// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // // This file has been modified for use by the TinyGo compiler. package testing import ( "flag" "fmt" "io" "math" "runtime" "strconv" "strings" "time" ) func initBenchmarkFlags() { matchBenchmarks = flag.String("test.bench", "", "run only benchmarks matching `regexp`") benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks") flag.Var(&benchTime, "test.benchtime", "run each benchmark for duration `d`") } var ( matchBenchmarks *string benchmarkMemory *bool benchTime = benchTimeFlag{d: 1 * time.Second} // changed during test of testing package testCount *int ) type benchTimeFlag struct { d time.Duration n int } func (f *benchTimeFlag) String() string { if f.n > 0 { return fmt.Sprintf("%dx", f.n) } return time.Duration(f.d).String() } func (f *benchTimeFlag) Set(s string) error { if strings.HasSuffix(s, "x") { n, err := strconv.ParseInt(s[:len(s)-1], 10, 0) if err != nil || n <= 0 { return fmt.Errorf("invalid count") } *f = benchTimeFlag{n: int(n)} return nil } d, err := time.ParseDuration(s) if err != nil || d <= 0 { return fmt.Errorf("invalid duration") } *f = benchTimeFlag{d: d} return nil } // InternalBenchmark is an internal type but exported because it is cross-package; // it is part of the implementation of the "go test" command. type InternalBenchmark struct { Name string F func(b *B) } // B is a type passed to Benchmark functions to manage benchmark // timing and to specify the number of iterations to run. // // A benchmark ends when its Benchmark function returns or calls any of the methods // FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods must be called // only from the goroutine running the Benchmark function. // The other reporting methods, such as the variations of Log and Error, // may be called simultaneously from multiple goroutines. // // Like in tests, benchmark logs are accumulated during execution // and dumped to standard output when done. Unlike in tests, benchmark logs // are always printed, so as not to hide output whose existence may be // affecting benchmark results. type B struct { common context *benchContext N int benchFunc func(b *B) bytes int64 missingBytes bool // one of the subbenchmarks does not have bytes set. benchTime benchTimeFlag timerOn bool result BenchmarkResult // report memory statistics showAllocResult bool // initial state of MemStats.Mallocs and MemStats.TotalAlloc startAllocs uint64 startBytes uint64 // net total after running benchmar netAllocs uint64 netBytes uint64 } // StartTimer starts timing a test. This function is called automatically // before a benchmark starts, but it can also be used to resume timing after // a call to StopTimer. func (b *B) StartTimer() { if !b.timerOn { b.start = time.Now() b.timerOn = true var mstats runtime.MemStats runtime.ReadMemStats(&mstats) b.startAllocs = mstats.Mallocs b.startBytes = mstats.TotalAlloc } } // StopTimer stops timing a test. This can be used to pause the timer // while performing complex initialization that you don't // want to measure. func (b *B) StopTimer() { if b.timerOn { b.duration += time.Since(b.start) b.timerOn = false var mstats runtime.MemStats runtime.ReadMemStats(&mstats) b.netAllocs += mstats.Mallocs - b.startAllocs b.netBytes += mstats.TotalAlloc - b.startBytes } } // ResetTimer zeroes the elapsed benchmark time and memory allocation counters // and deletes user-reported metrics. func (b *B) ResetTimer() { if b.timerOn { b.start = time.Now() var mstats runtime.MemStats runtime.ReadMemStats(&mstats) b.startAllocs = mstats.Mallocs b.startBytes = mstats.TotalAlloc } b.duration = 0 b.netAllocs = 0 b.netBytes = 0 } // SetBytes records the number of bytes processed in a single operation. // If this is called, the benchmark will report ns/op and MB/s. func (b *B) SetBytes(n int64) { b.bytes = n } // ReportAllocs enables malloc statistics for this benchmark. // It is equivalent to setting -test.benchmem, but it only affects the // benchmark function that calls ReportAllocs. func (b *B) ReportAllocs() { b.showAllocResult = true } // runN runs a single benchmark for the specified number of iterations. func (b *B) runN(n int) { b.N = n b.ResetTimer() b.StartTimer() b.benchFunc(b) b.StopTimer() } func min(x, y int64) int64 { if x > y { return y } return x } func max(x, y int64) int64 { if x < y { return y } return x } // run1 runs the first iteration of benchFunc. It reports whether more // iterations of this benchmarks should be run. func (b *B) run1() bool { if ctx := b.context; ctx != nil { // Extend maxLen, if needed. if n := len(b.name); n > ctx.maxLen { ctx.maxLen = n + 8 // Add additional slack to avoid too many jumps in size. } } b.runN(1) return !b.hasSub } // run executes the benchmark. func (b *B) run() { if b.context != nil { // Running go test --test.bench b.processBench(b.context) // calls doBench and prints results } else { // Running func Benchmark. b.doBench() } } func (b *B) doBench() BenchmarkResult { // in upstream, this uses a goroutine b.launch() return b.result } // launch launches the benchmark function. It gradually increases the number // of benchmark iterations until the benchmark runs for the requested benchtime. // run1 must have been called on b. func (b *B) launch() { runtime.GC() // Run the benchmark for at least the specified amount of time. if b.benchTime.n > 0 { b.runN(b.benchTime.n) } else { d := b.benchTime.d b.failed = false b.duration = 0 for n := int64(1); !b.failed && b.duration < d && n < 1e9; { last := n // Predict required iterations. goalns := d.Nanoseconds() prevIters := int64(b.N) prevns := b.duration.Nanoseconds() if prevns <= 0 { // Round up, to avoid div by zero. prevns = 1 } // Order of operations matters. // For very fast benchmarks, prevIters ~= prevns. // If you divide first, you get 0 or 1, // which can hide an order of magnitude in execution time. // So multiply first, then divide. n = goalns * prevIters / prevns // Run more iterations than we think we'll need (1.2x). n += n / 5 // Don't grow too fast in case we had timing errors previously. n = min(n, 100*last) // Be sure to run at least one more than last time. n = max(n, last+1) // Don't run more than 1e9 times. (This also keeps n in int range on 32 bit platforms.) n = min(n, 1e9) b.runN(int(n)) } } b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes} } // BenchmarkResult contains the results of a benchmark run. type BenchmarkResult struct { N int // The number of iterations. T time.Duration // The total time taken. Bytes int64 // Bytes processed in one iteration. MemAllocs uint64 // The total number of memory allocations. MemBytes uint64 // The total number of bytes allocated. } // NsPerOp returns the "ns/op" metric. func (r BenchmarkResult) NsPerOp() int64 { if r.N <= 0 { return 0 } return r.T.Nanoseconds() / int64(r.N) } // mbPerSec returns the "MB/s" metric. func (r BenchmarkResult) mbPerSec() float64 { if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 { return 0 } return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds() } // AllocsPerOp returns the "allocs/op" metric, // which is calculated as r.MemAllocs / r.N. func (r BenchmarkResult) AllocsPerOp() int64 { if r.N <= 0 { return 0 } return int64(r.MemAllocs) / int64(r.N) } // AllocedBytesPerOp returns the "B/op" metric, // which is calculated as r.MemBytes / r.N. func (r BenchmarkResult) AllocedBytesPerOp() int64 { if r.N <= 0 { return 0 } return int64(r.MemBytes) / int64(r.N) } // String returns a summary of the benchmark results. // It follows the benchmark result line format from // https://golang.org/design/14313-benchmark-format, not including the // benchmark name. // Extra metrics override built-in metrics of the same name. // String does not include allocs/op or B/op, since those are reported // by MemString. func (r BenchmarkResult) String() string { buf := new(strings.Builder) fmt.Fprintf(buf, "%8d", r.N) // Get ns/op as a float. ns := float64(r.T.Nanoseconds()) / float64(r.N) if ns != 0 { buf.WriteByte('\t') prettyPrint(buf, ns, "ns/op") } if mbs := r.mbPerSec(); mbs != 0 { fmt.Fprintf(buf, "\t%7.2f MB/s", mbs) } return buf.String() } // MemString returns r.AllocedBytesPerOp and r.AllocsPerOp in the same format as 'go test'. func (r BenchmarkResult) MemString() string { return fmt.Sprintf("%8d B/op\t%8d allocs/op", r.AllocedBytesPerOp(), r.AllocsPerOp()) } func prettyPrint(w io.Writer, x float64, unit string) { // Print all numbers with 10 places before the decimal point // and small numbers with four sig figs. Field widths are // chosen to fit the whole part in 10 places while aligning // the decimal point of all fractional formats. var format string switch y := math.Abs(x); { case y == 0 || y >= 999.95: format = "%10.0f %s" case y >= 99.995: format = "%12.1f %s" case y >= 9.9995: format = "%13.2f %s" case y >= 0.99995: format = "%14.3f %s" case y >= 0.099995: format = "%15.4f %s" case y >= 0.0099995: format = "%16.5f %s" case y >= 0.00099995: format = "%17.6f %s" default: format = "%18.7f %s" } fmt.Fprintf(w, format, x, unit) } type benchContext struct { match *matcher maxLen int // The largest recorded benchmark name. } func runBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) bool { // If no flag was specified, don't run benchmarks. if len(*matchBenchmarks) == 0 { return true } ctx := &benchContext{ match: newMatcher(matchString, *matchBenchmarks, "-test.bench"), } var bs []InternalBenchmark for _, Benchmark := range benchmarks { if _, matched, _ := ctx.match.fullName(nil, Benchmark.Name); matched { bs = append(bs, Benchmark) benchName := Benchmark.Name if l := len(benchName); l > ctx.maxLen { ctx.maxLen = l } } } main := &B{ common: common{ name: "Main", }, benchTime: benchTime, benchFunc: func(b *B) { for _, Benchmark := range bs { b.Run(Benchmark.Name, Benchmark.F) } }, context: ctx, } main.runN(1) return true } // processBench runs bench b and prints the results. func (b *B) processBench(ctx *benchContext) { benchName := b.name for i := 0; i < flagCount; i++ { if ctx != nil { fmt.Printf("%-*s\t", ctx.maxLen, benchName) } r := b.doBench() if b.failed { // The output could be very long here, but probably isn't. // We print it all, regardless, because we don't want to trim the reason // the benchmark failed. fmt.Printf("--- FAIL: %s\n%s", benchName, "") // b.output) return } if ctx != nil { results := r.String() if *benchmarkMemory || b.showAllocResult { results += "\t" + r.MemString() } fmt.Println(results) } } } // Run benchmarks f as a subbenchmark with the given name. It reports // true if the subbenchmark succeeded. // // A subbenchmark is like any other benchmark. A benchmark that calls Run at // least once will not be measured itself and will be called once with N=1. func (b *B) Run(name string, f func(b *B)) bool { benchName, ok, partial := b.name, true, false if b.context != nil { benchName, ok, partial = b.context.match.fullName(&b.common, name) } if !ok { return true } b.hasSub = true sub := &B{ common: common{ name: benchName, level: b.level + 1, }, benchFunc: f, benchTime: b.benchTime, context: b.context, } if partial { // Partial name match, like -bench=X/Y matching BenchmarkX. // Only process sub-benchmarks, if any. sub.hasSub = true } if sub.run1() { sub.run() } b.add(sub.result) return !sub.failed } // add simulates running benchmarks in sequence in a single iteration. It is // used to give some meaningful results in case func Benchmark is used in // combination with Run. func (b *B) add(other BenchmarkResult) { r := &b.result // The aggregated BenchmarkResults resemble running all subbenchmarks as // in sequence in a single benchmark. r.N = 1 r.T += time.Duration(other.NsPerOp()) if other.Bytes == 0 { // Summing Bytes is meaningless in aggregate if not all subbenchmarks // set it. b.missingBytes = true r.Bytes = 0 } if !b.missingBytes { r.Bytes += other.Bytes } } // A PB is used by RunParallel for running parallel benchmarks. type PB struct { } // Next reports whether there are more iterations to execute. func (pb *PB) Next() bool { return false } // RunParallel runs a benchmark in parallel. // // Not implemented func (b *B) RunParallel(body func(*PB)) { return } // Benchmark benchmarks a single function. It is useful for creating // custom benchmarks that do not use the "go test" command. // // If f calls Run, the result will be an estimate of running all its // subbenchmarks that don't call Run in sequence in a single benchmark. func Benchmark(f func(b *B)) BenchmarkResult { b := &B{ benchFunc: f, benchTime: benchTime, } if b.run1() { b.run() } return b.result }