Do it all at once in preparation for Go 1.18 support.
To make this commit, I've simply modified the `fmt-check` Makefile
target to rewrite files instead of listing the differences. So this is a
fully mechanical change, it should not have introduced any errors.
There were a few issues that were causing qemu-system-arm and
qemu-system-riscv to give the wrong exit codes. They are in fact capable
of exiting with 0 or 1 signalled from the running application, but this
functionality wasn't used. This commit changes this in the following
ways:
* It fixes SemiHosting codes, which were incorrectly written in
decimal while they should have been written in hexadecimal (oops!).
* It modifies all the baremetal main functions (aka reset handlers) to
exit with `exit(0)` instead of `abort()`.
* It changes `syscall.Exit` to call `exit(code)` instead of `abort()`
on baremetal targets.
* It adds these new exit functions where necessary, implemented in a
way that signals the correct exit status if running under QEMU.
All in all, this means that `tinygo test` doesn't have to look at the
output of a test to determine the outcome. It can simply look at the
exit code.
This commit refactors both determining the current time and sleeping for
a given time. It also improves precision for many chips.
* The nrf chips had a long-standing TODO comment about a slightly
inaccurate clock. This should now be fixed.
* The SAM D2x/D5x chips may have a slightly more accurate clock,
although probably within the error margin of the RTC. Also, by
working with RTC ticks and converting in the least number of places,
code size is often slightly reduced (usually just a few bytes, up to
around 1kB in some cases).
* I believe the HiFive1 rev B timer was slightly wrong (32768Hz vs
30517.6Hz). Because the datasheet says the clock runs at 32768Hz,
I've used the same conversion code here as in the nrf and sam cases.
* I couldn't test both stm32 timers, so I kept them as they currently
are. It may be possible to make them more efficient by using the
native tick frequency instead of using microseconds everywhere.
The CLINT is implemented both on the fe310-g002 chip and in the sifive_e
QEMU machine type. Therefore, use that peripheral for consistency.
The only difference is the clock speed, which runs at 10MHz in QEMU for
some reason instead of 32.768kHz as on the physical HiFive1 boards.
QEMU doesn't support the RTC peripheral yet so work around it for now.
This makes the following command work:
tinygo run -target=hifive1-qemu ./testdata/coroutines.go