tinygo/compiler/interface.go
Ayke van Laethem 1da1abe314 all: remove LLVM 14 support
This is a big change: apart from removing LLVM 14 it also removes typed
pointer support (which was only fully supported in LLVM up to version
14). This removes about 200 lines of code, but more importantly removes
a ton of special cases for LLVM 14.
2023-10-01 18:32:15 +02:00

983 строки
35 КиБ
Go

package compiler
// This file transforms interface-related instructions (*ssa.MakeInterface,
// *ssa.TypeAssert, calls on interface types) to an intermediate IR form, to be
// lowered to the final form by the interface lowering pass. See
// interface-lowering.go for more details.
import (
"encoding/binary"
"fmt"
"go/token"
"go/types"
"strconv"
"strings"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// Type kinds for basic types.
// They must match the constants for the Kind type in src/reflect/type.go.
var basicTypes = [...]uint8{
types.Bool: 1,
types.Int: 2,
types.Int8: 3,
types.Int16: 4,
types.Int32: 5,
types.Int64: 6,
types.Uint: 7,
types.Uint8: 8,
types.Uint16: 9,
types.Uint32: 10,
types.Uint64: 11,
types.Uintptr: 12,
types.Float32: 13,
types.Float64: 14,
types.Complex64: 15,
types.Complex128: 16,
types.String: 17,
types.UnsafePointer: 18,
}
// These must also match the constants for the Kind type in src/reflect/type.go.
const (
typeKindChan = 19
typeKindInterface = 20
typeKindPointer = 21
typeKindSlice = 22
typeKindArray = 23
typeKindSignature = 24
typeKindMap = 25
typeKindStruct = 26
)
// Flags stored in the first byte of the struct field byte array. Must be kept
// up to date with src/reflect/type.go.
const (
structFieldFlagAnonymous = 1 << iota
structFieldFlagHasTag
structFieldFlagIsExported
structFieldFlagIsEmbedded
)
type reflectChanDir int
const (
refRecvDir reflectChanDir = 1 << iota // <-chan
refSendDir // chan<-
refBothDir = refRecvDir | refSendDir // chan
)
// createMakeInterface emits the LLVM IR for the *ssa.MakeInterface instruction.
// It tries to put the type in the interface value, but if that's not possible,
// it will do an allocation of the right size and put that in the interface
// value field.
//
// An interface value is a {typecode, value} tuple named runtime._interface.
func (b *builder) createMakeInterface(val llvm.Value, typ types.Type, pos token.Pos) llvm.Value {
itfValue := b.emitPointerPack([]llvm.Value{val})
itfType := b.getTypeCode(typ)
itf := llvm.Undef(b.getLLVMRuntimeType("_interface"))
itf = b.CreateInsertValue(itf, itfType, 0, "")
itf = b.CreateInsertValue(itf, itfValue, 1, "")
return itf
}
// extractValueFromInterface extract the value from an interface value
// (runtime._interface) under the assumption that it is of the type given in
// llvmType. The behavior is undefied if the interface is nil or llvmType
// doesn't match the underlying type of the interface.
func (b *builder) extractValueFromInterface(itf llvm.Value, llvmType llvm.Type) llvm.Value {
valuePtr := b.CreateExtractValue(itf, 1, "typeassert.value.ptr")
return b.emitPointerUnpack(valuePtr, []llvm.Type{llvmType})[0]
}
func (c *compilerContext) pkgPathPtr(pkgpath string) llvm.Value {
pkgpathName := "reflect/types.type.pkgpath.empty"
if pkgpath != "" {
pkgpathName = "reflect/types.type.pkgpath:" + pkgpath
}
pkgpathGlobal := c.mod.NamedGlobal(pkgpathName)
if pkgpathGlobal.IsNil() {
pkgpathInitializer := c.ctx.ConstString(pkgpath+"\x00", false)
pkgpathGlobal = llvm.AddGlobal(c.mod, pkgpathInitializer.Type(), pkgpathName)
pkgpathGlobal.SetInitializer(pkgpathInitializer)
pkgpathGlobal.SetAlignment(1)
pkgpathGlobal.SetUnnamedAddr(true)
pkgpathGlobal.SetLinkage(llvm.LinkOnceODRLinkage)
pkgpathGlobal.SetGlobalConstant(true)
}
pkgPathPtr := llvm.ConstGEP(pkgpathGlobal.GlobalValueType(), pkgpathGlobal, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
})
return pkgPathPtr
}
// getTypeCode returns a reference to a type code.
// A type code is a pointer to a constant global that describes the type.
// This function returns a pointer to the 'kind' field (which might not be the
// first field in the struct).
func (c *compilerContext) getTypeCode(typ types.Type) llvm.Value {
ms := c.program.MethodSets.MethodSet(typ)
hasMethodSet := ms.Len() != 0
if _, ok := typ.Underlying().(*types.Interface); ok {
hasMethodSet = false
}
var numMethods int
if hasMethodSet {
for i := 0; i < ms.Len(); i++ {
if ms.At(i).Obj().Exported() {
numMethods++
}
}
}
// Short-circuit all the global pointer logic here for pointers to pointers.
if typ, ok := typ.(*types.Pointer); ok {
if _, ok := typ.Elem().(*types.Pointer); ok {
// For a pointer to a pointer, we just increase the pointer by 1
ptr := c.getTypeCode(typ.Elem())
// if the type is already *****T or higher, we can't make it.
if typstr := typ.String(); strings.HasPrefix(typstr, "*****") {
c.addError(token.NoPos, fmt.Sprintf("too many levels of pointers for typecode: %s", typstr))
}
return llvm.ConstGEP(c.ctx.Int8Type(), ptr, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 1, false),
})
}
}
typeCodeName, isLocal := getTypeCodeName(typ)
globalName := "reflect/types.type:" + typeCodeName
var global llvm.Value
if isLocal {
// This type is a named type inside a function, like this:
//
// func foo() any {
// type named int
// return named(0)
// }
if obj := c.interfaceTypes.At(typ); obj != nil {
global = obj.(llvm.Value)
}
} else {
// Regular type (named or otherwise).
global = c.mod.NamedGlobal(globalName)
}
if global.IsNil() {
var typeFields []llvm.Value
// Define the type fields. These must match the structs in
// src/reflect/type.go (ptrType, arrayType, etc). See the comment at the
// top of src/reflect/type.go for more information on the layout of these structs.
typeFieldTypes := []*types.Var{
types.NewVar(token.NoPos, nil, "kind", types.Typ[types.Int8]),
}
switch typ := typ.(type) {
case *types.Basic:
typeFieldTypes = append(typeFieldTypes,
types.NewVar(token.NoPos, nil, "ptrTo", types.Typ[types.UnsafePointer]),
)
case *types.Named:
name := typ.Obj().Name()
var pkgname string
if pkg := typ.Obj().Pkg(); pkg != nil {
pkgname = pkg.Name()
}
typeFieldTypes = append(typeFieldTypes,
types.NewVar(token.NoPos, nil, "numMethods", types.Typ[types.Uint16]),
types.NewVar(token.NoPos, nil, "ptrTo", types.Typ[types.UnsafePointer]),
types.NewVar(token.NoPos, nil, "underlying", types.Typ[types.UnsafePointer]),
types.NewVar(token.NoPos, nil, "pkgpath", types.Typ[types.UnsafePointer]),
types.NewVar(token.NoPos, nil, "name", types.NewArray(types.Typ[types.Int8], int64(len(pkgname)+1+len(name)+1))),
)
case *types.Chan:
typeFieldTypes = append(typeFieldTypes,
types.NewVar(token.NoPos, nil, "numMethods", types.Typ[types.Uint16]), // reuse for select chan direction
types.NewVar(token.NoPos, nil, "ptrTo", types.Typ[types.UnsafePointer]),
types.NewVar(token.NoPos, nil, "elementType", types.Typ[types.UnsafePointer]),
)
case *types.Slice:
typeFieldTypes = append(typeFieldTypes,
types.NewVar(token.NoPos, nil, "numMethods", types.Typ[types.Uint16]),
types.NewVar(token.NoPos, nil, "ptrTo", types.Typ[types.UnsafePointer]),
types.NewVar(token.NoPos, nil, "elementType", types.Typ[types.UnsafePointer]),
)
case *types.Pointer:
typeFieldTypes = append(typeFieldTypes,
types.NewVar(token.NoPos, nil, "numMethods", types.Typ[types.Uint16]),
types.NewVar(token.NoPos, nil, "elementType", types.Typ[types.UnsafePointer]),
)
case *types.Array:
typeFieldTypes = append(typeFieldTypes,
types.NewVar(token.NoPos, nil, "numMethods", types.Typ[types.Uint16]),
types.NewVar(token.NoPos, nil, "ptrTo", types.Typ[types.UnsafePointer]),
types.NewVar(token.NoPos, nil, "elementType", types.Typ[types.UnsafePointer]),
types.NewVar(token.NoPos, nil, "length", types.Typ[types.Uintptr]),
types.NewVar(token.NoPos, nil, "sliceOf", types.Typ[types.UnsafePointer]),
)
case *types.Map:
typeFieldTypes = append(typeFieldTypes,
types.NewVar(token.NoPos, nil, "numMethods", types.Typ[types.Uint16]),
types.NewVar(token.NoPos, nil, "ptrTo", types.Typ[types.UnsafePointer]),
types.NewVar(token.NoPos, nil, "elementType", types.Typ[types.UnsafePointer]),
types.NewVar(token.NoPos, nil, "keyType", types.Typ[types.UnsafePointer]),
)
case *types.Struct:
typeFieldTypes = append(typeFieldTypes,
types.NewVar(token.NoPos, nil, "numMethods", types.Typ[types.Uint16]),
types.NewVar(token.NoPos, nil, "ptrTo", types.Typ[types.UnsafePointer]),
types.NewVar(token.NoPos, nil, "pkgpath", types.Typ[types.UnsafePointer]),
types.NewVar(token.NoPos, nil, "size", types.Typ[types.Uint32]),
types.NewVar(token.NoPos, nil, "numFields", types.Typ[types.Uint16]),
types.NewVar(token.NoPos, nil, "fields", types.NewArray(c.getRuntimeType("structField"), int64(typ.NumFields()))),
)
case *types.Interface:
typeFieldTypes = append(typeFieldTypes,
types.NewVar(token.NoPos, nil, "ptrTo", types.Typ[types.UnsafePointer]),
)
// TODO: methods
case *types.Signature:
typeFieldTypes = append(typeFieldTypes,
types.NewVar(token.NoPos, nil, "ptrTo", types.Typ[types.UnsafePointer]),
)
// TODO: signature params and return values
}
if hasMethodSet {
// This method set is appended at the start of the struct. It is
// removed in the interface lowering pass.
// TODO: don't remove these and instead do what upstream Go is doing
// instead. See: https://research.swtch.com/interfaces. This can
// likely be optimized in LLVM using
// https://llvm.org/docs/TypeMetadata.html.
typeFieldTypes = append([]*types.Var{
types.NewVar(token.NoPos, nil, "methodSet", types.Typ[types.UnsafePointer]),
}, typeFieldTypes...)
}
globalType := types.NewStruct(typeFieldTypes, nil)
global = llvm.AddGlobal(c.mod, c.getLLVMType(globalType), globalName)
if isLocal {
c.interfaceTypes.Set(typ, global)
}
metabyte := getTypeKind(typ)
// Precompute these so we don't have to calculate them at runtime.
if types.Comparable(typ) {
metabyte |= 1 << 6
}
if hashmapIsBinaryKey(typ) {
metabyte |= 1 << 7
}
switch typ := typ.(type) {
case *types.Basic:
typeFields = []llvm.Value{c.getTypeCode(types.NewPointer(typ))}
case *types.Named:
name := typ.Obj().Name()
var pkgpath string
var pkgname string
if pkg := typ.Obj().Pkg(); pkg != nil {
pkgpath = pkg.Path()
pkgname = pkg.Name()
}
pkgPathPtr := c.pkgPathPtr(pkgpath)
typeFields = []llvm.Value{
llvm.ConstInt(c.ctx.Int16Type(), uint64(numMethods), false), // numMethods
c.getTypeCode(types.NewPointer(typ)), // ptrTo
c.getTypeCode(typ.Underlying()), // underlying
pkgPathPtr, // pkgpath pointer
c.ctx.ConstString(pkgname+"."+name+"\x00", false), // name
}
metabyte |= 1 << 5 // "named" flag
case *types.Chan:
var dir reflectChanDir
switch typ.Dir() {
case types.SendRecv:
dir = refBothDir
case types.RecvOnly:
dir = refRecvDir
case types.SendOnly:
dir = refSendDir
}
typeFields = []llvm.Value{
llvm.ConstInt(c.ctx.Int16Type(), uint64(dir), false), // actually channel direction
c.getTypeCode(types.NewPointer(typ)), // ptrTo
c.getTypeCode(typ.Elem()), // elementType
}
case *types.Slice:
typeFields = []llvm.Value{
llvm.ConstInt(c.ctx.Int16Type(), 0, false), // numMethods
c.getTypeCode(types.NewPointer(typ)), // ptrTo
c.getTypeCode(typ.Elem()), // elementType
}
case *types.Pointer:
typeFields = []llvm.Value{
llvm.ConstInt(c.ctx.Int16Type(), uint64(numMethods), false), // numMethods
c.getTypeCode(typ.Elem()),
}
case *types.Array:
typeFields = []llvm.Value{
llvm.ConstInt(c.ctx.Int16Type(), 0, false), // numMethods
c.getTypeCode(types.NewPointer(typ)), // ptrTo
c.getTypeCode(typ.Elem()), // elementType
llvm.ConstInt(c.uintptrType, uint64(typ.Len()), false), // length
c.getTypeCode(types.NewSlice(typ.Elem())), // slicePtr
}
case *types.Map:
typeFields = []llvm.Value{
llvm.ConstInt(c.ctx.Int16Type(), 0, false), // numMethods
c.getTypeCode(types.NewPointer(typ)), // ptrTo
c.getTypeCode(typ.Elem()), // elem
c.getTypeCode(typ.Key()), // key
}
case *types.Struct:
var pkgpath string
if typ.NumFields() > 0 {
if pkg := typ.Field(0).Pkg(); pkg != nil {
pkgpath = pkg.Path()
}
}
pkgPathPtr := c.pkgPathPtr(pkgpath)
llvmStructType := c.getLLVMType(typ)
size := c.targetData.TypeStoreSize(llvmStructType)
typeFields = []llvm.Value{
llvm.ConstInt(c.ctx.Int16Type(), uint64(numMethods), false), // numMethods
c.getTypeCode(types.NewPointer(typ)), // ptrTo
pkgPathPtr,
llvm.ConstInt(c.ctx.Int32Type(), uint64(size), false), // size
llvm.ConstInt(c.ctx.Int16Type(), uint64(typ.NumFields()), false), // numFields
}
structFieldType := c.getLLVMRuntimeType("structField")
var fields []llvm.Value
for i := 0; i < typ.NumFields(); i++ {
field := typ.Field(i)
offset := c.targetData.ElementOffset(llvmStructType, i)
var flags uint8
if field.Anonymous() {
flags |= structFieldFlagAnonymous
}
if typ.Tag(i) != "" {
flags |= structFieldFlagHasTag
}
if token.IsExported(field.Name()) {
flags |= structFieldFlagIsExported
}
if field.Embedded() {
flags |= structFieldFlagIsEmbedded
}
var offsBytes [binary.MaxVarintLen32]byte
offLen := binary.PutUvarint(offsBytes[:], offset)
data := string(flags) + string(offsBytes[:offLen]) + field.Name() + "\x00"
if typ.Tag(i) != "" {
if len(typ.Tag(i)) > 0xff {
c.addError(field.Pos(), fmt.Sprintf("struct tag is %d bytes which is too long, max is 255", len(typ.Tag(i))))
}
data += string([]byte{byte(len(typ.Tag(i)))}) + typ.Tag(i)
}
dataInitializer := c.ctx.ConstString(data, false)
dataGlobal := llvm.AddGlobal(c.mod, dataInitializer.Type(), globalName+"."+field.Name())
dataGlobal.SetInitializer(dataInitializer)
dataGlobal.SetAlignment(1)
dataGlobal.SetUnnamedAddr(true)
dataGlobal.SetLinkage(llvm.InternalLinkage)
dataGlobal.SetGlobalConstant(true)
fieldType := c.getTypeCode(field.Type())
fields = append(fields, llvm.ConstNamedStruct(structFieldType, []llvm.Value{
fieldType,
llvm.ConstGEP(dataGlobal.GlobalValueType(), dataGlobal, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
}),
}))
}
typeFields = append(typeFields, llvm.ConstArray(structFieldType, fields))
case *types.Interface:
typeFields = []llvm.Value{c.getTypeCode(types.NewPointer(typ))}
// TODO: methods
case *types.Signature:
typeFields = []llvm.Value{c.getTypeCode(types.NewPointer(typ))}
// TODO: params, return values, etc
}
// Prepend metadata byte.
typeFields = append([]llvm.Value{
llvm.ConstInt(c.ctx.Int8Type(), uint64(metabyte), false),
}, typeFields...)
if hasMethodSet {
typeFields = append([]llvm.Value{
c.getTypeMethodSet(typ),
}, typeFields...)
}
alignment := c.targetData.TypeAllocSize(c.dataPtrType)
if alignment < 4 {
alignment = 4
}
globalValue := c.ctx.ConstStruct(typeFields, false)
global.SetInitializer(globalValue)
if isLocal {
global.SetLinkage(llvm.InternalLinkage)
} else {
global.SetLinkage(llvm.LinkOnceODRLinkage)
}
global.SetGlobalConstant(true)
global.SetAlignment(int(alignment))
if c.Debug {
file := c.getDIFile("<Go type>")
diglobal := c.dibuilder.CreateGlobalVariableExpression(file, llvm.DIGlobalVariableExpression{
Name: "type " + typ.String(),
File: file,
Line: 1,
Type: c.getDIType(globalType),
LocalToUnit: false,
Expr: c.dibuilder.CreateExpression(nil),
AlignInBits: uint32(alignment * 8),
})
global.AddMetadata(0, diglobal)
}
}
offset := uint64(0)
if hasMethodSet {
// The pointer to the method set is always the first element of the
// global (if there is a method set). However, the pointer we return
// should point to the 'kind' field not the method set.
offset = 1
}
return llvm.ConstGEP(global.GlobalValueType(), global, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), offset, false),
})
}
// getTypeKind returns the type kind for the given type, as defined by
// reflect.Kind.
func getTypeKind(t types.Type) uint8 {
switch t := t.Underlying().(type) {
case *types.Basic:
return basicTypes[t.Kind()]
case *types.Chan:
return typeKindChan
case *types.Interface:
return typeKindInterface
case *types.Pointer:
return typeKindPointer
case *types.Slice:
return typeKindSlice
case *types.Array:
return typeKindArray
case *types.Signature:
return typeKindSignature
case *types.Map:
return typeKindMap
case *types.Struct:
return typeKindStruct
default:
panic("unknown type")
}
}
var basicTypeNames = [...]string{
types.Bool: "bool",
types.Int: "int",
types.Int8: "int8",
types.Int16: "int16",
types.Int32: "int32",
types.Int64: "int64",
types.Uint: "uint",
types.Uint8: "uint8",
types.Uint16: "uint16",
types.Uint32: "uint32",
types.Uint64: "uint64",
types.Uintptr: "uintptr",
types.Float32: "float32",
types.Float64: "float64",
types.Complex64: "complex64",
types.Complex128: "complex128",
types.String: "string",
types.UnsafePointer: "unsafe.Pointer",
}
// getTypeCodeName returns a name for this type that can be used in the
// interface lowering pass to assign type codes as expected by the reflect
// package. See getTypeCodeNum.
func getTypeCodeName(t types.Type) (string, bool) {
switch t := t.(type) {
case *types.Named:
// Note: check for `t.Obj().Pkg() != nil` for Go 1.18 only.
if t.Obj().Pkg() != nil && t.Obj().Parent() != t.Obj().Pkg().Scope() {
return "named:" + t.String() + "$local", true
}
return "named:" + t.String(), false
case *types.Array:
s, isLocal := getTypeCodeName(t.Elem())
return "array:" + strconv.FormatInt(t.Len(), 10) + ":" + s, isLocal
case *types.Basic:
return "basic:" + basicTypeNames[t.Kind()], false
case *types.Chan:
s, isLocal := getTypeCodeName(t.Elem())
var dir string
switch t.Dir() {
case types.SendOnly:
dir = "s:"
case types.RecvOnly:
dir = "r:"
case types.SendRecv:
dir = "sr:"
}
return "chan:" + dir + s, isLocal
case *types.Interface:
isLocal := false
methods := make([]string, t.NumMethods())
for i := 0; i < t.NumMethods(); i++ {
name := t.Method(i).Name()
if !token.IsExported(name) {
name = t.Method(i).Pkg().Path() + "." + name
}
s, local := getTypeCodeName(t.Method(i).Type())
if local {
isLocal = true
}
methods[i] = name + ":" + s
}
return "interface:" + "{" + strings.Join(methods, ",") + "}", isLocal
case *types.Map:
keyType, keyLocal := getTypeCodeName(t.Key())
elemType, elemLocal := getTypeCodeName(t.Elem())
return "map:" + "{" + keyType + "," + elemType + "}", keyLocal || elemLocal
case *types.Pointer:
s, isLocal := getTypeCodeName(t.Elem())
return "pointer:" + s, isLocal
case *types.Signature:
isLocal := false
params := make([]string, t.Params().Len())
for i := 0; i < t.Params().Len(); i++ {
s, local := getTypeCodeName(t.Params().At(i).Type())
if local {
isLocal = true
}
params[i] = s
}
results := make([]string, t.Results().Len())
for i := 0; i < t.Results().Len(); i++ {
s, local := getTypeCodeName(t.Results().At(i).Type())
if local {
isLocal = true
}
results[i] = s
}
return "func:" + "{" + strings.Join(params, ",") + "}{" + strings.Join(results, ",") + "}", isLocal
case *types.Slice:
s, isLocal := getTypeCodeName(t.Elem())
return "slice:" + s, isLocal
case *types.Struct:
elems := make([]string, t.NumFields())
isLocal := false
for i := 0; i < t.NumFields(); i++ {
embedded := ""
if t.Field(i).Embedded() {
embedded = "#"
}
s, local := getTypeCodeName(t.Field(i).Type())
if local {
isLocal = true
}
elems[i] = embedded + t.Field(i).Name() + ":" + s
if t.Tag(i) != "" {
elems[i] += "`" + t.Tag(i) + "`"
}
}
return "struct:" + "{" + strings.Join(elems, ",") + "}", isLocal
default:
panic("unknown type: " + t.String())
}
}
// getTypeMethodSet returns a reference (GEP) to a global method set. This
// method set should be unreferenced after the interface lowering pass.
func (c *compilerContext) getTypeMethodSet(typ types.Type) llvm.Value {
globalName := typ.String() + "$methodset"
global := c.mod.NamedGlobal(globalName)
if global.IsNil() {
ms := c.program.MethodSets.MethodSet(typ)
// Create method set.
var signatures, wrappers []llvm.Value
for i := 0; i < ms.Len(); i++ {
method := ms.At(i)
signatureGlobal := c.getMethodSignature(method.Obj().(*types.Func))
signatures = append(signatures, signatureGlobal)
fn := c.program.MethodValue(method)
llvmFnType, llvmFn := c.getFunction(fn)
if llvmFn.IsNil() {
// compiler error, so panic
panic("cannot find function: " + c.getFunctionInfo(fn).linkName)
}
wrapper := c.getInterfaceInvokeWrapper(fn, llvmFnType, llvmFn)
wrappers = append(wrappers, wrapper)
}
// Construct global value.
globalValue := c.ctx.ConstStruct([]llvm.Value{
llvm.ConstInt(c.uintptrType, uint64(ms.Len()), false),
llvm.ConstArray(c.dataPtrType, signatures),
c.ctx.ConstStruct(wrappers, false),
}, false)
global = llvm.AddGlobal(c.mod, globalValue.Type(), globalName)
global.SetInitializer(globalValue)
global.SetGlobalConstant(true)
global.SetUnnamedAddr(true)
global.SetLinkage(llvm.LinkOnceODRLinkage)
}
return global
}
// getMethodSignatureName returns a unique name (that can be used as the name of
// a global) for the given method.
func (c *compilerContext) getMethodSignatureName(method *types.Func) string {
signature := methodSignature(method)
var globalName string
if token.IsExported(method.Name()) {
globalName = "reflect/methods." + signature
} else {
globalName = method.Type().(*types.Signature).Recv().Pkg().Path() + ".$methods." + signature
}
return globalName
}
// getMethodSignature returns a global variable which is a reference to an
// external *i8 indicating the indicating the signature of this method. It is
// used during the interface lowering pass.
func (c *compilerContext) getMethodSignature(method *types.Func) llvm.Value {
globalName := c.getMethodSignatureName(method)
signatureGlobal := c.mod.NamedGlobal(globalName)
if signatureGlobal.IsNil() {
// TODO: put something useful in these globals, such as the method
// signature. Useful to one day implement reflect.Value.Method(n).
signatureGlobal = llvm.AddGlobal(c.mod, c.ctx.Int8Type(), globalName)
signatureGlobal.SetInitializer(llvm.ConstInt(c.ctx.Int8Type(), 0, false))
signatureGlobal.SetLinkage(llvm.LinkOnceODRLinkage)
signatureGlobal.SetGlobalConstant(true)
signatureGlobal.SetAlignment(1)
}
return signatureGlobal
}
// createTypeAssert will emit the code for a typeassert, used in if statements
// and in type switches (Go SSA does not have type switches, only if/else
// chains). Note that even though the Go SSA does not contain type switches,
// LLVM will recognize the pattern and make it a real switch in many cases.
//
// Type asserts on concrete types are trivial: just compare type numbers. Type
// asserts on interfaces are more difficult, see the comments in the function.
func (b *builder) createTypeAssert(expr *ssa.TypeAssert) llvm.Value {
itf := b.getValue(expr.X, getPos(expr))
assertedType := b.getLLVMType(expr.AssertedType)
actualTypeNum := b.CreateExtractValue(itf, 0, "interface.type")
commaOk := llvm.Value{}
if _, ok := expr.AssertedType.Underlying().(*types.Interface); ok {
// Type assert on interface type.
// This is a call to an interface type assert function.
// The interface lowering pass will define this function by filling it
// with a type switch over all concrete types that implement this
// interface, and returning whether it's one of the matched types.
// This is very different from how interface asserts are implemented in
// the main Go compiler, where the runtime checks whether the type
// implements each method of the interface. See:
// https://research.swtch.com/interfaces
fn := b.getInterfaceImplementsFunc(expr.AssertedType)
commaOk = b.CreateCall(fn.GlobalValueType(), fn, []llvm.Value{actualTypeNum}, "")
} else {
name, _ := getTypeCodeName(expr.AssertedType)
globalName := "reflect/types.typeid:" + name
assertedTypeCodeGlobal := b.mod.NamedGlobal(globalName)
if assertedTypeCodeGlobal.IsNil() {
// Create a new typecode global.
assertedTypeCodeGlobal = llvm.AddGlobal(b.mod, b.ctx.Int8Type(), globalName)
assertedTypeCodeGlobal.SetGlobalConstant(true)
}
// Type assert on concrete type.
// Call runtime.typeAssert, which will be lowered to a simple icmp or
// const false in the interface lowering pass.
commaOk = b.createRuntimeCall("typeAssert", []llvm.Value{actualTypeNum, assertedTypeCodeGlobal}, "typecode")
}
// Add 2 new basic blocks (that should get optimized away): one for the
// 'ok' case and one for all instructions following this type assert.
// This is necessary because we need to insert the casted value or the
// nil value based on whether the assert was successful. Casting before
// this check tells LLVM that it can use this value and may
// speculatively dereference pointers before the check. This can lead to
// a miscompilation resulting in a segfault at runtime.
// Additionally, this is even required by the Go spec: a failed
// typeassert should return a zero value, not an incorrectly casted
// value.
prevBlock := b.GetInsertBlock()
okBlock := b.insertBasicBlock("typeassert.ok")
nextBlock := b.insertBasicBlock("typeassert.next")
b.blockExits[b.currentBlock] = nextBlock // adjust outgoing block for phi nodes
b.CreateCondBr(commaOk, okBlock, nextBlock)
// Retrieve the value from the interface if the type assert was
// successful.
b.SetInsertPointAtEnd(okBlock)
var valueOk llvm.Value
if _, ok := expr.AssertedType.Underlying().(*types.Interface); ok {
// Type assert on interface type. Easy: just return the same
// interface value.
valueOk = itf
} else {
// Type assert on concrete type. Extract the underlying type from
// the interface (but only after checking it matches).
valueOk = b.extractValueFromInterface(itf, assertedType)
}
b.CreateBr(nextBlock)
// Continue after the if statement.
b.SetInsertPointAtEnd(nextBlock)
phi := b.CreatePHI(assertedType, "typeassert.value")
phi.AddIncoming([]llvm.Value{llvm.ConstNull(assertedType), valueOk}, []llvm.BasicBlock{prevBlock, okBlock})
if expr.CommaOk {
tuple := b.ctx.ConstStruct([]llvm.Value{llvm.Undef(assertedType), llvm.Undef(b.ctx.Int1Type())}, false) // create empty tuple
tuple = b.CreateInsertValue(tuple, phi, 0, "") // insert value
tuple = b.CreateInsertValue(tuple, commaOk, 1, "") // insert 'comma ok' boolean
return tuple
} else {
// This is kind of dirty as the branch above becomes mostly useless,
// but hopefully this gets optimized away.
b.createRuntimeCall("interfaceTypeAssert", []llvm.Value{commaOk}, "")
return phi
}
}
// getMethodsString returns a string to be used in the "tinygo-methods" string
// attribute for interface functions.
func (c *compilerContext) getMethodsString(itf *types.Interface) string {
methods := make([]string, itf.NumMethods())
for i := range methods {
methods[i] = c.getMethodSignatureName(itf.Method(i))
}
return strings.Join(methods, "; ")
}
// getInterfaceImplementsFunc returns a declared function that works as a type
// switch. The interface lowering pass will define this function.
func (c *compilerContext) getInterfaceImplementsFunc(assertedType types.Type) llvm.Value {
s, _ := getTypeCodeName(assertedType.Underlying())
fnName := s + ".$typeassert"
llvmFn := c.mod.NamedFunction(fnName)
if llvmFn.IsNil() {
llvmFnType := llvm.FunctionType(c.ctx.Int1Type(), []llvm.Type{c.dataPtrType}, false)
llvmFn = llvm.AddFunction(c.mod, fnName, llvmFnType)
c.addStandardDeclaredAttributes(llvmFn)
methods := c.getMethodsString(assertedType.Underlying().(*types.Interface))
llvmFn.AddFunctionAttr(c.ctx.CreateStringAttribute("tinygo-methods", methods))
}
return llvmFn
}
// getInvokeFunction returns the thunk to call the given interface method. The
// thunk is declared, not defined: it will be defined by the interface lowering
// pass.
func (c *compilerContext) getInvokeFunction(instr *ssa.CallCommon) llvm.Value {
s, _ := getTypeCodeName(instr.Value.Type().Underlying())
fnName := s + "." + instr.Method.Name() + "$invoke"
llvmFn := c.mod.NamedFunction(fnName)
if llvmFn.IsNil() {
sig := instr.Method.Type().(*types.Signature)
var paramTuple []*types.Var
for i := 0; i < sig.Params().Len(); i++ {
paramTuple = append(paramTuple, sig.Params().At(i))
}
paramTuple = append(paramTuple, types.NewVar(token.NoPos, nil, "$typecode", types.Typ[types.UnsafePointer]))
llvmFnType := c.getLLVMFunctionType(types.NewSignature(sig.Recv(), types.NewTuple(paramTuple...), sig.Results(), false))
llvmFn = llvm.AddFunction(c.mod, fnName, llvmFnType)
c.addStandardDeclaredAttributes(llvmFn)
llvmFn.AddFunctionAttr(c.ctx.CreateStringAttribute("tinygo-invoke", c.getMethodSignatureName(instr.Method)))
methods := c.getMethodsString(instr.Value.Type().Underlying().(*types.Interface))
llvmFn.AddFunctionAttr(c.ctx.CreateStringAttribute("tinygo-methods", methods))
}
return llvmFn
}
// getInterfaceInvokeWrapper returns a wrapper for the given method so it can be
// invoked from an interface. The wrapper takes in a pointer to the underlying
// value, dereferences or unpacks it if necessary, and calls the real method.
// If the method to wrap has a pointer receiver, no wrapping is necessary and
// the function is returned directly.
func (c *compilerContext) getInterfaceInvokeWrapper(fn *ssa.Function, llvmFnType llvm.Type, llvmFn llvm.Value) llvm.Value {
wrapperName := llvmFn.Name() + "$invoke"
wrapper := c.mod.NamedFunction(wrapperName)
if !wrapper.IsNil() {
// Wrapper already created. Return it directly.
return wrapper
}
// Get the expanded receiver type.
receiverType := c.getLLVMType(fn.Signature.Recv().Type())
var expandedReceiverType []llvm.Type
for _, info := range c.expandFormalParamType(receiverType, "", nil) {
expandedReceiverType = append(expandedReceiverType, info.llvmType)
}
// Does this method even need any wrapping?
if len(expandedReceiverType) == 1 && receiverType.TypeKind() == llvm.PointerTypeKind {
// Nothing to wrap.
// Casting a function signature to a different signature and calling it
// with a receiver pointer bitcasted to *i8 (as done in calls on an
// interface) is hopefully a safe (defined) operation.
return llvmFn
}
// create wrapper function
paramTypes := append([]llvm.Type{c.dataPtrType}, llvmFnType.ParamTypes()[len(expandedReceiverType):]...)
wrapFnType := llvm.FunctionType(llvmFnType.ReturnType(), paramTypes, false)
wrapper = llvm.AddFunction(c.mod, wrapperName, wrapFnType)
c.addStandardAttributes(wrapper)
wrapper.SetLinkage(llvm.LinkOnceODRLinkage)
wrapper.SetUnnamedAddr(true)
// Create a new builder just to create this wrapper.
b := builder{
compilerContext: c,
Builder: c.ctx.NewBuilder(),
}
defer b.Builder.Dispose()
// add debug info if needed
if c.Debug {
pos := c.program.Fset.Position(fn.Pos())
difunc := c.attachDebugInfoRaw(fn, wrapper, "$invoke", pos.Filename, pos.Line)
b.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), difunc, llvm.Metadata{})
}
// set up IR builder
block := b.ctx.AddBasicBlock(wrapper, "entry")
b.SetInsertPointAtEnd(block)
receiverValue := b.emitPointerUnpack(wrapper.Param(0), []llvm.Type{receiverType})[0]
params := append(b.expandFormalParam(receiverValue), wrapper.Params()[1:]...)
if llvmFnType.ReturnType().TypeKind() == llvm.VoidTypeKind {
b.CreateCall(llvmFnType, llvmFn, params, "")
b.CreateRetVoid()
} else {
ret := b.CreateCall(llvmFnType, llvmFn, params, "ret")
b.CreateRet(ret)
}
return wrapper
}
// methodSignature creates a readable version of a method signature (including
// the function name, excluding the receiver name). This string is used
// internally to match interfaces and to call the correct method on an
// interface. Examples:
//
// String() string
// Read([]byte) (int, error)
func methodSignature(method *types.Func) string {
return method.Name() + signature(method.Type().(*types.Signature))
}
// Make a readable version of a function (pointer) signature.
// Examples:
//
// () string
// (string, int) (int, error)
func signature(sig *types.Signature) string {
s := ""
if sig.Params().Len() == 0 {
s += "()"
} else {
s += "("
for i := 0; i < sig.Params().Len(); i++ {
if i > 0 {
s += ", "
}
s += typestring(sig.Params().At(i).Type())
}
s += ")"
}
if sig.Results().Len() == 0 {
// keep as-is
} else if sig.Results().Len() == 1 {
s += " " + typestring(sig.Results().At(0).Type())
} else {
s += " ("
for i := 0; i < sig.Results().Len(); i++ {
if i > 0 {
s += ", "
}
s += typestring(sig.Results().At(i).Type())
}
s += ")"
}
return s
}
// typestring returns a stable (human-readable) type string for the given type
// that can be used for interface equality checks. It is almost (but not
// exactly) the same as calling t.String(). The main difference is some
// normalization around `byte` vs `uint8` for example.
func typestring(t types.Type) string {
// See: https://github.com/golang/go/blob/master/src/go/types/typestring.go
switch t := t.(type) {
case *types.Array:
return "[" + strconv.FormatInt(t.Len(), 10) + "]" + typestring(t.Elem())
case *types.Basic:
return basicTypeNames[t.Kind()]
case *types.Chan:
switch t.Dir() {
case types.SendRecv:
return "chan (" + typestring(t.Elem()) + ")"
case types.SendOnly:
return "chan<- (" + typestring(t.Elem()) + ")"
case types.RecvOnly:
return "<-chan (" + typestring(t.Elem()) + ")"
default:
panic("unknown channel direction")
}
case *types.Interface:
methods := make([]string, t.NumMethods())
for i := range methods {
method := t.Method(i)
methods[i] = method.Name() + signature(method.Type().(*types.Signature))
}
return "interface{" + strings.Join(methods, ";") + "}"
case *types.Map:
return "map[" + typestring(t.Key()) + "]" + typestring(t.Elem())
case *types.Named:
return t.String()
case *types.Pointer:
return "*" + typestring(t.Elem())
case *types.Signature:
return "func" + signature(t)
case *types.Slice:
return "[]" + typestring(t.Elem())
case *types.Struct:
fields := make([]string, t.NumFields())
for i := range fields {
field := t.Field(i)
fields[i] = field.Name() + " " + typestring(field.Type())
if tag := t.Tag(i); tag != "" {
fields[i] += " " + strconv.Quote(tag)
}
}
return "struct{" + strings.Join(fields, ";") + "}"
default:
panic("unknown type: " + t.String())
}
}