This is a big commit that changes the way runtime type information is stored in
the binary. Instead of compressing it and storing it in a number of sidetables,
it is stored similar to how the Go compiler toolchain stores it (but still more
compactly).
This has a number of advantages:
* It is much easier to add new features to reflect support. They can simply
be added to these structs without requiring massive changes (especially in
the reflect lowering pass).
* It removes the reflect lowering pass, which was a large amount of hard to
understand and debug code.
* The reflect lowering pass also required merging all LLVM IR into one
module, which is terrible for performance especially when compiling large
amounts of code. See issue 2870 for details.
* It is (probably!) easier to reason about for the compiler.
The downside is that it increases code size a bit, especially when reflect is
involved. I hope to fix some of that in later patches.
This commit simplifies the IR a little bit: instead of calling
pseudo-functions runtime.interfaceImplements and
runtime.interfaceMethod, real declared functions are being called that
are then defined in the interface lowering pass. This should simplify
the interaction between various transformation passes. It also reduces
the number of lines of code, which is generally a good thing.
This matches the main Go implementation and (among others) fixes a
compatibility issue with the encoding/json package. The encoding/json
package compares reflect.Type variables against nil, which does not work
as long as reflect.Type is of integer type.
This also adds a reflect.RawType() function (like reflect.Type()) that
makes it easier to avoid working with interfaces in the runtime package.
It is internal only, but exported to let the runtime package use it.
This change introduces a small code size increase when working with the
reflect package, but I've tried to keep it to a minimum. Most programs
that don't make extensive use of the reflect package (and don't use
package like fmt) should not be impacted by this.
Previously there was code to avoid impossible type asserts but it wasn't
great and in fact was too aggressive when combined with reflection.
This commit improves this by checking all types that exist in the
program that may appear in an interface (even struct fields and the
like) but without creating runtime.typecodeID objects with the type
assert. This has two advantages:
* As mentioned, it optimizes impossible type asserts away.
* It allows methods on types that were only asserted on (in
runtime.typeAssert) but never used in an interface to be optimized
away using GlobalDCE. This may have a cascading effect so that other
parts of the code can be further optimized.
This sometimes massively improves code size and mostly negates the code
size regression of the previous commit.
This distinction was useful before when reflect wasn't properly
supported. Back then it made sense to only include method sets that were
actually used in an interface. But now that it is possible to get to
other values (for example, by extracting fields from structs) and it is
possible to turn them back into interfaces, it is necessary to preserve
all method sets that can possibly be used in the program in a type
assert, interface assert or interface method call.
In the future, this logic will need to be revisited again when
reflect.New or reflect.Zero gets implemented.
Code size increases a bit in some cases, but usually in a very limited
way (except for one outlier in the drivers smoke tests). The next commit
will improve the situation significantly.
For a full explanation, see interp/README.md. In short, this rewrite is
a redesign of the partial evaluator which improves it over the previous
partial evaluator. The main functional difference is that when
interpreting a function, the interpretation can be rolled back when an
unsupported instruction is encountered (for example, an actual unknown
instruction or a branch on a value that's only known at runtime). This
also means that it is no longer necessary to scan functions to see
whether they can be interpreted: instead, this package now just tries to
interpret it and reverts when it can't go further.
This new design has several benefits:
* Most errors coming from the interp package are avoided, as it can
simply skip the code it can't handle. This has long been an issue.
* The memory model has been improved, which means some packages now
pass all tests that previously didn't pass them.
* Because of a better design, it is in fact a bit faster than the
previous version.
This means the following packages now pass tests with `tinygo test`:
* hash/adler32: previously it would hang in an infinite loop
* math/cmplx: previously it resulted in errors
This also means that the math/big package can be imported. It would
previously fail with a "interp: branch on a non-constant" error.
This commit fixes the following issue:
https://github.com/tinygo-org/tinygo/issues/309
Also, it prepares for some other reflect-related changes that should
make it easier to add support for named types (etc.) in the future.
In LLVM 8, the AVR backend has moved all function pointers to address
space 1 by default. Much of the code still assumes function pointers
live in address space 0, leading to assertion failures.
This commit fixes this problem by autodetecting function pointers and
avoiding them in interface pseudo-calls.
This commit changes many things:
* Most interface-related operations are moved into an optimization
pass for more modularity. IR construction creates pseudo-calls which
are lowered in this pass.
* Type codes are assigned in this interface lowering pass, after DCE.
* Type codes are sorted by usage: types more often used in type
asserts are assigned lower numbers to ease jump table construction
during machine code generation.
* Interface assertions are optimized: they are replaced by constant
false, comparison against a constant, or a typeswitch with only
concrete types in the general case.
* Interface calls are replaced with unreachable, direct calls, or a
concrete type switch with direct calls depending on the number of
implementing types. This hopefully makes some interface patterns
zero-cost.
These changes lead to a ~0.5K reduction in code size on Cortex-M for
testdata/interface.go. It appears that a major cause for this is the
replacement of function pointers with direct calls, which are far more
susceptible to optimization. Also, not having a fixed global array of
function pointers greatly helps dead code elimination.
This change also makes future optimizations easier, like optimizations
on interface value comparisons.
Because a few things were left unimplemented it only happened to kind-of
work before in my test cases.
This commit should complete interface-to-interface type asserts.
Comparing an interface to nil is easy, as the dynamic type is also nil.
Comparing the dynamic values (when the dynamic types match) is much
harder and depends on reflection capabilities, so is not yet implemented.
TODO: do better at it by tracking min/max values of integers. The
following straightforward code doesn't have its bounds checks removed:
for _, n := range slice {
println(n)
}
It took Android some time to even hit the 64K limit for regular method
calls, so switching to 16-bit IDs should be fine for method IDs of
interfaces. At least for the time being. When this limit is ever hit,
I'll think of another way, probably involving some platform-dependent
interface code (e.g. microcontrollers won't need 64K of methods) or
detecting the limit at build time.
https://android-developers.googleblog.com/2014/12/google-play-services-and-dex-method.html
Code size isn't changed, probably because the compiler optimizes away
all method calls.
This commit moves the itfmethod call implemented directly in LLVM IR to
a Go implementation in the runtime. Additionally, it fixes variable
names to be more obvious and adds a lot of documentation to explain how
interfaces actually work in TinyGo.
Code size changes for src/examples/hello:
nrf: -144
unix: -93
I'm guessing this code size reduction is a result of removing the
'noinline' function attribute.