tinygo/src/machine/machine_stm32_tim.go
2021-05-28 00:02:46 +02:00

337 строки
8,4 КиБ
Go

// +build stm32
package machine
import (
"device/stm32"
"runtime/interrupt"
"runtime/volatile"
)
const PWM_MODE1 = 0x6
type TimerCallback func()
type ChannelCallback func(channel uint8)
type PinFunction struct {
Pin Pin
AltFunc uint8
}
type TimerChannel struct {
Pins []PinFunction
}
type TIM struct {
EnableRegister *volatile.Register32
EnableFlag uint32
Device *stm32.TIM_Type
Channels [4]TimerChannel
UpInterrupt interrupt.Interrupt
OCInterrupt interrupt.Interrupt
wraparoundCallback TimerCallback
channelCallbacks [4]ChannelCallback
busFreq uint64
}
// Configure enables and configures this PWM.
func (t *TIM) Configure(config PWMConfig) error {
// Enable device
t.EnableRegister.SetBits(t.EnableFlag)
err := t.setPeriod(config.Period, true)
if err != nil {
return err
}
// Auto-repeat
t.Device.EGR.SetBits(stm32.TIM_EGR_UG)
// Enable the timer
t.Device.CR1.SetBits(stm32.TIM_CR1_CEN | stm32.TIM_CR1_ARPE)
return nil
}
func (t *TIM) Count() uint32 {
return uint32(t.Device.CNT.Get())
}
// SetWraparoundInterrupt configures a callback to be called each
// time the timer 'wraps-around'.
//
// For example, if `Configure(PWMConfig{Period:1000000})` is used,
// to set the timer period to 1ms, this callback will be called every
// 1ms.
func (t *TIM) SetWraparoundInterrupt(callback TimerCallback) error {
// Disable this interrupt to prevent race conditions
//t.UpInterrupt.Disable()
// Ensure the interrupt handler for Update events is registered
t.UpInterrupt = t.registerUPInterrupt()
// Clear update flag
t.Device.SR.ClearBits(stm32.TIM_SR_UIF)
t.wraparoundCallback = callback
t.UpInterrupt.SetPriority(0xc1)
t.UpInterrupt.Enable()
// Enable the hardware interrupt
t.Device.DIER.SetBits(stm32.TIM_DIER_UIE)
return nil
}
// Sets a callback to be called when a channel reaches it's set-point.
//
// For example, if `t.Set(ch, t.Top() / 4)` is used then the callback will
// be called every quarter-period of the timer's base Period.
func (t *TIM) SetMatchInterrupt(channel uint8, callback ChannelCallback) error {
t.channelCallbacks[channel] = callback
// Ensure the interrupt handler for Output Compare events is registered
t.OCInterrupt = t.registerOCInterrupt()
// Clear the interrupt flag
t.Device.SR.ClearBits(stm32.TIM_SR_CC1IF << channel)
// Enable the interrupt
t.OCInterrupt.SetPriority(0xc1)
t.OCInterrupt.Enable()
// Enable the hardware interrupt
t.Device.DIER.SetBits(stm32.TIM_DIER_CC1IE << channel)
return nil
}
// SetPeriod updates the period of this PWM peripheral.
// To set a particular frequency, use the following formula:
//
// period = 1e9 / frequency
//
// If you use a period of 0, a period that works well for LEDs will be picked.
//
// SetPeriod will not change the prescaler, but also won't change the current
// value in any of the channels. This means that you may need to update the
// value for the particular channel.
//
// Note that you cannot pick any arbitrary period after the PWM peripheral has
// been configured. If you want to switch between frequencies, pick the lowest
// frequency (longest period) once when calling Configure and adjust the
// frequency here as needed.
func (t *TIM) SetPeriod(period uint64) error {
return t.setPeriod(period, false)
}
func (t *TIM) setPeriod(period uint64, updatePrescaler bool) error {
var top uint64
if period == 0 {
top = ARR_MAX
} else {
top = (period / 1000) * (t.busFreq / 1000) / 1000
}
var psc uint64
if updatePrescaler {
if top > ARR_MAX*PSC_MAX {
return ErrPWMPeriodTooLong
}
// Select the minimum PSC that scales the ARR value into
// range to maintain precision in ARR for changing frequencies
// later
psc = ceil(top, ARR_MAX)
top = top / psc
t.Device.PSC.Set(uint32(psc - 1))
} else {
psc = uint64(t.Device.PSC.Get()) + 1
top = top / psc
if top > ARR_MAX {
return ErrPWMPeriodTooLong
}
}
t.Device.ARR.Set(arrtype(top - 1))
return nil
}
// Top returns the current counter top, for use in duty cycle calculation. It
// will only change with a call to Configure or SetPeriod, otherwise it is
// constant.
//
// The value returned here is hardware dependent. In general, it's best to treat
// it as an opaque value that can be divided by some number and passed to
// pwm.Set (see pwm.Set for more information).
func (t *TIM) Top() uint32 {
return uint32(t.Device.ARR.Get()) + 1
}
// Channel returns a PWM channel for the given pin.
func (t *TIM) Channel(pin Pin) (uint8, error) {
for chi, ch := range t.Channels {
for _, p := range ch.Pins {
if p.Pin == pin {
t.configurePin(uint8(chi), p)
//p.Pin.ConfigureAltFunc(PinConfig{Mode: PinModePWMOutput}, p.AltFunc)
return uint8(chi), nil
}
}
}
return 0, ErrInvalidOutputPin
}
// Set updates the channel value. This is used to control the channel duty
// cycle. For example, to set it to a 25% duty cycle, use:
//
// t.Set(ch, t.Top() / 4)
//
// ch.Set(0) will set the output to low and ch.Set(ch.Top()) will set the output
// to high, assuming the output isn't inverted.
func (t *TIM) Set(channel uint8, value uint32) {
t.enableMainOutput()
ccr := t.channelCCR(channel)
ccmr, offset := t.channelCCMR(channel)
// Disable interrupts whilst programming to prevent spurious OC interrupts
mask := interrupt.Disable()
// Set the PWM to Mode 1 (active below set value, inactive above)
// Preload is disabled so we can change OC value within one update period.
var ccmrVal uint32
ccmrVal |= PWM_MODE1 << stm32.TIM_CCMR1_Output_OC1M_Pos
ccmr.ReplaceBits(ccmrVal, 0xFF, offset)
// Set the compare value
ccr.Set(arrtype(value))
// Enable the channel (if not already)
t.Device.CCER.ReplaceBits(stm32.TIM_CCER_CC1E, 0xD, channel*4)
// Force update
t.Device.EGR.SetBits(stm32.TIM_EGR_CC1G << channel)
// Reset Interrupt Flag
t.Device.SR.ClearBits(stm32.TIM_SR_CC1IF << channel)
// Restore interrupts
interrupt.Restore(mask)
}
// Unset disables a channel, including any configured interrupts.
func (t *TIM) Unset(channel uint8) {
// Disable interrupts whilst programming to prevent spurious OC interrupts
mask := interrupt.Disable()
// Disable the channel
t.Device.CCER.ReplaceBits(0, 0xD, channel*4)
// Reset to zero value
ccr := t.channelCCR(channel)
ccr.Set(0)
// Disable the hardware interrupt
t.Device.DIER.ClearBits(stm32.TIM_DIER_CC1IE << channel)
// Clear the interrupt flag
t.Device.SR.ClearBits(stm32.TIM_SR_CC1IF << channel)
// Restore interrupts
interrupt.Restore(mask)
}
// SetInverting sets whether to invert the output of this channel.
// Without inverting, a 25% duty cycle would mean the output is high for 25% of
// the time and low for the rest. Inverting flips the output as if a NOT gate
// was placed at the output, meaning that the output would be 25% low and 75%
// high with a duty cycle of 25%.
func (t *TIM) SetInverting(channel uint8, inverting bool) {
// Enable the channel (if not already)
var val = uint32(0)
if inverting {
val |= stm32.TIM_CCER_CC1P
}
t.Device.CCER.ReplaceBits(val, stm32.TIM_CCER_CC1P_Msk, channel*4)
}
func (t *TIM) handleUPInterrupt(interrupt.Interrupt) {
if t.Device.SR.HasBits(stm32.TIM_SR_UIF) {
// clear the update flag
t.Device.SR.ClearBits(stm32.TIM_SR_UIF)
if t.wraparoundCallback != nil {
t.wraparoundCallback()
}
}
}
func (t *TIM) handleOCInterrupt(interrupt.Interrupt) {
if t.Device.SR.HasBits(stm32.TIM_SR_CC1IF) {
if t.channelCallbacks[0] != nil {
t.channelCallbacks[0](0)
}
}
if t.Device.SR.HasBits(stm32.TIM_SR_CC2IF) {
if t.channelCallbacks[1] != nil {
t.channelCallbacks[1](1)
}
}
if t.Device.SR.HasBits(stm32.TIM_SR_CC3IF) {
if t.channelCallbacks[2] != nil {
t.channelCallbacks[2](2)
}
}
if t.Device.SR.HasBits(stm32.TIM_SR_CC4IF) {
if t.channelCallbacks[3] != nil {
t.channelCallbacks[3](3)
}
}
// Reset interrupt flags
t.Device.SR.ClearBits(stm32.TIM_SR_CC1IF | stm32.TIM_SR_CC2IF | stm32.TIM_SR_CC3IF | stm32.TIM_SR_CC4IF)
}
func (t *TIM) channelCCR(channel uint8) *arrRegType {
switch channel {
case 0:
return &t.Device.CCR1
case 1:
return &t.Device.CCR2
case 2:
return &t.Device.CCR3
case 3:
return &t.Device.CCR4
}
return nil
}
func (t *TIM) channelCCMR(channel uint8) (reg *volatile.Register32, offset uint8) {
switch channel {
case 0:
return &t.Device.CCMR1_Output, 0
case 1:
return &t.Device.CCMR1_Output, 8
case 2:
return &t.Device.CCMR2_Output, 0
case 3:
return &t.Device.CCMR2_Output, 8
}
return nil, 0
}
//go:inline
func ceil(num uint64, denom uint64) uint64 {
return (num + denom - 1) / denom
}