// +build stm32,stm32f407 package runtime import ( "device/stm32" "machine" ) /* clock settings +-------------+--------+ | HSE | 8mhz | | SYSCLK | 168mhz | | HCLK | 168mhz | | APB2(PCLK2) | 84mhz | | APB1(PCLK1) | 42mhz | +-------------+--------+ */ const ( HSE_STARTUP_TIMEOUT = 0x0500 // PLL Options - See RM0090 Reference Manual pg. 95 PLL_M = 8 // PLL_VCO = (HSE_VALUE or HSI_VLAUE / PLL_M) * PLL_N PLL_N = 336 PLL_P = 2 // SYSCLK = PLL_VCO / PLL_P PLL_Q = 7 // USB OTS FS, SDIO and RNG Clock = PLL_VCO / PLL_Q ) /* timer settings used for tick and sleep. note: TICK_TIMER_FREQ and SLEEP_TIMER_FREQ are controlled by PLL / clock settings above, so must be kept in sync if the clock settings are changed. */ const ( TICK_RATE = 1000 // 1 KHz TICK_TIMER_IRQ = stm32.IRQ_TIM7 TICK_TIMER_FREQ = 84000000 // 84 MHz SLEEP_TIMER_IRQ = stm32.IRQ_TIM3 SLEEP_TIMER_FREQ = 84000000 // 84 MHz ) type arrtype = uint32 const asyncScheduler = false func init() { initCLK() initSleepTimer(&timerInfo{ EnableRegister: &stm32.RCC.APB1ENR, EnableFlag: stm32.RCC_APB1ENR_TIM3EN, Device: stm32.TIM3, }) machine.UART0.Configure(machine.UARTConfig{}) initTickTimer(&timerInfo{ EnableRegister: &stm32.RCC.APB1ENR, EnableFlag: stm32.RCC_APB1ENR_TIM7EN, Device: stm32.TIM7, }) } func putchar(c byte) { machine.UART0.WriteByte(c) } func initCLK() { // Reset clock registers // Set HSION stm32.RCC.CR.SetBits(stm32.RCC_CR_HSION) for !stm32.RCC.CR.HasBits(stm32.RCC_CR_HSIRDY) { } // Reset CFGR stm32.RCC.CFGR.Set(0x00000000) // Reset HSEON, CSSON and PLLON stm32.RCC.CR.ClearBits(stm32.RCC_CR_HSEON | stm32.RCC_CR_CSSON | stm32.RCC_CR_PLLON) // Reset PLLCFGR stm32.RCC.PLLCFGR.Set(0x24003010) // Reset HSEBYP stm32.RCC.CR.ClearBits(stm32.RCC_CR_HSEBYP) // Disable all interrupts stm32.RCC.CIR.Set(0x00000000) // Set up the clock var startupCounter uint32 = 0 // Enable HSE stm32.RCC.CR.Set(stm32.RCC_CR_HSEON) // Wait till HSE is ready and if timeout is reached exit for { startupCounter++ if stm32.RCC.CR.HasBits(stm32.RCC_CR_HSERDY) || (startupCounter == HSE_STARTUP_TIMEOUT) { break } } if stm32.RCC.CR.HasBits(stm32.RCC_CR_HSERDY) { // Enable high performance mode, System frequency up to 168MHz stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_PWREN) stm32.PWR.CR.SetBits(0x4000) // PWR_CR_VOS // HCLK = SYSCLK / 1 stm32.RCC.CFGR.SetBits(stm32.RCC_CFGR_HPRE_Div1 << stm32.RCC_CFGR_HPRE_Pos) // PCLK2 = HCLK / 2 stm32.RCC.CFGR.SetBits(stm32.RCC_CFGR_PPRE2_Div2 << stm32.RCC_CFGR_PPRE2_Pos) // PCLK1 = HCLK / 4 stm32.RCC.CFGR.SetBits(stm32.RCC_CFGR_PPRE1_Div4 << stm32.RCC_CFGR_PPRE1_Pos) // Configure the main PLL // PLL Options - See RM0090 Reference Manual pg. 95 stm32.RCC.PLLCFGR.Set(PLL_M | (PLL_N << 6) | (((PLL_P >> 1) - 1) << 16) | (1 << stm32.RCC_PLLCFGR_PLLSRC_Pos) | (PLL_Q << 24)) // Enable main PLL stm32.RCC.CR.SetBits(stm32.RCC_CR_PLLON) // Wait till the main PLL is ready for (stm32.RCC.CR.Get() & stm32.RCC_CR_PLLRDY) == 0 { } // Configure Flash prefetch, Instruction cache, Data cache and wait state stm32.FLASH.ACR.Set(stm32.FLASH_ACR_ICEN | stm32.FLASH_ACR_DCEN | (5 << stm32.FLASH_ACR_LATENCY_Pos)) // Select the main PLL as system clock source stm32.RCC.CFGR.ClearBits(stm32.RCC_CFGR_SW_Msk) stm32.RCC.CFGR.SetBits(stm32.RCC_CFGR_SW_PLL << stm32.RCC_CFGR_SW_Pos) for (stm32.RCC.CFGR.Get() & stm32.RCC_CFGR_SWS_Msk) != (stm32.RCC_CFGR_SWS_PLL << stm32.RCC_CFGR_SWS_Pos) { } } else { // If HSE failed to start up, the application will have wrong clock configuration for { } } // Enable the CCM RAM clock stm32.RCC.AHB1ENR.SetBits(1 << 20) }