It is better to use environment variables (GOOS and GOARCH) for
consistency instead of providing two slightly incompatible ways. This
-target flag should only be used to specify a .json file (either
directly or in the TinyGo targets directory). Previously it was possible
to specify the LLVM target as well but that was never really fully
supported.
So:
- To specify a different OS/arch like you would in regular Go, use
GOOS and GOARCH.
- To specify a microcontroller chip or board, use the -target flag.
Also remove the old `os.Setenv` which might have had a purpose long ago
but doesn't have a purpose now.
... instead of setting a special -target= value. This is more robust and
makes sure that the test actually tests different arcitectures as they
would be compiled by TinyGo. As an example, the bug of the bugfix in the
previous commit ("arm: use armv7 instead of thumbv7") would have been
caught if this change was applied earlier.
I've decided to put GOOS/GOARCH in compileopts.Options, as it makes
sense to me to treat them the same way as command line parameters.
This flag is passed automatically with the (new) -v flag for TinyGo. For
example, this prints all the test outputs:
$ tinygo test -v crypto/md5
=== RUN TestGolden
--- PASS: TestGolden
=== RUN TestGoldenMarshal
--- PASS: TestGoldenMarshal
=== RUN TestLarge
--- PASS: TestLarge
=== RUN TestBlockGeneric
--- PASS: TestBlockGeneric
=== RUN TestLargeHashes
--- PASS: TestLargeHashes
PASS
ok crypto/md5 0.002s
This prints just a summary:
$ tinygo test crypto/md5
PASS
ok crypto/md5 0.002s
(The superfluous 'PASS' message may be removed in the future).
This is especially useful when testing a large number of packages:
$ tinygo test crypto/md5 crypto/sha1 crypto/sha256 crypto/sha512
PASS
ok crypto/md5 0.002s
PASS
ok crypto/sha1 0.043s
PASS
ok crypto/sha256 0.002s
PASS
ok crypto/sha512 0.003s
At the moment, the -test.v flag is not supplied to binaries running in
emulation. I intend to fix this after
https://github.com/tinygo-org/tinygo/pull/2038 lands by refactoring
runPackageTest, Run, and runTestWithConfig in the main package which all
do something similar.
Stripping debug information at link time also allows relocation
compression (aka linker relaxations). Keeping debug information at
compile time and optionally stripping it at link time has some
advantages:
* Automatic stack sizes on Cortex-M rely on the presence of debug
information.
* Some parts of the compiler now rely on the presence of debug
information for proper diagnostics.
* It works better with the cache: there is no distinction between
debug and no-debug builds.
* It makes it easier (or possible at all) to enable debug information
in the wasi-libc library without big downsides.
This can be very useful for some purposes:
* It makes it possible to disable the UART in cases where it is not
needed or needs to be disabled to conserve power.
* It makes it possible to disable the serial output to reduce code
size, which may be important for some chips. Sometimes, a few kB can
be saved this way.
* It makes it possible to override the default, for example you might
want to use an actual UART to debug the USB-CDC implementation.
It also lowers the dependency on having machine.Serial defined, which is
often not defined when targeting a chip. Eventually, we might want to
make it possible to write `-target=nrf52` or `-target=atmega328p` for
example to target the chip itself with no board specific assumptions.
The defaults don't change. I checked this by running `make smoketest`
before and after and comparing the results.
This makes it possible to flash a board even when there are multiple
different kinds of boards attached, e.g. an Arduino Uno and a Circuit
Playground Express. You can find the VID/PID pair in several ways:
1. By running `lsusb` before and after attaching the board and looking
at the new USB device.
2. By grepping for `usb_PID` and `usb_VID` in the TinyGo source code.
3. By checking the Arduino IDE boards.txt from the vendor.
Note that one board may have multiple VID/PID pairs:
* The bootloader and main program may have a different PID, so far
I've seen that the main program generally has the bootloader PID
with 0x8000 added.
* The software running on the board may have an erroneous PID, for
example from a different board. I've seen this happen a few times.
* A single board may have had some revisions which changed the PID.
This is particularly true for the Arduino Uno.
As a fallback, if the given VID/PID pair isn't found, the whole set of
serial ports will be used.
There are many boards which I haven't included yet simply because I
couldn't test them.
Previously, flash-command would assume it could execute a command
straight via /bin/sh, at least on non-Windows systems. Otherwise it
would just split the command using `strings.Split`. This is all a bit
hacky, so I've replaced it with a proper solution: splitting the command
_before_ substituting various paths using a real shell splitter
(shlex.Split, from Google). This solves a few things:
* It guards against special characters in path names. This can be an
issue on Windows where the temporary path may contain spaces (this
is uncommon on POSIX systems).
* It is more portable, by disallowing the use of a shell. That way, it
doesn't differentiate between Windows and non-Windows anymore.
Previously a command like the following would incorrectly print FAIL:
tinygo test -c math
This commit fixes this issue by defaulting to a passing test (the test
is marked as passed if it isn't run).
This commit makes the output of `tinygo test` similar to that of `go
test`. It changes the following things in the process:
* Running multiple tests in a single command is now possible. They
aren't paralellized yet.
* Packages with no test files won't crash TinyGo, instead it logs it
in the same way the Go toolchain does.
With this is possible to enable e.g., SIMD in WASM using -llvm-features
+simd128. Multiple features can be specified separated by comma,
e.g., -llvm-features +simd128,+tail-call
With help from @deadprogram and @aykevl.
This flag, if set, is a regexp for function names. If there are heap
allocations in the matching function names, these heap allocations will
be printed with an explanation why the heap allocation exists (and why
the object can't be stack allocated).
This commit implements replacing some global variables with a different
value, if the global variable has no initializer. For example, if you
have:
package main
var version string
you can replace the value with -ldflags="-X main.version=0.2".
Right now it only works for uninitialized globals. The Go tooling also
supports initialized globals (var version = "<undefined>") but that is a
bit hard to combine with how initialized globals are currently
implemented.
The current implementation still allows caching package IR files while
making sure the values don't end up in the build cache. This means
compiling a program multiple times with different values will use the
cached package each time, inserting the string value only late in the
build process.
Fixes#1045
This is an addition that landed in Go 1.12 but we couldn't use before
because we were supporting Go back until Go 1.11. It simplifies the code
around processes a bit.
A common error is when someone tries to export a blocking function. This
is not possible with the coroutines scheduler. Previously, it resulted
in an error like this:
panic: trying to make exported function async: messageHandler
With this change, the error is much better and shows where it comes from
exactly:
/home/ayke/tmp/export-async.go:8: blocking operation in exported function: messageHandler
traceback:
messageHandler
/home/ayke/tmp/export-async.go:9:5
main.foo
/home/ayke/tmp/export-async.go:15:2
runtime.chanSend
/home/ayke/src/github.com/tinygo-org/tinygo/src/runtime/chan.go:494:12
This should make it easier to identify and fix the problem. And it
avoids a compiler panic, which is a really bad way of showing
diagnostics.
This commit parallelizes almost everything that can currently be
parallelized. With that, it also introduces a framework for easily
parallelizing other parts of the compiler.
Code for baremetal targets already compiles slightly faster because it
can parallelize the compilation of supporting assembly files. However,
the speedup is especially noticeable when libraries (compiler-rt,
picolibc) also need to be compiled: they will be compiled in parallel
next to the Go files using all available cores. On my dual core laptop
(4 cores if you count hyperthreading) this cuts compilation time roughly
in half when compiling something for a Cortex-M board after running
`tinygo clean`.
On WebAssembly it is possible to grow the heap with the memory.grow
instruction. This commit implements this feature and with that also
removes the -heap-size flag that was reportedly broken (I haven't
verified that). This should make it easier to use TinyGo for
WebAssembly, where there was no good reason to use a fixed heap size.
This commit has no effect on baremetal targets with optimizations
enabled.
Be able to run `tinygo gdb -target=arduino examples/serial` and debug a
program with the power of a real debugger.
Note that this only works on LLVM 11 because older versions have a bug
in the AVR backend that cause it to produce invalid debug information:
https://reviews.llvm.org/D74213.
This commit allows debugging like the following:
GOARCH=arm tinygo gdb ./testdata/alias.go
This can be very useful to debug issues on a different instruction set
architecture but still on a host system.
I tested the following 7 configurations to make sure it works and I
didn't break anything:
GOOS=amd64
GOOS=386
GOOS=arm
GOOS=arm64
tinygo gdb -target=hifive1-qemu
tinygo gdb -target=cortex-m-qemu
tinygo gdb -target=microbit
For example, for running tests with -target=wasm or
-target=cortex-m-qemu. It looks at the output to determine whether tests
were successful in the absence of a status code.
This patch adds the `tinygo targets` command, which lists usable
targets (targets that can be used in the `-target` flag).
The assumption here is that usable targets can either be flashed or
emulated by TinyGo. There is one exception where it doesn't work yet:
the nintendoswitch target. Right now it requires some manual steps to
build a .nro file which can then be run by yuzu, hence why it doesn't
show up in the list.
This is necessary for an upcoming VS Code extension to support TinyGo,
and may be useful for other people wanting to use proper autocompletion
etc in their IDE.
Test binaries must be run in the source directory of the package to be
tested. This wasn't done, leading to a few "file not found" errors.
This commit implements this. Unfortunately, it does not allow more
packages to be tested as both affected packages (debug/macho and
debug/plan9obj) will still fail with this patch even though the "file
not found" errors are gone.
There were a few problems with the go/packages package. While it is more
or less designed for our purpose, it didn't work quite well as it didn't
provide access to indirectly imported packages (most importantly the
runtime package). This led to a workaround that sometimes broke
`tinygo test`.
This PR contains a number of related changes:
* It uses `go list` directly to retrieve the list of packages/files to
compile, instead of relying on the go/packages package.
* It replaces our custom TestMain replace code with the standard code
for running tests (generated by `go list`).
* It adds a dummy runtime/pprof package and modifies the testing
package, to get tests to run again with the code generated by
`go list`.
For now, this is just an extra flag that can be used to print stack
frame information, but this is intended to provide a way to determine
stack sizes for goroutines at compile time in many cases.
Stack sizes are often somewhere around 350 bytes so are in fact not all
that big usually. Once this can be determined at compile time in many
cases, it is possible to use this information when available and as a
result increase the fallback stack size if the size cannot be determined
at compile time. This should reduce stack overflows while at the same
time reducing RAM consumption in many cases.
Interesting output for testdata/channel.go:
function stack usage (in bytes)
Reset_Handler 332
.Lcommand-line-arguments.fastreceiver 220
.Lcommand-line-arguments.fastsender 192
.Lcommand-line-arguments.iterator 192
.Lcommand-line-arguments.main$1 184
.Lcommand-line-arguments.main$2 200
.Lcommand-line-arguments.main$3 200
.Lcommand-line-arguments.main$4 328
.Lcommand-line-arguments.receive 176
.Lcommand-line-arguments.selectDeadlock 72
.Lcommand-line-arguments.selectNoOp 72
.Lcommand-line-arguments.send 184
.Lcommand-line-arguments.sendComplex 192
.Lcommand-line-arguments.sender 192
.Lruntime.run$1 548
This shows that the stack size (if these numbers are correct) can in
fact be determined automatically in many cases, especially for small
goroutines. One of the great things about Go is lightweight goroutines,
and reducing stack sizes is very important to make goroutines
lightweight on microcontrollers.