package compiler // This file implements function values and closures. It may need some lowering // in a later step, see func-lowering.go. import ( "go/types" "golang.org/x/tools/go/ssa" "tinygo.org/x/go-llvm" ) type funcValueImplementation int const ( funcValueNone funcValueImplementation = iota // A func value is implemented as a pair of pointers: // {context, function pointer} // where the context may be a pointer to a heap-allocated struct containing // the free variables, or it may be undef if the function being pointed to // doesn't need a context. The function pointer is a regular function // pointer. funcValueDoubleword // As funcValueDoubleword, but with the function pointer replaced by a // unique ID per function signature. Function values are called by using a // switch statement and choosing which function to call. funcValueSwitch ) // funcImplementation picks an appropriate func value implementation for the // target. func (c *Compiler) funcImplementation() funcValueImplementation { if c.GOARCH == "wasm" { return funcValueSwitch } else { return funcValueDoubleword } } // createFuncValue creates a function value from a raw function pointer with no // context. func (c *Compiler) createFuncValue(funcPtr, context llvm.Value, sig *types.Signature) (llvm.Value, error) { var funcValueScalar llvm.Value switch c.funcImplementation() { case funcValueDoubleword: // Closure is: {context, function pointer} funcValueScalar = funcPtr case funcValueSwitch: sigGlobal := c.getFuncSignature(sig) funcValueWithSignatureGlobalName := funcPtr.Name() + "$withSignature" funcValueWithSignatureGlobal := c.mod.NamedGlobal(funcValueWithSignatureGlobalName) if funcValueWithSignatureGlobal.IsNil() { funcValueWithSignatureType := c.mod.GetTypeByName("runtime.funcValueWithSignature") funcValueWithSignature := llvm.ConstNamedStruct(funcValueWithSignatureType, []llvm.Value{ llvm.ConstPtrToInt(funcPtr, c.uintptrType), sigGlobal, }) funcValueWithSignatureGlobal = llvm.AddGlobal(c.mod, funcValueWithSignatureType, funcValueWithSignatureGlobalName) funcValueWithSignatureGlobal.SetInitializer(funcValueWithSignature) funcValueWithSignatureGlobal.SetGlobalConstant(true) funcValueWithSignatureGlobal.SetLinkage(llvm.InternalLinkage) } funcValueScalar = llvm.ConstPtrToInt(funcValueWithSignatureGlobal, c.uintptrType) default: panic("unimplemented func value variant") } funcValueType, err := c.getFuncType(sig) if err != nil { return llvm.Value{}, err } funcValue := llvm.Undef(funcValueType) funcValue = c.builder.CreateInsertValue(funcValue, context, 0, "") funcValue = c.builder.CreateInsertValue(funcValue, funcValueScalar, 1, "") return funcValue, nil } // getFuncSignature returns a global for identification of a particular function // signature. It is used in runtime.funcValueWithSignature and in calls to // getFuncPtr. func (c *Compiler) getFuncSignature(sig *types.Signature) llvm.Value { typeCodeName := getTypeCodeName(sig) sigGlobalName := "reflect/types.type:" + typeCodeName sigGlobal := c.mod.NamedGlobal(sigGlobalName) if sigGlobal.IsNil() { sigGlobal = llvm.AddGlobal(c.mod, c.ctx.Int8Type(), sigGlobalName) sigGlobal.SetInitializer(llvm.Undef(c.ctx.Int8Type())) sigGlobal.SetGlobalConstant(true) sigGlobal.SetLinkage(llvm.InternalLinkage) } return sigGlobal } // extractFuncScalar returns some scalar that can be used in comparisons. It is // a cheap operation. func (c *Compiler) extractFuncScalar(funcValue llvm.Value) llvm.Value { return c.builder.CreateExtractValue(funcValue, 1, "") } // extractFuncContext extracts the context pointer from this function value. It // is a cheap operation. func (c *Compiler) extractFuncContext(funcValue llvm.Value) llvm.Value { return c.builder.CreateExtractValue(funcValue, 0, "") } // decodeFuncValue extracts the context and the function pointer from this func // value. This may be an expensive operation. func (c *Compiler) decodeFuncValue(funcValue llvm.Value, sig *types.Signature) (funcPtr, context llvm.Value, err error) { context = c.builder.CreateExtractValue(funcValue, 0, "") switch c.funcImplementation() { case funcValueDoubleword: funcPtr = c.builder.CreateExtractValue(funcValue, 1, "") case funcValueSwitch: llvmSig, err := c.getRawFuncType(sig) if err != nil { return llvm.Value{}, llvm.Value{}, err } sigGlobal := c.getFuncSignature(sig) funcPtr = c.createRuntimeCall("getFuncPtr", []llvm.Value{funcValue, sigGlobal}, "") funcPtr = c.builder.CreateIntToPtr(funcPtr, llvmSig, "") default: panic("unimplemented func value variant") } return } // getFuncType returns the type of a func value given a signature. func (c *Compiler) getFuncType(typ *types.Signature) (llvm.Type, error) { switch c.funcImplementation() { case funcValueDoubleword: rawPtr, err := c.getRawFuncType(typ) if err != nil { return llvm.Type{}, err } return c.ctx.StructType([]llvm.Type{c.i8ptrType, rawPtr}, false), nil case funcValueSwitch: return c.mod.GetTypeByName("runtime.funcValue"), nil default: panic("unimplemented func value variant") } } // getRawFuncType returns a LLVM function pointer type for a given signature. func (c *Compiler) getRawFuncType(typ *types.Signature) (llvm.Type, error) { // Get the return type. var err error var returnType llvm.Type switch typ.Results().Len() { case 0: // No return values. returnType = c.ctx.VoidType() case 1: // Just one return value. returnType, err = c.getLLVMType(typ.Results().At(0).Type()) if err != nil { return llvm.Type{}, err } default: // Multiple return values. Put them together in a struct. // This appears to be the common way to handle multiple return values in // LLVM. members := make([]llvm.Type, typ.Results().Len()) for i := 0; i < typ.Results().Len(); i++ { returnType, err := c.getLLVMType(typ.Results().At(i).Type()) if err != nil { return llvm.Type{}, err } members[i] = returnType } returnType = c.ctx.StructType(members, false) } // Get the parameter types. var paramTypes []llvm.Type if typ.Recv() != nil { recv, err := c.getLLVMType(typ.Recv().Type()) if err != nil { return llvm.Type{}, err } if recv.StructName() == "runtime._interface" { // This is a call on an interface, not a concrete type. // The receiver is not an interface, but a i8* type. recv = c.i8ptrType } paramTypes = append(paramTypes, c.expandFormalParamType(recv)...) } for i := 0; i < typ.Params().Len(); i++ { subType, err := c.getLLVMType(typ.Params().At(i).Type()) if err != nil { return llvm.Type{}, err } paramTypes = append(paramTypes, c.expandFormalParamType(subType)...) } // All functions take these parameters at the end. paramTypes = append(paramTypes, c.i8ptrType) // context paramTypes = append(paramTypes, c.i8ptrType) // parent coroutine // Make a func type out of the signature. return llvm.PointerType(llvm.FunctionType(returnType, paramTypes, false), c.funcPtrAddrSpace), nil } // parseMakeClosure makes a function value (with context) from the given // closure expression. func (c *Compiler) parseMakeClosure(frame *Frame, expr *ssa.MakeClosure) (llvm.Value, error) { if len(expr.Bindings) == 0 { panic("unexpected: MakeClosure without bound variables") } f := c.ir.GetFunction(expr.Fn.(*ssa.Function)) // Collect all bound variables. boundVars := make([]llvm.Value, 0, len(expr.Bindings)) boundVarTypes := make([]llvm.Type, 0, len(expr.Bindings)) for _, binding := range expr.Bindings { // The context stores the bound variables. llvmBoundVar, err := c.parseExpr(frame, binding) if err != nil { return llvm.Value{}, err } boundVars = append(boundVars, llvmBoundVar) boundVarTypes = append(boundVarTypes, llvmBoundVar.Type()) } contextType := c.ctx.StructType(boundVarTypes, false) // Allocate memory for the context. contextAlloc := llvm.Value{} contextHeapAlloc := llvm.Value{} if c.targetData.TypeAllocSize(contextType) <= c.targetData.TypeAllocSize(c.i8ptrType) { // Context fits in a pointer - e.g. when it is a pointer. Store it // directly in the stack after a convert. // Because contextType is a struct and we have to cast it to a *i8, // store it in an alloca first for bitcasting (store+bitcast+load). contextAlloc = c.builder.CreateAlloca(contextType, "") } else { // Context is bigger than a pointer, so allocate it on the heap. size := c.targetData.TypeAllocSize(contextType) sizeValue := llvm.ConstInt(c.uintptrType, size, false) contextHeapAlloc = c.createRuntimeCall("alloc", []llvm.Value{sizeValue}, "") contextAlloc = c.builder.CreateBitCast(contextHeapAlloc, llvm.PointerType(contextType, 0), "") } // Store all bound variables in the alloca or heap pointer. for i, boundVar := range boundVars { indices := []llvm.Value{ llvm.ConstInt(c.ctx.Int32Type(), 0, false), llvm.ConstInt(c.ctx.Int32Type(), uint64(i), false), } gep := c.builder.CreateInBoundsGEP(contextAlloc, indices, "") c.builder.CreateStore(boundVar, gep) } context := llvm.Value{} if c.targetData.TypeAllocSize(contextType) <= c.targetData.TypeAllocSize(c.i8ptrType) { // Load value (as *i8) from the alloca. contextAlloc = c.builder.CreateBitCast(contextAlloc, llvm.PointerType(c.i8ptrType, 0), "") context = c.builder.CreateLoad(contextAlloc, "") } else { // Get the original heap allocation pointer, which already is an // *i8. context = contextHeapAlloc } // Create the closure. return c.createFuncValue(f.LLVMFn, context, f.Signature) }