This adds support for stdio in picolibc and fixes wasm_exec.js so that
it can also support C puts. With this, C stdout works on all supported
platforms.
There is no need to put these in the board files as the I2S is the same
on all Microchip SAM D21 chips. This simplifies the code and avoids some
special *_baremetal.go files.
This change does not change the resulting binaries.
This has practically no effect on the resulting binaries, the only
difference I could find was for the flash/console/spi driver example.
I'm not sure how to test that one, but I think it's very unlikely that
code will have changed in any meaningful way (apart from reordering some
globals).
This commit changes the I2C declarations so that the objects are
instantiated in each chip file (e.g. machine_atsamd21e18.go) and used to
define I2C0 (and similar) in the board file (e.g. board_qtpy.go). This
should make it easier to define new board files, and reduces the need
for separate *_baremetal.go files.
I have tested this the following way:
- With the LIS3DH driver example on the Circuit Playground Express and
the PyBadge.
- With the LSM6DS3 driver example on the Arduino Nano 33 IoT.
They both still work fine.
Instead of defining them separately for each board, define them once in
the chip definition and later simply use &sercomUART1 etc. to refer to
them. This is simpler and less error-prone.
I found two bugs while working on this:
- The P1AM-100 board mixed SERCOM 5 and SERCOM 3. It looks like SERCOM
5 was intended, based on the used pins.
- The Adafruit Matrix Portal appears to have configured the wrong
interrupt.
Unfortunately, I can't test these fixes. However, they make it clear
that such a change is important to avoid bugs.
I tested this commit on the PyBadge and the Circuit Playground Express.
This chip can run so much faster! Let's update the default frequency.
Also, change the UART implementation to be more fexible regarding the
clock frequency.
This commit changes `tinygo test` to always look at the exit code of the
running test, instead of looking for a "PASS" string at the end of the
output. This is possible now that the binaries running under
qemu-system-arm or qemu-system-riscv32 will signal the correct exit code
when they exit.
As a side effect, this also makes it possible to avoid the "PASS" line
between successful tests. Before:
$ tinygo test container/heap container/list
PASS
ok container/heap 0.001s
PASS
ok container/list 0.001s
After:
$ tinygo test container/heap container/list
ok container/heap 0.001s
ok container/list 0.001s
The new behavior is more in line with upstream Go:
go test container/heap container/list
ok container/heap 0.004s
ok container/list 0.004s
There were a few issues that were causing qemu-system-arm and
qemu-system-riscv to give the wrong exit codes. They are in fact capable
of exiting with 0 or 1 signalled from the running application, but this
functionality wasn't used. This commit changes this in the following
ways:
* It fixes SemiHosting codes, which were incorrectly written in
decimal while they should have been written in hexadecimal (oops!).
* It modifies all the baremetal main functions (aka reset handlers) to
exit with `exit(0)` instead of `abort()`.
* It changes `syscall.Exit` to call `exit(code)` instead of `abort()`
on baremetal targets.
* It adds these new exit functions where necessary, implemented in a
way that signals the correct exit status if running under QEMU.
All in all, this means that `tinygo test` doesn't have to look at the
output of a test to determine the outcome. It can simply look at the
exit code.
This is necessary to support the ESP32-C3, which lacks the A (atomic)
extension and thus requires these 32-bit atomic operations.
With this commit, flashing ./testdata/atomic.go to the ESP32-C3 works
correctly and produces the expected output on the serial console.
This change adds support for the ESP32-C3, a new chip from Espressif. It
is a RISC-V core so porting was comparatively easy.
Most peripherals are shared with the (original) ESP32 chip, but with
subtle differences. Also, the SVD file I've used gives some
peripherals/registers a different name which makes sharing code harder.
Eventually, when an official SVD file for the ESP32 is released, I
expect that a lot of code can be shared between the two chips.
More information: https://www.espressif.com/en/products/socs/esp32-c3
TODO:
- stack scheduler
- interrupts
- most peripherals (SPI, I2C, PWM, etc)
At startup, a large chunk of virtual memory is used up by the heap. This
works fine in emulation (qemu-arm), but doesn't work so well on an
actual Raspberry Pi. Therefore, this commit reduces the requested amount
until a heap size is found that works on the system.
This can certainly be improved, but for now it's an important fix
because it allows TinyGo built binaries to actually run on a Raspberry
Pi with just 1GB RAM.
This allows the assembly routines in these files to be stripped as dead
code if they're not referenced. This solves the link issues on MacOS
when the `leaking` garbage collector or the `coroutines` scheduler
are selected.
Fixes#2081
heapptr is assinged to heapStart (which is 0) when it's declared, but preinit()
may have moved the heap somewhere else. Set heapptr to the proper value
of heapStart when we initialize the heap properly.
This allows the leaking allocator to work on unix.