tinygo/compiler/testdata/gc.go
Ayke van Laethem 0704794def compiler: add object layout information to heap allocations
This commit adds object layout information to new heap allocations. It
is not yet used anywhere: the next commit will make use of it.

Object layout information will eventually be used for a (mostly) precise
garbage collector. This is what the data is made for. However, it is
also useful in the interp package which can work better if it knows the
memory layout and thus the approximate LLVM type of heap-allocated
objects.
2021-11-02 22:16:15 +01:00

72 строки
1,2 КиБ
Go

package main
var (
scalar1 *byte
scalar2 *int32
scalar3 *int64
scalar4 *float32
array1 *[3]byte
array2 *[71]byte
array3 *[3]*byte
struct1 *struct{}
struct2 *struct {
x int
y int
}
struct3 *struct {
x *byte
y [60]uintptr
z *byte
}
slice1 []byte
slice2 []*int
slice3 [][]byte
)
func newScalar() {
scalar1 = new(byte)
scalar2 = new(int32)
scalar3 = new(int64)
scalar4 = new(float32)
}
func newArray() {
array1 = new([3]byte)
array2 = new([71]byte)
array3 = new([3]*byte)
}
func newStruct() {
struct1 = new(struct{})
struct2 = new(struct {
x int
y int
})
struct3 = new(struct {
x *byte
y [60]uintptr
z *byte
})
}
func newFuncValue() *func() {
// On some platforms that use runtime.funcValue ("switch" style) function
// values, a func value is allocated as having two pointer words while the
// struct looks like {unsafe.Pointer; uintptr}. This is so that the interp
// package won't get confused, see getPointerBitmap in compiler/llvm.go for
// details.
return new(func())
}
func makeSlice() {
slice1 = make([]byte, 5)
slice2 = make([]*int, 5)
slice3 = make([][]byte, 5)
}
func makeInterface(v complex128) interface{} {
return v // always stored in an allocation
}