I don't understand why this wasn't caught in CI. It should have. In any
case, because the llvm-features string was updated, these IR outputs
were updated.
For example, this commit moves the 'throw' branch of an assertion (nil
check, slice index check, etc) to the end of the function while
inserting the "continue" branch right after the insert location. This
makes the resulting IR easier to follow.
For some reason, this also reduces code size a bit on average. The
TinyGo smoke tests saw a reduction of 0.22%, mainly from WebAssembly.
The drivers repo saw little average change in code size (-0.01%).
This commit also adds a few compiler tests for the defer keyword.
Switch over to LLVM 14 for static builds. Keep using LLVM 13 for regular
builds for now.
This uses a branch of the upstream Espressif branch to fix an issue,
see: https://github.com/espressif/llvm-project/pull/59
This removes the parentHandle argument from the internal calling convention.
It was formerly used to implment coroutines.
Now that coroutines have been removed, it is no longer necessary.
When a package only uses runtime.trackPointer to create interface packs, the compiler fails to find runtime.trackPointer.
This change predeclares it alongside runtime.alloc and updates the tests to use runtime.trackPointer when the test's target uses it.
This adds support for building with `-tags=llvm13` and switches to LLVM
13 for tinygo binaries that are statically linked against LLVM.
Some notes on this commit:
* Added `-mfloat-abi=soft` to all Cortex-M targets because otherwise
nrfx would complain that floating point was enabled on Cortex-M0.
That's not the case, but with `-mfloat-abi=soft` the `__SOFTFP__`
macro is defined which silences this warning.
See: https://reviews.llvm.org/D100372
* Changed from `--sysroot=<root>` to `-nostdlib -isystem <root>` for
musl because with Clang 13, even with `--sysroot` some system
libraries are used which we don't want.
* Changed all `-Xclang -internal-isystem -Xclang` to simply
`-isystem`, for consistency with the above change. It appears to
have the same effect.
* Moved WebAssembly function declarations to the top of the file in
task_asyncify_wasm.S because (apparently) the assembler has become
more strict.
This commit adds object layout information to new heap allocations. It
is not yet used anywhere: the next commit will make use of it.
Object layout information will eventually be used for a (mostly) precise
garbage collector. This is what the data is made for. However, it is
also useful in the interp package which can work better if it knows the
memory layout and thus the approximate LLVM type of heap-allocated
objects.
This layout parameter is currently always nil and ignored, but will
eventually contain a pointer to a memory layout.
This commit also adds module verification to the transform tests, as I
found out that it didn't (and therefore didn't initially catch all
bugs).
This attribute is also set by Clang when it compiles C source files
(unless -fexceptions is set). The advantage is that no unwind tables are
emitted on Linux (and perhaps other systems). It also avoids
__aeabi_unwind_cpp_pr0 on ARM when using the musl libc.
This commit changes a target triple like "armv6m-none-eabi" to
"armv6m-unknown-unknow-eabi". The reason is that while the former is
correctly parsed in Clang (due to normalization), it wasn't parsed
correctly in LLVM meaning that the environment wasn't set to EABI.
This change normalizes all target triples and uses the EABI environment
(-eabi in the triple) for Cortex-M targets.
This change also drops the `--target=` flag in the target JSON files,
the flag is now added implicitly in `(*compileopts.Config).CFlags()`.
This removes some duplication in target JSON files.
Unfortunately, this change also increases code size for Cortex-M
targets. It looks like LLVM now emits calls like __aeabi_memmove instead
of memmove, which pull in slightly more code (they basically just call
the regular C functions) and the calls themself don't seem to be as
efficient as they could be. Perhaps this is a LLVM bug that will be
fixed in the future, as this is a very common occurrence.
This commit improves make([]T, len) to be closer to upstream Go. The
difference is unlikely to have much real-world effect, but previously
certain make([]T, len) expressions would not result in a slice out of
bounds error in TinyGo while they would have done such a thing in Go
proper. In practice, available RAM is likely to be a bigger limiting
factor.
The next commit will change the implementation of func values on Linux
as a result of switching to a task-based scheduler. To keep the
compiler/testdata/func.go test working as expected, switch to
WebAssembly tests.
This allows better escape analysis even without being able to see the
entire program. This makes the stack allocation test case more complete
but probably won't have much of an effect outside of that (as the
compiler is able to infer these attributes in the whole-program
functionattrs pass).
An allocated object is never nil, so there is no need for a nil check.
This probably does not result in any better optimization (the nil check
is easily optimized away by LLVM because the result of runtime.alloc is
marked nonnull) but it makes the slice tests a bit cleaner.
This commit switches from the previous behavior of compiling the whole
program at once, to compiling every package in parallel and linking the
LLVM bitcode files together for further whole-program optimization.
This is a small performance win, but it has several advantages in the
future:
- There are many more things that can be done per package in parallel,
avoiding the bottleneck at the end of the compiler phase. This
should speed up the compiler futher.
- This change is a necessary step towards a non-LTO build mode for
fast incremental builds that only rebuild the changed package, when
compiler speed is more important than binary size.
- This change refactors the compiler in such a way that it will be
easier to inspect the IR for one package only. Inspecting this IR
will be very helpful for compiler developers.
This commit finally introduces unit tests for the compiler, to check
whether input Go code is converted to the expected output IR.
To make this necessary, a few refactors were needed. Hopefully these
refactors (to compile a program package by package instead of all at
once) will eventually become standard, so that packages can all be
compiled separate from each other and be cached between compiles.