This is a big commit that changes the way runtime type information is stored in
the binary. Instead of compressing it and storing it in a number of sidetables,
it is stored similar to how the Go compiler toolchain stores it (but still more
compactly).
This has a number of advantages:
* It is much easier to add new features to reflect support. They can simply
be added to these structs without requiring massive changes (especially in
the reflect lowering pass).
* It removes the reflect lowering pass, which was a large amount of hard to
understand and debug code.
* The reflect lowering pass also required merging all LLVM IR into one
module, which is terrible for performance especially when compiling large
amounts of code. See issue 2870 for details.
* It is (probably!) easier to reason about for the compiler.
The downside is that it increases code size a bit, especially when reflect is
involved. I hope to fix some of that in later patches.
They both reversed the direction of the check, in a way that mostly
cancelled each other out. Of course they're still mostly unimplemented,
but it's better if they're not wrong.
This matches the main Go implementation and (among others) fixes a
compatibility issue with the encoding/json package. The encoding/json
package compares reflect.Type variables against nil, which does not work
as long as reflect.Type is of integer type.
This also adds a reflect.RawType() function (like reflect.Type()) that
makes it easier to avoid working with interfaces in the runtime package.
It is internal only, but exported to let the runtime package use it.
This change introduces a small code size increase when working with the
reflect package, but I've tried to keep it to a minimum. Most programs
that don't make extensive use of the reflect package (and don't use
package like fmt) should not be impacted by this.
Linked lists are usually implemented as follows:
type linkedList struct {
next *linkedList
data int // whatever
}
This caused a stack overflow while writing out the reflect run-time type
information. This has now been fixed by splitting the allocation of a
named type number from setting the underlying type in the sidetable.
With this change, it becomes possible to get the element type of named
slices, pointers, and channels.
This is a prerequisite to enable the common named struct types. There's
more to come.
This commit makes sure all Go types can be encoded in the interface type
code, so that Type.Kind() always returns a proper type kind for any
non-nil interface.
Package encoding/binary uses reflect and is needed by image/png, but
image/png doesn't actually need the reflect-using parts of
encoding/binary. So stub them out for now to get it to compile.
Thanks to Stephen Solka who wrote the patch.