This commit adds support for the following packages:
- crypto/md5
- crypto/sha1
- crypto/sha256
- crypto/sha512
They would normally need assembly implementations, but with these
aliases they already work everywhere.
This makes them more flexible, especially with Go 1.17 making the
situation more complicated (see
1d20a362d0).
It also makes it possible to do the same for many other functions, such
as assembly implementations of cryptographich functions which are
similarly dependent on the architecture.
This patch adds a new pragma for functions and globals to set the
section name. This can be useful to place a function or global in a
special device specific section, for example:
* Functions may be placed in RAM to make them run faster, or in flash
(if RAM is the default) to not let them take up RAM.
* DMA memory may only be placed in a special memory area.
* Some RAM may be faster than other RAM, and some globals may be
performance critical thus placing them in this special RAM area can
help.
* Some (large) global variables may need to be placed in external RAM,
which can be done by placing them in a special section.
To use it, you have to place a function or global in a special section,
for example:
//go:section .externalram
var externalRAMBuffer [1024]byte
This can then be placed in a special section of the linker script, for
example something like this:
.bss.extram (NOLOAD) : {
*(.externalram)
} > ERAM
These pragmas weren't really tested anywhere, except that some code
might break if they are not properly applied.
These tests make it easy to see they work correctly and also provide a
logical place to add new pragma tests.
I've also made a slight change to how functions and globals are created:
with the change they're also created in the IR even if they're not
referenced. This makes testing easier.
This commit includes two changes:
* It makes unexported interface methods package-private, so that it's
not possible to type-assert on an unexported method in a different
package.
* It makes the globals used to identify interface methods defined
globals, so that they can (eventually) be left in the program for an
eventual non-LTO build mode.
Do not store the context parameter (which is used for closures and
function pointers) in the goroutine start parameter bundle for direct
functions that don't need a context parameter. This avoids storing the
(undef) context parameter and thus makes the IR to start a new goroutine
simpler in most cases.
This reduces code size in the channel.go and goroutines.go tests.
Surprisingly, all test cases (when compiled with -target=microbit) have
a changed binary, I haven't investigated why but I suppose the codegen
is slightly different for the runtime.run function (which starts the
main goroutine).
Closure variables are allocated in a parent function and are thus never
nil. Don't do a nil check before reading or modifying the value.
This commit results in a slight reduction in code size in some test
cases: calls.go, channel.go, goroutines.go, json.go, sort.go -
presumably wherever closures are used.
Move the code from the compiler.go file to the goroutine.go file, which
is a more appropriate place. This keeps all the goroutine related code
in one file, to make it easier to find.
With this is possible to enable e.g., SIMD in WASM using -llvm-features
+simd128. Multiple features can be specified separated by comma,
e.g., -llvm-features +simd128,+tail-call
With help from @deadprogram and @aykevl.
In many cases, position information is not stored in Go SSA instructions
because they don't exit directly in the source code. This includes
implicit type conversions, implicit returns at the end of a function,
the creation of a (hidden) slice when calling a variadic function, and
many other cases. I'm not sure where this information is supposed to
come from, but this patch takes the value (usually) from the value the
instruction refers to. This seems to work well for these implicit
conversions.
I've also added a few extra tests to the heap-to-stack transform pass,
of which one requires this improved position information.
There is no good reason for func values to refer to interface type
codes. The only thing they need is a stable identifier for function
signatures, which is easily created as a new kind of globals. Decoupling
makes it easier to change interface related code.
Some errors were generated but never returned or never checked in the
test function. That's a problem. Therefore this commit fixes this
oversight (by me).
This commit optimizes string literals and globals by setting the
appropriate alignment and using a nil pointer in zero-length strings.
- Setting the alignment for string values has a surprisingly large
effect, up to around 2% in binary size. I suspect that LLVM will
pick some default alignment for larger byte arrays if no alignment
has been specified and forcing an alignment of 1 will pack all
strings closer together.
- Using nil for zero-length strings also has a positive effect, but
I'm not sure why. Perhaps it makes some optimizations more trivial.
- Always setting the alignment on globals improves code size slightly,
probably for the same reasons setting the alignment of string
literals improves code size. The effect is much smaller, however.
This commit might have an effect on performance, but if it does this
should be tested separately and such a large win in binary size should
definitely not be ignored for small embedded systems.
Sometimes, LLVM may rename named structs when merging modules.
Therefore, we can't rely on typecodeID structs to retain their struct
names.
This commit changes the interface lowering pass to not rely on these
names. The interp package does however still rely on this name, but I
hope to fix that in the future.
This commit adds a new transform that converts reflect Implements()
calls to runtime.interfaceImplements. At the moment, the Implements()
method is not yet implemented (how ironic) but if the value passed to
Implements is known at compile time the method call can be optimized to
runtime.interfaceImplements to make it a regular interface assert.
This commit is the last change necessary to add basic support for the
encoding/json package. The json package is certainly not yet fully
supported, but some trivial objects can be converted to JSON.
Previously there was code to avoid impossible type asserts but it wasn't
great and in fact was too aggressive when combined with reflection.
This commit improves this by checking all types that exist in the
program that may appear in an interface (even struct fields and the
like) but without creating runtime.typecodeID objects with the type
assert. This has two advantages:
* As mentioned, it optimizes impossible type asserts away.
* It allows methods on types that were only asserted on (in
runtime.typeAssert) but never used in an interface to be optimized
away using GlobalDCE. This may have a cascading effect so that other
parts of the code can be further optimized.
This sometimes massively improves code size and mostly negates the code
size regression of the previous commit.
This distinction was useful before when reflect wasn't properly
supported. Back then it made sense to only include method sets that were
actually used in an interface. But now that it is possible to get to
other values (for example, by extracting fields from structs) and it is
possible to turn them back into interfaces, it is necessary to preserve
all method sets that can possibly be used in the program in a type
assert, interface assert or interface method call.
In the future, this logic will need to be revisited again when
reflect.New or reflect.Zero gets implemented.
Code size increases a bit in some cases, but usually in a very limited
way (except for one outlier in the drivers smoke tests). The next commit
will improve the situation significantly.
Previously we used the --export-all linker flag to export most
functions. However, this is not needed and possibly increases binary
size. Instead, we should be exporting the specific functions to be
exported.
This commit switches from the previous behavior of compiling the whole
program at once, to compiling every package in parallel and linking the
LLVM bitcode files together for further whole-program optimization.
This is a small performance win, but it has several advantages in the
future:
- There are many more things that can be done per package in parallel,
avoiding the bottleneck at the end of the compiler phase. This
should speed up the compiler futher.
- This change is a necessary step towards a non-LTO build mode for
fast incremental builds that only rebuild the changed package, when
compiler speed is more important than binary size.
- This change refactors the compiler in such a way that it will be
easier to inspect the IR for one package only. Inspecting this IR
will be very helpful for compiler developers.
The SimpleDCE pass was previously used to only compile the parts of the
program that were in use. However, lately the only real purpose has been
to speed up the compiler a bit by only compiling the necessary
functions.
This pass however is a problem for compiling (and caching) packages in
parallel. Therefore, this commit removes it as a preparatory step
towards that goal.
This is a leftover from a long time ago, when everything was still in
the global context. The fact that this uses the global context is most
certainly a bug.
I have seen occasional crashes in the build-packages-indepedently branch
(and PRs based on it) which I suspect are caused by this bug. I think
this is a long-dormant bug that only surfaced when doing the compilation
steps in parallel.
Moving settings to a separate config struct has two benefits:
- It decouples the compiler a bit from other packages, most
importantly the compileopts package. Decoupling is generally a good
thing.
- Perhaps more importantly, it precisely specifies which settings are
used while compiling and affect the resulting LLVM module. This will
be necessary for caching the LLVM module.
While it would have been possible to cache without this refactor, it
would have been very easy to miss a setting and thus let the
compiler work with invalid/stale data.
This fixes a longstanding TODO comment and similar to
https://github.com/tinygo-org/tinygo/pull/1593 it removes some code out
of the compiler.CompileProgram function that doesn't need to be there.
This is a small refactor to move code away from compiler.CompilePackage,
with the goal that compiler.CompilePackage will eventually be removed
entirely in favor of compiler.CompilePackage.
Since https://github.com/tinygo-org/tinygo/pull/1571 (in particular, the first
commit that sets the main package path), the main package is always named
"main". This makes the callMain() workaround in the runtime unnecessary and
allows directly calling the main.main function with a //go:linkname pragma.
This package was long making the design of the compiler more complicated
than it needs to be. Previously this package implemented several
optimization passes, but those passes have since moved to work directly
with LLVM IR instead of Go SSA. The only remaining pass is the SimpleDCE
pass.
This commit removes the *ir.Function type that permeated the whole
compiler and instead switches to use *ssa.Function directly. The
SimpleDCE pass is kept but is far less tightly coupled to the rest of
the compiler so that it can easily be removed once the switch to
building and caching packages individually happens.
This change extends defer support to all supported builitin functions.
Not all of them make sense (such as len, cap, real, imag, etc) but this
change for example adds support for `defer(delete(m, key))` which is
used in the Go 1.15 encoding/json package.
This works around some UB in LLVM, where an out-of-bounds conversion would produce a poison value.
The selected behavior is saturating, except that NaN is mapped to the minimum value.
This commit finally introduces unit tests for the compiler, to check
whether input Go code is converted to the expected output IR.
To make this necessary, a few refactors were needed. Hopefully these
refactors (to compile a program package by package instead of all at
once) will eventually become standard, so that packages can all be
compiled separate from each other and be cached between compiles.
Before this change, the compiler could panic with the following message:
panic: 20 not an Int
That of course doesn't make much sense. But it apparently is expected
behavior, see https://github.com/golang/go/issues/43165 for details.
This commit fixes this issue by converting the constant to an integer if
needed.
Test binaries must be run in the source directory of the package to be
tested. This wasn't done, leading to a few "file not found" errors.
This commit implements this. Unfortunately, it does not allow more
packages to be tested as both affected packages (debug/macho and
debug/plan9obj) will still fail with this patch even though the "file
not found" errors are gone.
There were a few problems with the go/packages package. While it is more
or less designed for our purpose, it didn't work quite well as it didn't
provide access to indirectly imported packages (most importantly the
runtime package). This led to a workaround that sometimes broke
`tinygo test`.
This PR contains a number of related changes:
* It uses `go list` directly to retrieve the list of packages/files to
compile, instead of relying on the go/packages package.
* It replaces our custom TestMain replace code with the standard code
for running tests (generated by `go list`).
* It adds a dummy runtime/pprof package and modifies the testing
package, to get tests to run again with the code generated by
`go list`.
This is required by the coroutines pass, otherwise it will panic. It
checks for the proper parameter names to make sure the function is not
exported. In this case, the runtime.initAll function wasn't exported but
simply didn't have the correct parameter names so the check triggered
even though it shouldn't.
This is necessary to avoid a circular dependency between the device/avr
and runtime/interrupts package in the next commit.
It may be worth replacing existing calls like device/arm.Asm to
device.Asm, to have a single place where these are defined.
There were a few cases left where a named type would cause a crash in
the compiler. While going through enough code would have found them
eventually, I specifically looked for the `Type().(` pattern: a Type()
call that is then used in a type assert. Most of those were indeed bugs,
although for some I couldn't come up with a reproducer so I left them
as-is.
This commit replaces the existing ad-hoc package loader with a package
loader that uses the x/tools/go/packages package to find all
to-be-loaded packages.