtimeStructField := c.getLLVMRuntimeType("structField")
structGlobalType := llvm.ArrayType(runtimeStructField, typ.NumFields())
structGlobal := llvm.AddGlobal(c.mod, structGlobalType, "reflect/types.structFields")
structGlobalValue := c.getZeroValue(structGlobalType)
for i := 0; i < typ.NumFields(); i++ {
fieldGlobalValue := c.getZeroValue(runtimeStructField)
fieldGlobalValue = llvm.ConstInsertValue(fieldGlobalValue, c.getTypeCode(typ.Field(i).Type()), []uint32{0})
fieldName := c.makeGlobalBytes([]byte(typ.Field(i).Name()), "reflect/types.structFieldName")
fieldName = llvm.ConstGEP(fieldName, []llvm.Value{
llvm.ConstInt(llvm.Int32Type(), 0, false),
llvm.ConstInt(llvm.Int32Type(), 0, false),
})
fieldName.SetLinkage(llvm.PrivateLinkage)
fieldName.SetUnnamedAddr(true)
fieldGlobalValue = llvm.ConstInsertValue(fieldGlobalValue, fieldName, []uint32{1})
if typ.Tag(i) != "" {
fieldTag := c.makeGlobalBytes([]byte(typ.Tag(i)), "reflect/types.structFieldTag")
fieldTag = llvm.ConstGEP(fieldTag, []llvm.Value{
llvm.ConstInt(llvm.Int32Type(), 0, false),
llvm.ConstInt(llvm.Int32Type(), 0, false),
})
fieldTag.SetLinkage(llvm.PrivateLinkage)
fieldTag.SetUnnamedAddr(true)
fieldGlobalValue = llvm.ConstInsertValue(fieldGlobalValue, fieldTag, []uint32{2})
}
if typ.Field(i).Embedded() {
fieldEmbedded := llvm.ConstInt(c.ctx.Int1Type(), 1, false)
fieldGlobalValue = llvm.ConstInsertValue(fieldGlobalValue, fieldEmbedded, []uint32{3})
}
structGlobalValue = llvm.ConstInsertValue(structGlobalValue, fieldGlobalValue, []uint32{uint32(i)})
}
structGlobal.SetInitializer(structGlobalValue)
structGlobal.SetUnnamedAddr(true)
structGlobal.SetLinkage(llvm.PrivateLinkage)
return structGlobal
}
// getTypeCodeName returns a name for this type that can be used in the // getTypeCodeName returns a name for this type that can be used in the
// interface lowering pass to assign type codes as expected by the reflect // interface lowering pass to assign type codes as expected by the reflect
// package. See getTypeCodeNum. // package. See getTypeCodeNum.

Просмотреть файл

@ -152,3 +152,46 @@ func (c *Compiler) splitBasicBlock(afterInst llvm.Value, insertAfter llvm.BasicB
return newBlock return newBlock
} }
// makeGlobalBytes creates a new LLVM global with the given name and bytes as
// contents, and returns the global.
// Note that it is left with the default linkage etc., you should set
// linkage/constant/etc properties yourself.
func (c *Compiler) makeGlobalBytes(buf []byte, name string) llvm.Value {
globalType := llvm.ArrayType(c.ctx.Int8Type(), len(buf))
global := llvm.AddGlobal(c.mod, globalType, name)
value := llvm.Undef(globalType)
for i, ch := range buf {
value = llvm.ConstInsertValue(value, llvm.ConstInt(c.ctx.Int8Type(), uint64(ch), false), []uint32{uint32(i)})
}
global.SetInitializer(value)
return global
}
// getGlobalBytes returns the byte slice contained in the i8 array of the
// provided global. It can recover the bytes originally created using
// makeGlobalBytes.
func getGlobalBytes(global llvm.Value) []byte {
value := global.Initializer()
buf := make([]byte, value.Type().ArrayLength())
for i := range buf {
buf[i] = byte(llvm.ConstExtractValue(value, []uint32{uint32(i)}).ZExtValue())
}
return buf
}
// replaceGlobalByteWithArray replaces a global i8 in the module with a byte
// array, using a GEP to make the types match. It is a convenience function used
// for creating reflection sidetables, for example.
func (c *Compiler) replaceGlobalByteWithArray(name string, buf []byte) llvm.Value {
global := c.makeGlobalBytes(buf, name+".tmp")
oldGlobal := c.mod.NamedGlobal(name)
gep := llvm.ConstGEP(global, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
})
oldGlobal.ReplaceAllUsesWith(gep)
oldGlobal.EraseFromParentAsGlobal()
global.SetName(name)
return global
}

Просмотреть файл

@ -28,6 +28,8 @@ package compiler
// non-basic types have their underlying type stored in a sidetable. // non-basic types have their underlying type stored in a sidetable.
import ( import (
"encoding/binary"
"go/ast"
"math/big" "math/big"
"strings" "strings"
@ -65,11 +67,25 @@ type typeCodeAssignmentState struct {
// package (or are simply unused in the compiled program). // package (or are simply unused in the compiled program).
fallbackIndex int fallbackIndex int
// This is the length of an uintptr. Only used occasionally to know whether
// a given number can be encoded as a varint.
uintptrLen int
// Map of named types to their type code. It is important that named types // Map of named types to their type code. It is important that named types
// get unique IDs for each type. // get unique IDs for each type.
namedBasicTypes map[string]int namedBasicTypes map[string]int
namedNonBasicTypes map[string]int namedNonBasicTypes map[string]int
// Map of struct types to their type code.
structTypes map[string]int
structTypesSidetable []byte
needsStructNamesSidetable bool
// Map of struct names and tags to their name string.
structNames map[string]int
structNamesSidetable []byte
needsStructTypesSidetable bool
// This byte array is stored in reflect.namedNonBasicTypesSidetable and is // This byte array is stored in reflect.namedNonBasicTypesSidetable and is
// used at runtime to get details about a named non-basic type. // used at runtime to get details about a named non-basic type.
// Entries are varints (see makeVarint below and readVarint in // Entries are varints (see makeVarint below and readVarint in
@ -82,10 +98,6 @@ type typeCodeAssignmentState struct {
// needsNamedTypesSidetable. // needsNamedTypesSidetable.
namedNonBasicTypesSidetable []byte namedNonBasicTypesSidetable []byte
// This is the length of an uintptr. Only used occasionally to know whether
// a given number can be encoded as a varint.
uintptrLen int
// This indicates whether namedNonBasicTypesSidetable needs to be created at // This indicates whether namedNonBasicTypesSidetable needs to be created at
// all. If it is false, namedNonBasicTypesSidetable will contain simple // all. If it is false, namedNonBasicTypesSidetable will contain simple
// monotonically increasing numbers. // monotonically increasing numbers.
@ -109,13 +121,17 @@ func (c *Compiler) assignTypeCodes(typeSlice typeInfoSlice) {
// Assign typecodes the way the reflect package expects. // Assign typecodes the way the reflect package expects.
state := typeCodeAssignmentState{ state := typeCodeAssignmentState{
fallbackIndex: 1, fallbackIndex: 1,
uintptrLen: c.uintptrType.IntTypeWidth(),
namedBasicTypes: make(map[string]int), namedBasicTypes: make(map[string]int),
namedNonBasicTypes: make(map[string]int), namedNonBasicTypes: make(map[string]int),
uintptrLen: c.uintptrType.IntTypeWidth(), structTypes: make(map[string]int),
structNames: make(map[string]int),
needsNamedNonBasicTypesSidetable: len(getUses(c.mod.NamedGlobal("reflect.namedNonBasicTypesSidetable"))) != 0, needsNamedNonBasicTypesSidetable: len(getUses(c.mod.NamedGlobal("reflect.namedNonBasicTypesSidetable"))) != 0,
needsStructTypesSidetable: len(getUses(c.mod.NamedGlobal("reflect.structTypesSidetable"))) != 0,
needsStructNamesSidetable: len(getUses(c.mod.NamedGlobal("reflect.structNamesSidetable"))) != 0,
} }
for _, t := range typeSlice { for _, t := range typeSlice {
num := c.getTypeCodeNum(t.typecode, &state) num := state.getTypeCodeNum(t.typecode)
if num.BitLen() > c.uintptrType.IntTypeWidth() || !num.IsUint64() { if num.BitLen() > c.uintptrType.IntTypeWidth() || !num.IsUint64() {
// TODO: support this in some way, using a side table for example. // TODO: support this in some way, using a side table for example.
// That's less efficient but better than not working at all. // That's less efficient but better than not working at all.
@ -128,29 +144,26 @@ func (c *Compiler) assignTypeCodes(typeSlice typeInfoSlice) {
// Only create this sidetable when it is necessary. // Only create this sidetable when it is necessary.
if state.needsNamedNonBasicTypesSidetable { if state.needsNamedNonBasicTypesSidetable {
// Create the sidetable and replace the old dummy global with this value. global := c.replaceGlobalByteWithArray("reflect.namedNonBasicTypesSidetable", state.namedNonBasicTypesSidetable)
globalType := llvm.ArrayType(c.ctx.Int8Type(), len(state.namedNonBasicTypesSidetable)) global.SetLinkage(llvm.InternalLinkage)
global := llvm.AddGlobal(c.mod, globalType, "reflect.namedNonBasicTypesSidetable.tmp") global.SetUnnamedAddr(true)
value := llvm.Undef(globalType) }
for i, ch := range state.namedNonBasicTypesSidetable { if state.needsStructTypesSidetable {
value = llvm.ConstInsertValue(value, llvm.ConstInt(c.ctx.Int8Type(), uint64(ch), false), []uint32{uint32(i)}) global := c.replaceGlobalByteWithArray("reflect.structTypesSidetable", state.structTypesSidetable)
} global.SetLinkage(llvm.InternalLinkage)
global.SetInitializer(value) global.SetUnnamedAddr(true)
oldGlobal := c.mod.NamedGlobal("reflect.namedNonBasicTypesSidetable") }
gep := llvm.ConstGEP(global, []llvm.Value{ if state.needsStructNamesSidetable {
llvm.ConstInt(c.ctx.Int32Type(), 0, false), global := c.replaceGlobalByteWithArray("reflect.structNamesSidetable", state.structNamesSidetable)
llvm.ConstInt(c.ctx.Int32Type(), 0, false), global.SetLinkage(llvm.InternalLinkage)
}) global.SetUnnamedAddr(true)
oldGlobal.ReplaceAllUsesWith(gep)
oldGlobal.EraseFromParentAsGlobal()
global.SetName("reflect.namedNonBasicTypesSidetable")
} }
} }
// getTypeCodeNum returns the typecode for a given type as expected by the // getTypeCodeNum returns the typecode for a given type as expected by the
// reflect package. Also see getTypeCodeName, which serializes types to a string // reflect package. Also see getTypeCodeName, which serializes types to a string
// based on a types.Type value for this function. // based on a types.Type value for this function.
func (c *Compiler) getTypeCodeNum(typecode llvm.Value, state *typeCodeAssignmentState) *big.Int { func (state *typeCodeAssignmentState) getTypeCodeNum(typecode llvm.Value) *big.Int {
// Note: see src/reflect/type.go for bit allocations. // Note: see src/reflect/type.go for bit allocations.
class, value := getClassAndValueFromTypeCode(typecode) class, value := getClassAndValueFromTypeCode(typecode)
name := "" name := ""
@ -186,7 +199,7 @@ func (c *Compiler) getTypeCodeNum(typecode llvm.Value, state *typeCodeAssignment
switch class { switch class {
case "chan": case "chan":
sub := llvm.ConstExtractValue(typecode.Initializer(), []uint32{0}) sub := llvm.ConstExtractValue(typecode.Initializer(), []uint32{0})
num = c.getTypeCodeNum(sub, state) num = state.getTypeCodeNum(sub)
classNumber = 0 classNumber = 0
case "interface": case "interface":
num = big.NewInt(int64(state.fallbackIndex)) num = big.NewInt(int64(state.fallbackIndex))
@ -194,11 +207,11 @@ func (c *Compiler) getTypeCodeNum(typecode llvm.Value, state *typeCodeAssignment
classNumber = 1 classNumber = 1
case "pointer": case "pointer":
sub := llvm.ConstExtractValue(typecode.Initializer(), []uint32{0}) sub := llvm.ConstExtractValue(typecode.Initializer(), []uint32{0})
num = c.getTypeCodeNum(sub, state) num = state.getTypeCodeNum(sub)
classNumber = 2 classNumber = 2
case "slice": case "slice":
sub := llvm.ConstExtractValue(typecode.Initializer(), []uint32{0}) sub := llvm.ConstExtractValue(typecode.Initializer(), []uint32{0})
num = c.getTypeCodeNum(sub, state) num = state.getTypeCodeNum(sub)
classNumber = 3 classNumber = 3
case "array": case "array":
num = big.NewInt(int64(state.fallbackIndex)) num = big.NewInt(int64(state.fallbackIndex))
@ -213,8 +226,7 @@ func (c *Compiler) getTypeCodeNum(typecode llvm.Value, state *typeCodeAssignment
state.fallbackIndex++ state.fallbackIndex++
classNumber = 6 classNumber = 6
case "struct": case "struct":
num = big.NewInt(int64(state.fallbackIndex)) num = big.NewInt(int64(state.getStructTypeNum(typecode)))
state.fallbackIndex++
classNumber = 7 classNumber = 7
default: default:
panic("unknown type kind: " + class) panic("unknown type kind: " + class)
@ -283,36 +295,125 @@ func (state *typeCodeAssignmentState) getNonBasicNamedTypeNum(name string, value
return num return num
} }
// makeVarint encodes a varint in a way that should be easy to decode. // getStructTypeNum returns the struct type number, which is an index into
// It may need to be decoded very quickly at runtime at low-powered processors // reflect.structTypesSidetable or an unique number for every struct if this
// so should be efficient to decode. // sidetable is not needed in the to-be-compiled program.
// The current algorithm is probably not even close to efficient, but it is easy func (state *typeCodeAssignmentState) getStructTypeNum(typecode llvm.Value) int {
// to change as the format is only used inside the same program. name := typecode.Name()
func makeVarint(n uint64) []byte { if num, ok := state.structTypes[name]; ok {
// This is the reverse of what src/runtime/sidetables.go does. // This struct already has an assigned type code.
buf := make([]byte, 0, 8) return num
for { }
c := byte(n & 0x7f << 1)
n >>= 7 if !state.needsStructTypesSidetable {
if n != 0 { // We don't need struct sidetables, so we can just assign monotonically
c |= 1 // increasing numbers to each struct type.
num := len(state.structTypes)
state.structTypes[name] = num
return num
}
// Get the fields this struct type contains.
// The struct number will be the start index of
structTypeGlobal := llvm.ConstExtractValue(typecode.Initializer(), []uint32{0}).Operand(0).Initializer()
numFields := structTypeGlobal.Type().ArrayLength()
// The first data that is stored in the struct sidetable is the number of
// fields this struct contains. This is usually just a single byte because
// most structs don't contain that many fields, but make it a varint just
// to be sure.
buf := makeVarint(uint64(numFields))
// Iterate over every field in the struct.
// Every field is stored sequentially in the struct sidetable. Fields can
// be retrieved from this list of fields at runtime by iterating over all
// of them until the right field has been found.
// Perhaps adding some index would speed things up, but it would also make
// the sidetable bigger.
for i := 0; i < numFields; i++ {
// Collect some information about this field.
field := llvm.ConstExtractValue(structTypeGlobal, []uint32{uint32(i)})
nameGlobal := llvm.ConstExtractValue(field, []uint32{1})
if nameGlobal == llvm.ConstPointerNull(nameGlobal.Type()) {
panic("compiler: no name for this struct field")
} }
buf = append(buf, c) fieldNameBytes := getGlobalBytes(nameGlobal.Operand(0))
if n == 0 { fieldNameNumber := state.getStructNameNumber(fieldNameBytes)
break
// See whether this struct field has an associated tag, and if so,
// store that tag in the tags sidetable.
tagGlobal := llvm.ConstExtractValue(field, []uint32{2})
hasTag := false
tagNumber := 0
if tagGlobal != llvm.ConstPointerNull(tagGlobal.Type()) {
hasTag = true
tagBytes := getGlobalBytes(tagGlobal.Operand(0))
tagNumber = state.getStructNameNumber(tagBytes)
}
// The 'embedded' or 'anonymous' flag for this field.
embedded := llvm.ConstExtractValue(field, []uint32{3}).ZExtValue() != 0
// The first byte in the struct types sidetable is a flags byte with
// two bits in it.
flagsByte := byte(0)
if embedded {
flagsByte |= 1
}
if hasTag {
flagsByte |= 2
}
if ast.IsExported(string(fieldNameBytes)) {
flagsByte |= 4
}
buf = append(buf, flagsByte)
// Get the type number and add it to the buffer.
// All fields have a type, so include it directly here.
typeNum := state.getTypeCodeNum(llvm.ConstExtractValue(field, []uint32{0}))
if typeNum.BitLen() > state.uintptrLen || !typeNum.IsUint64() {
// TODO: make this a regular error
panic("struct field has a type code that is too big")
}
buf = append(buf, makeVarint(typeNum.Uint64())...)
// Add the name.
buf = append(buf, makeVarint(uint64(fieldNameNumber))...)
// Add the tag, if there is one.
if hasTag {
buf = append(buf, makeVarint(uint64(tagNumber))...)
} }
} }
reverseBytes(buf)
return buf num := len(state.structTypesSidetable)
state.structTypes[name] = num
state.structTypesSidetable = append(state.structTypesSidetable, buf...)
return num
} }
func reverseBytes(s []byte) { // getStructNameNumber stores this string (name or tag) onto the struct names
// Actually copied from https://blog.golang.org/why-generics // sidetable. The format is a varint of the length of the struct, followed by
first := 0 // the raw bytes of the name. Multiple identical strings are stored under the
last := len(s) - 1 // same name for space efficiency.
for first < last { func (state *typeCodeAssignmentState) getStructNameNumber(nameBytes []byte) int {
s[first], s[last] = s[last], s[first] name := string(nameBytes)
first++ if n, ok := state.structNames[name]; ok {
last-- // This name was used before, re-use it now (for space efficiency).
return n
} }
// This name is not yet in the names sidetable. Add it now.
n := len(state.structNamesSidetable)
state.structNames[name] = n
state.structNamesSidetable = append(state.structNamesSidetable, makeVarint(uint64(len(nameBytes)))...)
state.structNamesSidetable = append(state.structNamesSidetable, nameBytes...)
return n
}
// makeVarint is a small helper function that returns the bytes of the number in
// varint encoding.
func makeVarint(n uint64) []byte {
buf := make([]byte, binary.MaxVarintLen64)
return buf[:binary.PutUvarint(buf, n)]
} }

Просмотреть файл

@ -10,22 +10,48 @@ import (
//go:extern reflect.namedNonBasicTypesSidetable //go:extern reflect.namedNonBasicTypesSidetable
var namedNonBasicTypesSidetable byte var namedNonBasicTypesSidetable byte
func readVarint(buf unsafe.Pointer) Type { //go:extern reflect.structTypesSidetable
var t Type var structTypesSidetable byte
//go:extern reflect.structNamesSidetable
var structNamesSidetable byte
// readStringSidetable reads a string from the given table (like
// structNamesSidetable) and returns this string. No heap allocation is
// necessary because it makes the string point directly to the raw bytes of the
// table.
func readStringSidetable(table unsafe.Pointer, index uintptr) string {
nameLen, namePtr := readVarint(unsafe.Pointer(uintptr(table) + index))
return *(*string)(unsafe.Pointer(&StringHeader{
Data: uintptr(namePtr),
Len: nameLen,
}))
}
// readVarint decodes a varint as used in the encoding/binary package.
// It has an input pointer and returns the read varint and the pointer
// incremented to the next field in the data structure, just after the varint.
//
// Details:
// https://github.com/golang/go/blob/e37a1b1c/src/encoding/binary/varint.go#L7-L25
func readVarint(buf unsafe.Pointer) (uintptr, unsafe.Pointer) {
var n uintptr
shift := uintptr(0)
for { for {
// Read the next byte. // Read the next byte in the buffer.
c := *(*byte)(buf) c := *(*byte)(buf)
// Add this byte to the type code. The upper 7 bits are the value. // Decode the bits from this byte and add them to the output number.
t = t<<7 | Type(c>>1) n |= uintptr(c&0x7f) << shift
shift += 7
// Check whether this is the last byte of this varint. The lower bit
// indicates whether any bytes follow.
if c%1 == 0 {
return t
}
// Increment the buf pointer (pointer arithmetic!). // Increment the buf pointer (pointer arithmetic!).
buf = unsafe.Pointer(uintptr(buf) + 1) buf = unsafe.Pointer(uintptr(buf) + 1)
// Check whether this is the last byte of this varint. The upper bit
// (msb) indicates whether any bytes follow.
if c>>7 == 0 {
return n, buf
}
} }
} }

Просмотреть файл

@ -145,23 +145,102 @@ func (t Type) Kind() Kind {
func (t Type) Elem() Type { func (t Type) Elem() Type {
switch t.Kind() { switch t.Kind() {
case Chan, Ptr, Slice: case Chan, Ptr, Slice:
// Look at the 'n' bit in the type code (see the top of this file) to return t.stripPrefix()
// see whether this is a named type.
if (t>>4)%2 != 0 {
// This is a named type. The element type is stored in a sidetable.
namedTypeNum := t >> 5
return readVarint(unsafe.Pointer(uintptr(unsafe.Pointer(&namedNonBasicTypesSidetable)) + uintptr(namedTypeNum)))
}
// Not a named type, so the element type is stored directly in the type
// code.
return t >> 5
default: // not implemented: Array, Map default: // not implemented: Array, Map
panic("unimplemented: (reflect.Type).Elem()") panic("unimplemented: (reflect.Type).Elem()")
} }
} }
// stripPrefix removes the "prefix" (the first 5 bytes of the type code) from
// the type code. If this is a named type, it will resolve the underlying type
// (which is the data for this named type). If it is not, the lower bits are
// simply shifted off.
//
// The behavior is only defined for non-basic types.
func (t Type) stripPrefix() Type {
// Look at the 'n' bit in the type code (see the top of this file) to see
// whether this is a named type.
if (t>>4)%2 != 0 {
// This is a named type. The data is stored in a sidetable.
namedTypeNum := t >> 5
n, _ := readVarint(unsafe.Pointer(uintptr(unsafe.Pointer(&namedNonBasicTypesSidetable)) + uintptr(namedTypeNum)))
return Type(n)
}
// Not a named type, so the value is stored directly in the type code.
return t >> 5
}
// Field returns the type of the i'th field of this struct type. It panics if t
// is not a struct type.
func (t Type) Field(i int) StructField { func (t Type) Field(i int) StructField {
panic("unimplemented: (reflect.Type).Field()") if t.Kind() != Struct {
panic(&TypeError{"Field"})
}
structIdentifier := t.stripPrefix()
numField, p := readVarint(unsafe.Pointer(uintptr(unsafe.Pointer(&structTypesSidetable)) + uintptr(structIdentifier)))
if uint(i) >= uint(numField) {
panic("reflect: field index out of range")
}
// Iterate over every field in the struct and update the StructField each
// time, until the target field has been reached. This is very much not
// efficient, but it is easy to implement.
// Adding a jump table at the start to jump to the field directly would
// make this much faster, but that would also impact code size.
field := StructField{}
offset := uintptr(0)
for fieldNum := 0; fieldNum <= i; fieldNum++ {
// Read some flags of this field, like whether the field is an
// embedded field.
flagsByte := *(*uint8)(p)
p = unsafe.Pointer(uintptr(p) + 1)
// Read the type of this struct field.
var fieldType uintptr
fieldType, p = readVarint(p)
field.Type = Type(fieldType)
// Move Offset forward to align it to this field's alignment.
// Assume alignment is a power of two.
offset = align(offset, uintptr(field.Type.Align()))
field.Offset = offset
offset += field.Type.Size() // starting (unaligned) offset for next field
// Read the field name.
var nameNum uintptr
nameNum, p = readVarint(p)
field.Name = readStringSidetable(unsafe.Pointer(&structNamesSidetable), nameNum)
// The first bit in the flagsByte indicates whether this is an embedded
// field.
field.Anonymous = flagsByte&1 != 0
// The second bit indicates whether there is a tag.
if flagsByte&2 != 0 {
// There is a tag.
var tagNum uintptr
tagNum, p = readVarint(p)
field.Tag = readStringSidetable(unsafe.Pointer(&structNamesSidetable), tagNum)
} else {
// There is no tag.
field.Tag = ""
}
// The third bit indicates whether this field is exported.
if flagsByte&4 != 0 {
// This field is exported.
field.PkgPath = ""
} else {
// This field is unexported.
// TODO: list the real package path here. Storing it should not
// significantly impact binary size as there is only a limited
// number of packages in any program.
field.PkgPath = "<unimplemented>"
}
}
return field
} }
// Bits returns the number of bits that this type uses. It is only valid for // Bits returns the number of bits that this type uses. It is only valid for
@ -179,10 +258,19 @@ func (t Type) Len() int {
panic("unimplemented: (reflect.Type).Len()") panic("unimplemented: (reflect.Type).Len()")
} }
// NumField returns the number of fields of a struct type. It panics for other
// type kinds.
func (t Type) NumField() int { func (t Type) NumField() int {
panic("unimplemented: (reflect.Type).NumField()") if t.Kind() != Struct {
panic(&TypeError{"NumField"})
}
structIdentifier := t.stripPrefix()
n, _ := readVarint(unsafe.Pointer(uintptr(unsafe.Pointer(&structTypesSidetable)) + uintptr(structIdentifier)))
return int(n)
} }
// Size returns the size in bytes of a given type. It is similar to
// unsafe.Sizeof.
func (t Type) Size() uintptr { func (t Type) Size() uintptr {
switch t.Kind() { switch t.Kind() {
case Bool, Int8, Uint8: case Bool, Int8, Uint8:
@ -211,6 +299,15 @@ func (t Type) Size() uintptr {
return unsafe.Sizeof(uintptr(0)) return unsafe.Sizeof(uintptr(0))
case Slice: case Slice:
return unsafe.Sizeof(SliceHeader{}) return unsafe.Sizeof(SliceHeader{})
case Interface:
return unsafe.Sizeof(interfaceHeader{})
case Struct:
numField := t.NumField()
if numField == 0 {
return 0
}
lastField := t.Field(numField - 1)
return lastField.Offset + lastField.Type.Size()
default: default:
panic("unimplemented: size of type") panic("unimplemented: size of type")
} }
@ -246,6 +343,18 @@ func (t Type) Align() int {
return int(unsafe.Alignof(uintptr(0))) return int(unsafe.Alignof(uintptr(0)))
case Slice: case Slice:
return int(unsafe.Alignof(SliceHeader{})) return int(unsafe.Alignof(SliceHeader{}))
case Interface:
return int(unsafe.Alignof(interfaceHeader{}))
case Struct:
numField := t.NumField()
alignment := 1
for i := 0; i < numField; i++ {
fieldAlignment := t.Field(i).Type.Align()
if fieldAlignment > alignment {
alignment = fieldAlignment
}
}
return alignment
default: default:
panic("unimplemented: alignment of type") panic("unimplemented: alignment of type")
} }
@ -269,9 +378,19 @@ func (t Type) AssignableTo(u Type) bool {
return false return false
} }
// A StructField describes a single field in a struct.
type StructField struct { type StructField struct {
// Name indicates the field name.
Name string Name string
Type Type
// PkgPath is the package path where the struct containing this field is
// declared for unexported fields, or the empty string for exported fields.
PkgPath string
Type Type
Tag string
Anonymous bool
Offset uintptr
} }
// TypeError is the error that is used in a panic when invoking a method on a // TypeError is the error that is used in a panic when invoking a method on a

Просмотреть файл

@ -4,10 +4,28 @@ import (
"unsafe" "unsafe"
) )
type valueFlags uint8
// Flags list some useful flags that contain some extra information not
// contained in an interface{} directly, like whether this value was exported at
// all (it is possible to read unexported fields using reflection, but it is not
// possible to modify them).
const (
valueFlagIndirect valueFlags = 1 << iota
valueFlagExported
)
type Value struct { type Value struct {
typecode Type typecode Type
value unsafe.Pointer value unsafe.Pointer
indirect bool flags valueFlags
}
// isIndirect returns whether the value pointer in this Value is always a
// pointer to the value. If it is false, it is only a pointer to the value if
// the value is bigger than a pointer.
func (v Value) isIndirect() bool {
return v.flags&valueFlagIndirect != 0
} }
func Indirect(v Value) Value { func Indirect(v Value) Value {
@ -22,6 +40,7 @@ func ValueOf(i interface{}) Value {
return Value{ return Value{
typecode: v.typecode, typecode: v.typecode,
value: v.value, value: v.value,
flags: valueFlagExported,
} }
} }
@ -30,7 +49,7 @@ func (v Value) Interface() interface{} {
typecode: v.typecode, typecode: v.typecode,
value: v.value, value: v.value,
} }
if v.indirect && v.Type().Size() <= unsafe.Sizeof(uintptr(0)) { if v.isIndirect() && v.Type().Size() <= unsafe.Sizeof(uintptr(0)) {
// Value was indirect but must be put back directly in the interface // Value was indirect but must be put back directly in the interface
// value. // value.
var value uintptr var value uintptr
@ -109,13 +128,13 @@ func (v Value) Addr() Value {
} }
func (v Value) CanSet() bool { func (v Value) CanSet() bool {
return v.indirect return v.flags&(valueFlagExported|valueFlagIndirect) == valueFlagExported|valueFlagIndirect
} }
func (v Value) Bool() bool { func (v Value) Bool() bool {
switch v.Kind() { switch v.Kind() {
case Bool: case Bool:
if v.indirect { if v.isIndirect() {
return *((*bool)(v.value)) return *((*bool)(v.value))
} else { } else {
return uintptr(v.value) != 0 return uintptr(v.value) != 0
@ -128,31 +147,31 @@ func (v Value) Bool() bool {
func (v Value) Int() int64 { func (v Value) Int() int64 {
switch v.Kind() { switch v.Kind() {
case Int: case Int:
if v.indirect || unsafe.Sizeof(int(0)) > unsafe.Sizeof(uintptr(0)) { if v.isIndirect() || unsafe.Sizeof(int(0)) > unsafe.Sizeof(uintptr(0)) {
return int64(*(*int)(v.value)) return int64(*(*int)(v.value))
} else { } else {
return int64(int(uintptr(v.value))) return int64(int(uintptr(v.value)))
} }
case Int8: case Int8:
if v.indirect { if v.isIndirect() {
return int64(*(*int8)(v.value)) return int64(*(*int8)(v.value))
} else { } else {
return int64(int8(uintptr(v.value))) return int64(int8(uintptr(v.value)))
} }
case Int16: case Int16:
if v.indirect { if v.isIndirect() {
return int64(*(*int16)(v.value)) return int64(*(*int16)(v.value))
} else { } else {
return int64(int16(uintptr(v.value))) return int64(int16(uintptr(v.value)))
} }
case Int32: case Int32:
if v.indirect || unsafe.Sizeof(int32(0)) > unsafe.Sizeof(uintptr(0)) { if v.isIndirect() || unsafe.Sizeof(int32(0)) > unsafe.Sizeof(uintptr(0)) {
return int64(*(*int32)(v.value)) return int64(*(*int32)(v.value))
} else { } else {
return int64(int32(uintptr(v.value))) return int64(int32(uintptr(v.value)))
} }
case Int64: case Int64:
if v.indirect || unsafe.Sizeof(int64(0)) > unsafe.Sizeof(uintptr(0)) { if v.isIndirect() || unsafe.Sizeof(int64(0)) > unsafe.Sizeof(uintptr(0)) {
return int64(*(*int64)(v.value)) return int64(*(*int64)(v.value))
} else { } else {
return int64(int64(uintptr(v.value))) return int64(int64(uintptr(v.value)))
@ -165,37 +184,37 @@ func (v Value) Int() int64 {
func (v Value) Uint() uint64 { func (v Value) Uint() uint64 {
switch v.Kind() { switch v.Kind() {
case Uintptr: case Uintptr:
if v.indirect { if v.isIndirect() {
return uint64(*(*uintptr)(v.value)) return uint64(*(*uintptr)(v.value))
} else { } else {
return uint64(uintptr(v.value)) return uint64(uintptr(v.value))
} }
case Uint8: case Uint8:
if v.indirect { if v.isIndirect() {
return uint64(*(*uint8)(v.value)) return uint64(*(*uint8)(v.value))
} else { } else {
return uint64(uintptr(v.value)) return uint64(uintptr(v.value))
} }
case Uint16: case Uint16:
if v.indirect { if v.isIndirect() {
return uint64(*(*uint16)(v.value)) return uint64(*(*uint16)(v.value))
} else { } else {
return uint64(uintptr(v.value)) return uint64(uintptr(v.value))
} }
case Uint: case Uint:
if v.indirect || unsafe.Sizeof(uint(0)) > unsafe.Sizeof(uintptr(0)) { if v.isIndirect() || unsafe.Sizeof(uint(0)) > unsafe.Sizeof(uintptr(0)) {
return uint64(*(*uint)(v.value)) return uint64(*(*uint)(v.value))
} else { } else {
return uint64(uintptr(v.value)) return uint64(uintptr(v.value))
} }
case Uint32: case Uint32:
if v.indirect || unsafe.Sizeof(uint32(0)) > unsafe.Sizeof(uintptr(0)) { if v.isIndirect() || unsafe.Sizeof(uint32(0)) > unsafe.Sizeof(uintptr(0)) {
return uint64(*(*uint32)(v.value)) return uint64(*(*uint32)(v.value))
} else { } else {
return uint64(uintptr(v.value)) return uint64(uintptr(v.value))
} }
case Uint64: case Uint64:
if v.indirect || unsafe.Sizeof(uint64(0)) > unsafe.Sizeof(uintptr(0)) { if v.isIndirect() || unsafe.Sizeof(uint64(0)) > unsafe.Sizeof(uintptr(0)) {
return uint64(*(*uint64)(v.value)) return uint64(*(*uint64)(v.value))
} else { } else {
return uint64(uintptr(v.value)) return uint64(uintptr(v.value))
@ -208,7 +227,7 @@ func (v Value) Uint() uint64 {
func (v Value) Float() float64 { func (v Value) Float() float64 {
switch v.Kind() { switch v.Kind() {
case Float32: case Float32:
if v.indirect || unsafe.Sizeof(float32(0)) > unsafe.Sizeof(uintptr(0)) { if v.isIndirect() || unsafe.Sizeof(float32(0)) > unsafe.Sizeof(uintptr(0)) {
// The float is stored as an external value on systems with 16-bit // The float is stored as an external value on systems with 16-bit
// pointers. // pointers.
return float64(*(*float32)(v.value)) return float64(*(*float32)(v.value))
@ -218,7 +237,7 @@ func (v Value) Float() float64 {
return float64(*(*float32)(unsafe.Pointer(&v.value))) return float64(*(*float32)(unsafe.Pointer(&v.value)))
} }
case Float64: case Float64:
if v.indirect || unsafe.Sizeof(float64(0)) > unsafe.Sizeof(uintptr(0)) { if v.isIndirect() || unsafe.Sizeof(float64(0)) > unsafe.Sizeof(uintptr(0)) {
// For systems with 16-bit and 32-bit pointers. // For systems with 16-bit and 32-bit pointers.
return *(*float64)(v.value) return *(*float64)(v.value)
} else { } else {
@ -234,7 +253,7 @@ func (v Value) Float() float64 {
func (v Value) Complex() complex128 { func (v Value) Complex() complex128 {
switch v.Kind() { switch v.Kind() {
case Complex64: case Complex64:
if v.indirect || unsafe.Sizeof(complex64(0)) > unsafe.Sizeof(uintptr(0)) { if v.isIndirect() || unsafe.Sizeof(complex64(0)) > unsafe.Sizeof(uintptr(0)) {
// The complex number is stored as an external value on systems with // The complex number is stored as an external value on systems with
// 16-bit and 32-bit pointers. // 16-bit and 32-bit pointers.
return complex128(*(*complex64)(v.value)) return complex128(*(*complex64)(v.value))
@ -295,15 +314,17 @@ func (v Value) Cap() int {
} }
} }
// NumField returns the number of fields of this struct. It panics for other
// value types.
func (v Value) NumField() int { func (v Value) NumField() int {
panic("unimplemented: (reflect.Value).NumField()") return v.Type().NumField()
} }
func (v Value) Elem() Value { func (v Value) Elem() Value {
switch v.Kind() { switch v.Kind() {
case Ptr: case Ptr:
ptr := v.value ptr := v.value
if v.indirect { if v.isIndirect() {
ptr = *(*unsafe.Pointer)(ptr) ptr = *(*unsafe.Pointer)(ptr)
} }
if ptr == nil { if ptr == nil {
@ -312,15 +333,77 @@ func (v Value) Elem() Value {
return Value{ return Value{
typecode: v.Type().Elem(), typecode: v.Type().Elem(),
value: ptr, value: ptr,
indirect: true, flags: v.flags | valueFlagIndirect,
} }
default: // not implemented: Interface default: // not implemented: Interface
panic(&ValueError{"Elem"}) panic(&ValueError{"Elem"})
} }
} }
// Field returns the value of the i'th field of this struct.
func (v Value) Field(i int) Value { func (v Value) Field(i int) Value {
panic("unimplemented: (reflect.Value).Field()") structField := v.Type().Field(i)
flags := v.flags
if structField.PkgPath != "" {
// The fact that PkgPath is present means that this field is not
// exported.
flags &^= valueFlagExported
}
size := v.Type().Size()
fieldSize := structField.Type.Size()
if v.isIndirect() || fieldSize > unsafe.Sizeof(uintptr(0)) {
// v.value was already a pointer to the value and it should stay that
// way.
return Value{
flags: flags,
typecode: structField.Type,
value: unsafe.Pointer(uintptr(v.value) + structField.Offset),
}
}
// The fieldSize is smaller than uintptr, which means that the value will
// have to be stored directly in the interface value.
if fieldSize == 0 {
// The struct field is zero sized.
// This is a rare situation, but because it's undefined behavior
// to shift the size of the value (zeroing the value), handle this
// situation explicitly.
return Value{
flags: flags,
typecode: structField.Type,
value: unsafe.Pointer(uintptr(0)),
}
}
if size > unsafe.Sizeof(uintptr(0)) {
// The value was not stored in the interface before but will be
// afterwards, so load the value (from the correct offset) and return
// it.
ptr := unsafe.Pointer(uintptr(v.value) + structField.Offset)
loadedValue := uintptr(0)
shift := uintptr(0)
for i := uintptr(0); i < fieldSize; i++ {
loadedValue |= uintptr(*(*byte)(ptr)) << shift
shift += 8
ptr = unsafe.Pointer(uintptr(ptr) + 1)
}
return Value{
flags: 0,
typecode: structField.Type,
value: unsafe.Pointer(loadedValue),
}
}
// The value was already stored directly in the interface and it still
// is. Cut out the part of the value that we need.
mask := ^uintptr(0) >> ((unsafe.Sizeof(uintptr(0)) - fieldSize) * 8)
return Value{
flags: flags,
typecode: structField.Type,
value: unsafe.Pointer((uintptr(v.value) >> (structField.Offset * 8)) & mask),
}
} }
func (v Value) Index(i int) Value { func (v Value) Index(i int) Value {
@ -333,7 +416,7 @@ func (v Value) Index(i int) Value {
} }
elem := Value{ elem := Value{
typecode: v.Type().Elem(), typecode: v.Type().Elem(),
indirect: true, flags: v.flags | valueFlagIndirect,
} }
addr := uintptr(slice.Data) + elem.Type().Size()*uintptr(i) // pointer to new value addr := uintptr(slice.Data) + elem.Type().Size()*uintptr(i) // pointer to new value
elem.value = unsafe.Pointer(addr) elem.value = unsafe.Pointer(addr)
@ -385,15 +468,13 @@ func (it *MapIter) Next() bool {
} }
func (v Value) Set(x Value) { func (v Value) Set(x Value) {
if !v.indirect { v.checkAddressable()
panic("reflect: value is not addressable")
}
if !v.Type().AssignableTo(x.Type()) { if !v.Type().AssignableTo(x.Type()) {
panic("reflect: cannot set") panic("reflect: cannot set")
} }
size := v.Type().Size() size := v.Type().Size()
xptr := x.value xptr := x.value
if size <= unsafe.Sizeof(uintptr(0)) && !x.indirect { if size <= unsafe.Sizeof(uintptr(0)) && !x.isIndirect() {
value := x.value value := x.value
xptr = unsafe.Pointer(&value) xptr = unsafe.Pointer(&value)
} }
@ -401,9 +482,7 @@ func (v Value) Set(x Value) {
} }
func (v Value) SetBool(x bool) { func (v Value) SetBool(x bool) {
if !v.indirect { v.checkAddressable()
panic("reflect: value is not addressable")
}
switch v.Kind() { switch v.Kind() {
case Bool: case Bool:
*(*bool)(v.value) = x *(*bool)(v.value) = x
@ -413,9 +492,7 @@ func (v Value) SetBool(x bool) {
} }
func (v Value) SetInt(x int64) { func (v Value) SetInt(x int64) {
if !v.indirect { v.checkAddressable()
panic("reflect: value is not addressable")
}
switch v.Kind() { switch v.Kind() {
case Int: case Int:
*(*int)(v.value) = int(x) *(*int)(v.value) = int(x)
@ -433,9 +510,7 @@ func (v Value) SetInt(x int64) {
} }
func (v Value) SetUint(x uint64) { func (v Value) SetUint(x uint64) {
if !v.indirect { v.checkAddressable()
panic("reflect: value is not addressable")
}
switch v.Kind() { switch v.Kind() {
case Uint: case Uint:
*(*uint)(v.value) = uint(x) *(*uint)(v.value) = uint(x)
@ -455,9 +530,7 @@ func (v Value) SetUint(x uint64) {
} }
func (v Value) SetFloat(x float64) { func (v Value) SetFloat(x float64) {
if !v.indirect { v.checkAddressable()
panic("reflect: value is not addressable")
}
switch v.Kind() { switch v.Kind() {
case Float32: case Float32:
*(*float32)(v.value) = float32(x) *(*float32)(v.value) = float32(x)
@ -469,9 +542,7 @@ func (v Value) SetFloat(x float64) {
} }
func (v Value) SetComplex(x complex128) { func (v Value) SetComplex(x complex128) {
if !v.indirect { v.checkAddressable()
panic("reflect: value is not addressable")
}
switch v.Kind() { switch v.Kind() {
case Complex64: case Complex64:
*(*complex64)(v.value) = complex64(x) *(*complex64)(v.value) = complex64(x)
@ -483,9 +554,7 @@ func (v Value) SetComplex(x complex128) {
} }
func (v Value) SetString(x string) { func (v Value) SetString(x string) {
if !v.indirect { v.checkAddressable()
panic("reflect: value is not addressable")
}
switch v.Kind() { switch v.Kind() {
case String: case String:
*(*string)(v.value) = x *(*string)(v.value) = x
@ -494,6 +563,12 @@ func (v Value) SetString(x string) {
} }
} }
func (v Value) checkAddressable() {
if !v.isIndirect() {
panic("reflect: value is not addressable")
}
}
func MakeSlice(typ Type, len, cap int) Value { func MakeSlice(typ Type, len, cap int) Value {
panic("unimplemented: reflect.MakeSlice()") panic("unimplemented: reflect.MakeSlice()")
} }

Просмотреть файл

@ -50,10 +50,20 @@ type typecodeID struct {
// * named type: the underlying type // * named type: the underlying type
// * interface: null // * interface: null
// * chan/pointer/slice: the element type // * chan/pointer/slice: the element type
// * array/func/map/struct: TODO // * struct: GEP of structField array (to typecode field)
// * array/func/map: TODO
references *typecodeID references *typecodeID
} }
// structField is used by the compiler to pass information to the interface
// lowering pass. It is not used in the final binary.
type structField struct {
typecode *typecodeID // type of this struct field
name *uint8 // pointer to char array
tag *uint8 // pointer to char array, or nil
embedded bool
}
// Pseudo type used before interface lowering. By using a struct instead of a // Pseudo type used before interface lowering. By using a struct instead of a
// function call, this is simpler to reason about during init interpretation // function call, this is simpler to reason about during init interpretation
// than a function call. Also, by keeping the method set around it is easier to // than a function call. Also, by keeping the method set around it is easier to

26
testdata/reflect.go предоставленный
Просмотреть файл

@ -11,6 +11,17 @@ type (
myslice2 []myint myslice2 []myint
mychan chan int mychan chan int
myptr *int myptr *int
point struct {
X int16
Y int16
}
mystruct struct {
n int `foo:"bar"`
some point
zero struct{}
buf []byte
Buf []byte
}
) )
func main() { func main() {
@ -86,6 +97,12 @@ func main() {
// structs // structs
struct{}{}, struct{}{},
struct{ error }{}, struct{ error }{},
struct {
a uint8
b int16
c int8
}{42, 321, 123},
mystruct{5, point{-5, 3}, struct{}{}, []byte{'G', 'o'}, []byte{'X'}},
} { } {
showValue(reflect.ValueOf(v), "") showValue(reflect.ValueOf(v), "")
} }
@ -291,7 +308,14 @@ func showValue(rv reflect.Value, indent string) {
showValue(rv.Index(i), indent+" ") showValue(rv.Index(i), indent+" ")
} }
case reflect.Struct: case reflect.Struct:
println(indent + " struct") println(indent+" struct:", rt.NumField())
for i := 0; i < rv.NumField(); i++ {
field := rt.Field(i)
println(indent+" field:", i, field.Name)
println(indent+" tag:", field.Tag)
println(indent+" embedded:", field.Anonymous)
showValue(rv.Field(i), indent+" ")
}
default: default:
println(indent + " unknown type kind!") println(indent + " unknown type kind!")
} }

77
testdata/reflect.txt предоставленный
Просмотреть файл

@ -217,9 +217,82 @@ reflect type: map
map map
nil: false nil: false
reflect type: struct reflect type: struct
struct struct: 0
reflect type: struct reflect type: struct
struct struct: 1
field: 0 error
tag:
embedded: true
reflect type: interface
interface
nil: true
reflect type: struct
struct: 3
field: 0 a
tag:
embedded: false
reflect type: uint8
uint: 42
field: 1 b
tag:
embedded: false
reflect type: int16
int: 321
field: 2 c
tag:
embedded: false
reflect type: int8
int: 123
reflect type: struct
struct: 5
field: 0 n
tag: foo:"bar"
embedded: false
reflect type: int
int: 5
field: 1 some
tag:
embedded: false
reflect type: struct
struct: 2
field: 0 X
tag:
embedded: false
reflect type: int16
int: -5
field: 1 Y
tag:
embedded: false
reflect type: int16
int: 3
field: 2 zero
tag:
embedded: false
reflect type: struct
struct: 0
field: 3 buf
tag:
embedded: false
reflect type: slice
slice: uint8 2 2
pointer: true
nil: false
indexing: 0
reflect type: uint8
uint: 71
indexing: 1
reflect type: uint8
uint: 111
field: 4 Buf
tag:
embedded: false
reflect type: slice
slice: uint8 1 1
pointer: true
nil: false
indexing: 0
reflect type: uint8 settable=true
uint: 88
sizes: sizes:
int8 1 8 int8 1 8