468 строки
14 КиБ
Go
468 строки
14 КиБ
Go
//go:build avr && atmega328p
|
|
|
|
package machine
|
|
|
|
import (
|
|
"device/avr"
|
|
"runtime/interrupt"
|
|
"runtime/volatile"
|
|
)
|
|
|
|
const irq_USART0_RX = avr.IRQ_USART_RX
|
|
|
|
// getPortMask returns the PORTx register and mask for the pin.
|
|
func (p Pin) getPortMask() (*volatile.Register8, uint8) {
|
|
switch {
|
|
case p >= PB0 && p <= PB7: // port B
|
|
return avr.PORTB, 1 << uint8(p-portB)
|
|
case p >= PC0 && p <= PC7: // port C
|
|
return avr.PORTC, 1 << uint8(p-portC)
|
|
default: // port D
|
|
return avr.PORTD, 1 << uint8(p-portD)
|
|
}
|
|
}
|
|
|
|
// PWM is one PWM peripheral, which consists of a counter and two output
|
|
// channels (that can be connected to two fixed pins). You can set the frequency
|
|
// using SetPeriod, but only for all the channels in this PWM peripheral at
|
|
// once.
|
|
type PWM struct {
|
|
num uint8
|
|
}
|
|
|
|
var (
|
|
Timer0 = PWM{0} // 8 bit timer for PD5 and PD6
|
|
Timer1 = PWM{1} // 16 bit timer for PB1 and PB2
|
|
Timer2 = PWM{2} // 8 bit timer for PB3 and PD3
|
|
)
|
|
|
|
// Configure enables and configures this PWM.
|
|
//
|
|
// For the two 8 bit timers, there is only a limited number of periods
|
|
// available, namely the CPU frequency divided by 256 and again divided by 1, 8,
|
|
// 64, 256, or 1024. For a MCU running at 16MHz, this would be a period of 16µs,
|
|
// 128µs, 1024µs, 4096µs, or 16384µs.
|
|
func (pwm PWM) Configure(config PWMConfig) error {
|
|
switch pwm.num {
|
|
case 0, 2: // 8-bit timers (Timer/counter 0 and Timer/counter 2)
|
|
// Calculate the timer prescaler.
|
|
// While we could configure a flexible top, that would sacrifice one of
|
|
// the PWM output compare registers and thus a PWM channel. I've chosen
|
|
// to instead limit this timer to a fixed number of frequencies.
|
|
var prescaler uint8
|
|
switch config.Period {
|
|
case 0, (uint64(1e9) * 256 * 1) / uint64(CPUFrequency()):
|
|
prescaler = 1
|
|
case (uint64(1e9) * 256 * 8) / uint64(CPUFrequency()):
|
|
prescaler = 2
|
|
case (uint64(1e9) * 256 * 64) / uint64(CPUFrequency()):
|
|
prescaler = 3
|
|
case (uint64(1e9) * 256 * 256) / uint64(CPUFrequency()):
|
|
prescaler = 4
|
|
case (uint64(1e9) * 256 * 1024) / uint64(CPUFrequency()):
|
|
prescaler = 5
|
|
default:
|
|
return ErrPWMPeriodTooLong
|
|
}
|
|
|
|
if pwm.num == 0 {
|
|
avr.TCCR0B.Set(prescaler)
|
|
// Set the PWM mode to fast PWM (mode = 3).
|
|
avr.TCCR0A.Set(avr.TCCR0A_WGM00 | avr.TCCR0A_WGM01)
|
|
// monotonic timer is using the same time as PWM:0
|
|
// we must adust internal settings of monotonic timer when PWM:0 settings changed
|
|
adjustMonotonicTimer()
|
|
} else {
|
|
avr.TCCR2B.Set(prescaler)
|
|
// Set the PWM mode to fast PWM (mode = 3).
|
|
avr.TCCR2A.Set(avr.TCCR2A_WGM20 | avr.TCCR2A_WGM21)
|
|
}
|
|
case 1: // Timer/counter 1
|
|
// The top value is the number of PWM ticks a PWM period takes. It is
|
|
// initially picked assuming an unlimited counter top and no PWM
|
|
// prescaler.
|
|
var top uint64
|
|
if config.Period == 0 {
|
|
// Use a top appropriate for LEDs. Picking a relatively low period
|
|
// here (0xff) for consistency with the other timers.
|
|
top = 0xff
|
|
} else {
|
|
// The formula below calculates the following formula, optimized:
|
|
// top = period * (CPUFrequency() / 1e9)
|
|
// By dividing the CPU frequency first (an operation that is easily
|
|
// optimized away) the period has less chance of overflowing.
|
|
top = config.Period * (uint64(CPUFrequency()) / 1000000) / 1000
|
|
}
|
|
|
|
avr.TCCR1A.Set(avr.TCCR1A_WGM11)
|
|
|
|
// The ideal PWM period may be larger than would fit in the PWM counter,
|
|
// which is 16 bits (see maxTop). Therefore, try to make the PWM clock
|
|
// speed lower with a prescaler to make the top value fit the maximum
|
|
// top value.
|
|
const maxTop = 0x10000
|
|
switch {
|
|
case top <= maxTop:
|
|
avr.TCCR1B.Set(3<<3 | 1) // no prescaling
|
|
case top/8 <= maxTop:
|
|
avr.TCCR1B.Set(3<<3 | 2) // divide by 8
|
|
top /= 8
|
|
case top/64 <= maxTop:
|
|
avr.TCCR1B.Set(3<<3 | 3) // divide by 64
|
|
top /= 64
|
|
case top/256 <= maxTop:
|
|
avr.TCCR1B.Set(3<<3 | 4) // divide by 256
|
|
top /= 256
|
|
case top/1024 <= maxTop:
|
|
avr.TCCR1B.Set(3<<3 | 5) // divide by 1024
|
|
top /= 1024
|
|
default:
|
|
return ErrPWMPeriodTooLong
|
|
}
|
|
|
|
// A top of 0x10000 is at 100% duty cycle. Subtract one because the
|
|
// counter counts from 0, not 1 (avoiding an off-by-one).
|
|
top -= 1
|
|
|
|
avr.ICR1H.Set(uint8(top >> 8))
|
|
avr.ICR1L.Set(uint8(top))
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// SetPeriod updates the period of this PWM peripheral.
|
|
// To set a particular frequency, use the following formula:
|
|
//
|
|
// period = 1e9 / frequency
|
|
//
|
|
// If you use a period of 0, a period that works well for LEDs will be picked.
|
|
//
|
|
// SetPeriod will not change the prescaler, but also won't change the current
|
|
// value in any of the channels. This means that you may need to update the
|
|
// value for the particular channel.
|
|
//
|
|
// Note that you cannot pick any arbitrary period after the PWM peripheral has
|
|
// been configured. If you want to switch between frequencies, pick the lowest
|
|
// frequency (longest period) once when calling Configure and adjust the
|
|
// frequency here as needed.
|
|
func (pwm PWM) SetPeriod(period uint64) error {
|
|
if pwm.num != 1 {
|
|
return ErrPWMPeriodTooLong // TODO better error message
|
|
}
|
|
|
|
// The top value is the number of PWM ticks a PWM period takes. It is
|
|
// initially picked assuming an unlimited counter top and no PWM
|
|
// prescaler.
|
|
var top uint64
|
|
if period == 0 {
|
|
// Use a top appropriate for LEDs. Picking a relatively low period
|
|
// here (0xff) for consistency with the other timers.
|
|
top = 0xff
|
|
} else {
|
|
// The formula below calculates the following formula, optimized:
|
|
// top = period * (CPUFrequency() / 1e9)
|
|
// By dividing the CPU frequency first (an operation that is easily
|
|
// optimized away) the period has less chance of overflowing.
|
|
top = period * (uint64(CPUFrequency()) / 1000000) / 1000
|
|
}
|
|
|
|
prescaler := avr.TCCR1B.Get() & 0x7
|
|
switch prescaler {
|
|
case 1:
|
|
top /= 1
|
|
case 2:
|
|
top /= 8
|
|
case 3:
|
|
top /= 64
|
|
case 4:
|
|
top /= 256
|
|
case 5:
|
|
top /= 1024
|
|
}
|
|
|
|
// A top of 0x10000 is at 100% duty cycle. Subtract one because the counter
|
|
// counts from 0, not 1 (avoiding an off-by-one).
|
|
top -= 1
|
|
|
|
if top > 0xffff {
|
|
return ErrPWMPeriodTooLong
|
|
}
|
|
|
|
// Warning: this change is not atomic!
|
|
avr.ICR1H.Set(uint8(top >> 8))
|
|
avr.ICR1L.Set(uint8(top))
|
|
|
|
// ... and because of that, set the counter back to zero to avoid most of
|
|
// the effects of this non-atomicity.
|
|
avr.TCNT1H.Set(0)
|
|
avr.TCNT1L.Set(0)
|
|
|
|
return nil
|
|
}
|
|
|
|
// Top returns the current counter top, for use in duty cycle calculation. It
|
|
// will only change with a call to Configure or SetPeriod, otherwise it is
|
|
// constant.
|
|
//
|
|
// The value returned here is hardware dependent. In general, it's best to treat
|
|
// it as an opaque value that can be divided by some number and passed to Set
|
|
// (see Set documentation for more information).
|
|
func (pwm PWM) Top() uint32 {
|
|
if pwm.num == 1 {
|
|
// Timer 1 has a configurable top value.
|
|
low := avr.ICR1L.Get()
|
|
high := avr.ICR1H.Get()
|
|
return uint32(high)<<8 | uint32(low) + 1
|
|
}
|
|
// Other timers go from 0 to 0xff (0x100 or 256 in total).
|
|
return 256
|
|
}
|
|
|
|
// Counter returns the current counter value of the timer in this PWM
|
|
// peripheral. It may be useful for debugging.
|
|
func (pwm PWM) Counter() uint32 {
|
|
switch pwm.num {
|
|
case 0:
|
|
return uint32(avr.TCNT0.Get())
|
|
case 1:
|
|
mask := interrupt.Disable()
|
|
low := avr.TCNT1L.Get()
|
|
high := avr.TCNT1H.Get()
|
|
interrupt.Restore(mask)
|
|
return uint32(high)<<8 | uint32(low)
|
|
case 2:
|
|
return uint32(avr.TCNT2.Get())
|
|
}
|
|
// Unknown PWM.
|
|
return 0
|
|
}
|
|
|
|
// Period returns the used PWM period in nanoseconds. It might deviate slightly
|
|
// from the configured period due to rounding.
|
|
func (pwm PWM) Period() uint64 {
|
|
var prescaler uint8
|
|
switch pwm.num {
|
|
case 0:
|
|
prescaler = avr.TCCR0B.Get() & 0x7
|
|
case 1:
|
|
prescaler = avr.TCCR1B.Get() & 0x7
|
|
case 2:
|
|
prescaler = avr.TCCR2B.Get() & 0x7
|
|
}
|
|
top := uint64(pwm.Top())
|
|
switch prescaler {
|
|
case 1: // prescaler 1
|
|
return 1 * top * 1000 / uint64(CPUFrequency()/1e6)
|
|
case 2: // prescaler 8
|
|
return 8 * top * 1000 / uint64(CPUFrequency()/1e6)
|
|
case 3: // prescaler 64
|
|
return 64 * top * 1000 / uint64(CPUFrequency()/1e6)
|
|
case 4: // prescaler 256
|
|
return 256 * top * 1000 / uint64(CPUFrequency()/1e6)
|
|
case 5: // prescaler 1024
|
|
return 1024 * top * 1000 / uint64(CPUFrequency()/1e6)
|
|
default: // unknown clock source
|
|
return 0
|
|
}
|
|
}
|
|
|
|
// Channel returns a PWM channel for the given pin.
|
|
func (pwm PWM) Channel(pin Pin) (uint8, error) {
|
|
pin.Configure(PinConfig{Mode: PinOutput})
|
|
pin.Low()
|
|
switch pwm.num {
|
|
case 0:
|
|
switch pin {
|
|
case PD6: // channel A
|
|
avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1)
|
|
return 0, nil
|
|
case PD5: // channel B
|
|
avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1)
|
|
return 1, nil
|
|
}
|
|
case 1:
|
|
switch pin {
|
|
case PB1: // channel A
|
|
avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1)
|
|
return 0, nil
|
|
case PB2: // channel B
|
|
avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1)
|
|
return 1, nil
|
|
}
|
|
case 2:
|
|
switch pin {
|
|
case PB3: // channel A
|
|
avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1)
|
|
return 0, nil
|
|
case PD3: // channel B
|
|
avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1)
|
|
return 1, nil
|
|
}
|
|
}
|
|
return 0, ErrInvalidOutputPin
|
|
}
|
|
|
|
// SetInverting sets whether to invert the output of this channel.
|
|
// Without inverting, a 25% duty cycle would mean the output is high for 25% of
|
|
// the time and low for the rest. Inverting flips the output as if a NOT gate
|
|
// was placed at the output, meaning that the output would be 25% low and 75%
|
|
// high with a duty cycle of 25%.
|
|
//
|
|
// Note: the invert state may not be applied on the AVR until the next call to
|
|
// ch.Set().
|
|
func (pwm PWM) SetInverting(channel uint8, inverting bool) {
|
|
switch pwm.num {
|
|
case 0:
|
|
switch channel {
|
|
case 0: // channel A
|
|
if inverting {
|
|
avr.PORTB.SetBits(1 << 6) // PB6 high
|
|
avr.TCCR0A.SetBits(avr.TCCR0A_COM0A0)
|
|
} else {
|
|
avr.PORTB.ClearBits(1 << 6) // PB6 low
|
|
avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A0)
|
|
}
|
|
case 1: // channel B
|
|
if inverting {
|
|
avr.PORTB.SetBits(1 << 5) // PB5 high
|
|
avr.TCCR0A.SetBits(avr.TCCR0A_COM0B0)
|
|
} else {
|
|
avr.PORTB.ClearBits(1 << 5) // PB5 low
|
|
avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B0)
|
|
}
|
|
}
|
|
case 1:
|
|
// Note: the COM1A0/COM1B0 bit is not set with the configuration below.
|
|
// It will be set the following call to Set(), however.
|
|
switch channel {
|
|
case 0: // channel A, PB1
|
|
if inverting {
|
|
avr.PORTB.SetBits(1 << 1) // PB1 high
|
|
} else {
|
|
avr.PORTB.ClearBits(1 << 1) // PB1 low
|
|
}
|
|
case 1: // channel B, PB2
|
|
if inverting {
|
|
avr.PORTB.SetBits(1 << 2) // PB2 high
|
|
} else {
|
|
avr.PORTB.ClearBits(1 << 2) // PB2 low
|
|
}
|
|
}
|
|
case 2:
|
|
switch channel {
|
|
case 0: // channel A
|
|
if inverting {
|
|
avr.PORTB.SetBits(1 << 3) // PB3 high
|
|
avr.TCCR2A.SetBits(avr.TCCR2A_COM2A0)
|
|
} else {
|
|
avr.PORTB.ClearBits(1 << 3) // PB3 low
|
|
avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A0)
|
|
}
|
|
case 1: // channel B
|
|
if inverting {
|
|
avr.PORTD.SetBits(1 << 3) // PD3 high
|
|
avr.TCCR2A.SetBits(avr.TCCR2A_COM2B0)
|
|
} else {
|
|
avr.PORTD.ClearBits(1 << 3) // PD3 low
|
|
avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B0)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set updates the channel value. This is used to control the channel duty
|
|
// cycle, in other words the fraction of time the channel output is high (or low
|
|
// when inverted). For example, to set it to a 25% duty cycle, use:
|
|
//
|
|
// pwm.Set(channel, pwm.Top() / 4)
|
|
//
|
|
// pwm.Set(channel, 0) will set the output to low and pwm.Set(channel,
|
|
// pwm.Top()) will set the output to high, assuming the output isn't inverted.
|
|
func (pwm PWM) Set(channel uint8, value uint32) {
|
|
switch pwm.num {
|
|
case 0:
|
|
value := uint16(value)
|
|
switch channel {
|
|
case 0: // channel A
|
|
if value == 0 {
|
|
avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A1)
|
|
} else {
|
|
avr.OCR0A.Set(uint8(value - 1))
|
|
avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1)
|
|
}
|
|
case 1: // channel B
|
|
if value == 0 {
|
|
avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B1)
|
|
} else {
|
|
avr.OCR0B.Set(uint8(value) - 1)
|
|
avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1)
|
|
}
|
|
}
|
|
// monotonic timer is using the same time as PWM:0
|
|
// we must adust internal settings of monotonic timer when PWM:0 settings changed
|
|
adjustMonotonicTimer()
|
|
case 1:
|
|
mask := interrupt.Disable()
|
|
switch channel {
|
|
case 0: // channel A, PB1
|
|
if value == 0 {
|
|
avr.TCCR1A.ClearBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0)
|
|
} else {
|
|
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
|
|
avr.OCR1AH.Set(uint8(value >> 8))
|
|
avr.OCR1AL.Set(uint8(value))
|
|
if avr.PORTB.HasBits(1 << 1) { // is PB1 high?
|
|
// Yes, set the inverting bit.
|
|
avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0)
|
|
} else {
|
|
// No, output is non-inverting.
|
|
avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1)
|
|
}
|
|
}
|
|
case 1: // channel B, PB2
|
|
if value == 0 {
|
|
avr.TCCR1A.ClearBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0)
|
|
} else {
|
|
value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
|
|
avr.OCR1BH.Set(uint8(value >> 8))
|
|
avr.OCR1BL.Set(uint8(value))
|
|
if avr.PORTB.HasBits(1 << 2) { // is PB2 high?
|
|
// Yes, set the inverting bit.
|
|
avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0)
|
|
} else {
|
|
// No, output is non-inverting.
|
|
avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1)
|
|
}
|
|
}
|
|
}
|
|
interrupt.Restore(mask)
|
|
case 2:
|
|
value := uint16(value)
|
|
switch channel {
|
|
case 0: // channel A
|
|
if value == 0 {
|
|
avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A1)
|
|
} else {
|
|
avr.OCR2A.Set(uint8(value - 1))
|
|
avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1)
|
|
}
|
|
case 1: // channel B
|
|
if value == 0 {
|
|
avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B1)
|
|
} else {
|
|
avr.OCR2B.Set(uint8(value - 1))
|
|
avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// SPI configuration
|
|
var SPI0 = SPI{
|
|
spcr: avr.SPCR,
|
|
spdr: avr.SPDR,
|
|
spsr: avr.SPSR,
|
|
sck: PB5,
|
|
sdo: PB3,
|
|
sdi: PB4,
|
|
cs: PB2}
|