tinygo/builder/sizes.go
Ayke van Laethem 77cf60ef30 darwin: print full size information for -size=full
The MachO file format is a bit weird and doesn't store the DWARF debug
information directly in the file. Instead, it has to be looked up in the
original object file. This makes reading the DWARF debug information for
code size usage a bit more difficult. However, it works with this
change.
2022-06-24 13:50:30 +02:00

862 строки
28 КиБ
Go

package builder
import (
"bytes"
"debug/dwarf"
"debug/elf"
"debug/macho"
"debug/pe"
"encoding/binary"
"fmt"
"io"
"os"
"path/filepath"
"regexp"
"sort"
"strings"
"github.com/aykevl/go-wasm"
"github.com/tinygo-org/tinygo/goenv"
)
// Set to true to print extra debug logs.
const sizesDebug = false
// programSize contains size statistics per package of a compiled program.
type programSize struct {
Packages map[string]packageSize
Code uint64
ROData uint64
Data uint64
BSS uint64
}
// sortedPackageNames returns the list of package names (ProgramSize.Packages)
// sorted alphabetically.
func (ps *programSize) sortedPackageNames() []string {
names := make([]string, 0, len(ps.Packages))
for name := range ps.Packages {
names = append(names, name)
}
sort.Strings(names)
return names
}
// Flash usage in regular microcontrollers.
func (ps *programSize) Flash() uint64 {
return ps.Code + ps.ROData + ps.Data
}
// Static RAM usage in regular microcontrollers.
func (ps *programSize) RAM() uint64 {
return ps.Data + ps.BSS
}
// packageSize contains the size of a package, calculated from the linked object
// file.
type packageSize struct {
Code uint64
ROData uint64
Data uint64
BSS uint64
}
// Flash usage in regular microcontrollers.
func (ps *packageSize) Flash() uint64 {
return ps.Code + ps.ROData + ps.Data
}
// Static RAM usage in regular microcontrollers.
func (ps *packageSize) RAM() uint64 {
return ps.Data + ps.BSS
}
// A mapping of a single chunk of code or data to a file path.
type addressLine struct {
Address uint64
Length uint64 // length of this chunk
File string // file path as stored in DWARF
IsVariable bool // true if this is a variable (or constant), false if it is code
}
// Sections defined in the input file. This struct defines them in a
// filetype-agnostic way but roughly follow the ELF types (.text, .data, .bss,
// etc).
type memorySection struct {
Type memoryType
Address uint64
Size uint64
}
type memoryType int
const (
memoryCode memoryType = iota + 1
memoryData
memoryROData
memoryBSS
memoryStack
)
func (t memoryType) String() string {
return [...]string{
0: "-",
memoryCode: "code",
memoryData: "data",
memoryROData: "rodata",
memoryBSS: "bss",
memoryStack: "stack",
}[t]
}
// Regular expressions to match particular symbol names. These are not stored as
// DWARF variables because they have no mapping to source code global variables.
var (
// Various globals that aren't a variable but nonetheless need to be stored
// somewhere:
// alloc: heap allocations during init interpretation
// pack: data created when storing a constant in an interface for example
// string: buffer behind strings
packageSymbolRegexp = regexp.MustCompile(`\$(alloc|embedfsfiles|embedfsslice|embedslice|pack|string)(\.[0-9]+)?$`)
// Reflect sidetables. Created by the reflect lowering pass.
// See src/reflect/sidetables.go.
reflectDataRegexp = regexp.MustCompile(`^reflect\.[a-zA-Z]+Sidetable$`)
)
// readProgramSizeFromDWARF reads the source location for each line of code and
// each variable in the program, as far as this is stored in the DWARF debug
// information.
func readProgramSizeFromDWARF(data *dwarf.Data, codeOffset uint64, skipTombstone bool) ([]addressLine, error) {
r := data.Reader()
var lines []*dwarf.LineFile
var addresses []addressLine
for {
e, err := r.Next()
if err != nil {
return nil, err
}
if e == nil {
break
}
switch e.Tag {
case dwarf.TagCompileUnit:
// Found a compile unit.
// We can read the .debug_line section using it, which contains a
// mapping for most instructions to their file/line/column - even
// for inlined functions!
lr, err := data.LineReader(e)
if err != nil {
return nil, err
}
lines = lr.Files()
var lineEntry = dwarf.LineEntry{
EndSequence: true,
}
// Line tables are organized as sequences of line entries until an
// end sequence. A single line table can contain multiple such
// sequences. The last line entry is an EndSequence to indicate the
// end.
for {
// Read the next .debug_line entry.
prevLineEntry := lineEntry
err := lr.Next(&lineEntry)
if err != nil {
if err == io.EOF {
break
}
return nil, err
}
if prevLineEntry.EndSequence && lineEntry.Address == 0 && skipTombstone {
// Tombstone value. This symbol has been removed, for
// example by the --gc-sections linker flag. It is still
// here in the debug information because the linker can't
// just remove this reference.
// Read until the next EndSequence so that this sequence is
// skipped.
// For more details, see (among others):
// https://reviews.llvm.org/D84825
// The value 0 can however really occur in object files,
// that typically start at address 0. So don't skip
// tombstone values in object files (like when parsing MachO
// files).
for {
err := lr.Next(&lineEntry)
if err != nil {
return nil, err
}
if lineEntry.EndSequence {
break
}
}
}
if !prevLineEntry.EndSequence {
// The chunk describes the code from prevLineEntry to
// lineEntry.
line := addressLine{
Address: prevLineEntry.Address + codeOffset,
Length: lineEntry.Address - prevLineEntry.Address,
File: prevLineEntry.File.Name,
}
if line.Length != 0 {
addresses = append(addresses, line)
}
}
}
case dwarf.TagVariable:
// Global variable (or constant). Most of these are not actually
// stored in the binary, because they have been optimized out. Only
// the ones with a location are still present.
r.SkipChildren()
file := e.AttrField(dwarf.AttrDeclFile)
location := e.AttrField(dwarf.AttrLocation)
globalType := e.AttrField(dwarf.AttrType)
if file == nil || location == nil || globalType == nil {
// Doesn't contain the requested information.
continue
}
// Try to parse the location. While this could in theory be a very
// complex expression, usually it's just a DW_OP_addr opcode
// followed by an address.
locationCode := location.Val.([]uint8)
if locationCode[0] != 3 { // DW_OP_addr
continue
}
var addr uint64
switch len(locationCode) {
case 1 + 2:
addr = uint64(binary.LittleEndian.Uint16(locationCode[1:]))
case 1 + 4:
addr = uint64(binary.LittleEndian.Uint32(locationCode[1:]))
case 1 + 8:
addr = binary.LittleEndian.Uint64(locationCode[1:])
default:
continue // unknown address
}
// Parse the type of the global variable, which (importantly)
// contains the variable size. We're not interested in the type,
// only in the size.
typ, err := data.Type(globalType.Val.(dwarf.Offset))
if err != nil {
return nil, err
}
addresses = append(addresses, addressLine{
Address: addr,
Length: uint64(typ.Size()),
File: lines[file.Val.(int64)].Name,
IsVariable: true,
})
default:
r.SkipChildren()
}
}
return addresses, nil
}
// Read a MachO object file and return a line table.
// Also return an index from symbol name to start address in the line table.
func readMachOSymbolAddresses(path string) (map[string]int, []addressLine, error) {
// Some constants from mach-o/nlist.h
// See: https://opensource.apple.com/source/xnu/xnu-7195.141.2/EXTERNAL_HEADERS/mach-o/nlist.h.auto.html
const (
N_STAB = 0xe0
N_TYPE = 0x0e // bitmask for N_TYPE field
N_SECT = 0xe // one of the possible type in the N_TYPE field
)
// Read DWARF from the given object file.
file, err := macho.Open(path)
if err != nil {
return nil, nil, err
}
defer file.Close()
dwarf, err := file.DWARF()
if err != nil {
return nil, nil, err
}
lines, err := readProgramSizeFromDWARF(dwarf, 0, false)
if err != nil {
return nil, nil, err
}
// Make a map from start addresses to indices in the line table (because the
// line table is a slice, not a map).
addressToLine := make(map[uint64]int, len(lines))
for i, line := range lines {
if _, ok := addressToLine[line.Address]; ok {
addressToLine[line.Address] = -1
continue
}
addressToLine[line.Address] = i
}
// Make a map that for each symbol gives the start index in the line table.
addresses := make(map[string]int, len(addressToLine))
for _, symbol := range file.Symtab.Syms {
if symbol.Type&N_STAB != 0 {
continue // STABS entry, ignore
}
if symbol.Type&0x0e != N_SECT {
continue // undefined symbol
}
if index, ok := addressToLine[symbol.Value]; ok && index >= 0 {
if _, ok := addresses[symbol.Name]; ok {
// There is a duplicate. Mark it as unavailable.
addresses[symbol.Name] = -1
continue
}
addresses[symbol.Name] = index
}
}
return addresses, lines, nil
}
// loadProgramSize calculate a program/data size breakdown of each package for a
// given ELF file.
// If the file doesn't contain DWARF debug information, the returned program
// size will still have valid summaries but won't have complete size information
// per package.
func loadProgramSize(path string, packagePathMap map[string]string) (*programSize, error) {
// Open the binary file.
f, err := os.Open(path)
if err != nil {
return nil, err
}
defer f.Close()
// This stores all chunks of addresses found in the binary.
var addresses []addressLine
// Load the binary file, which could be in a number of file formats.
var sections []memorySection
if file, err := elf.NewFile(f); err == nil {
// Read DWARF information. The error is intentionally ignored.
data, _ := file.DWARF()
if data != nil {
addresses, err = readProgramSizeFromDWARF(data, 0, true)
if err != nil {
// However, _do_ report an error here. Something must have gone
// wrong while trying to parse DWARF data.
return nil, err
}
}
// Read the ELF symbols for some more chunks of location information.
// Some globals (such as strings) aren't stored in the DWARF debug
// information and therefore need to be obtained in a different way.
allSymbols, err := file.Symbols()
if err != nil {
return nil, err
}
for _, symbol := range allSymbols {
symType := elf.ST_TYPE(symbol.Info)
if symbol.Size == 0 {
continue
}
if symType != elf.STT_FUNC && symType != elf.STT_OBJECT && symType != elf.STT_NOTYPE {
continue
}
if symbol.Section >= elf.SHN_LORESERVE {
// Not a regular section, so skip it.
// One example is elf.SHN_ABS, which is used for symbols
// declared with an absolute value such as the memset function
// on the ESP32 which is defined in the mask ROM.
continue
}
section := file.Sections[symbol.Section]
if section.Flags&elf.SHF_ALLOC == 0 {
continue
}
if packageSymbolRegexp.MatchString(symbol.Name) || reflectDataRegexp.MatchString(symbol.Name) {
addresses = append(addresses, addressLine{
Address: symbol.Value,
Length: symbol.Size,
File: symbol.Name,
IsVariable: true,
})
}
}
// Load allocated sections.
for _, section := range file.Sections {
if section.Flags&elf.SHF_ALLOC == 0 {
continue
}
if section.Type == elf.SHT_NOBITS {
if section.Name == ".stack" {
// TinyGo emits stack sections on microcontroller using the
// ".stack" name.
// This is a bit ugly, but I don't think there is a way to
// mark the stack section in a linker script.
sections = append(sections, memorySection{
Address: section.Addr,
Size: section.Size,
Type: memoryStack,
})
} else {
// Regular .bss section.
sections = append(sections, memorySection{
Address: section.Addr,
Size: section.Size,
Type: memoryBSS,
})
}
} else if section.Type == elf.SHT_PROGBITS && section.Flags&elf.SHF_EXECINSTR != 0 {
// .text
sections = append(sections, memorySection{
Address: section.Addr,
Size: section.Size,
Type: memoryCode,
})
} else if section.Type == elf.SHT_PROGBITS && section.Flags&elf.SHF_WRITE != 0 {
// .data
sections = append(sections, memorySection{
Address: section.Addr,
Size: section.Size,
Type: memoryData,
})
} else if section.Type == elf.SHT_PROGBITS {
// .rodata
sections = append(sections, memorySection{
Address: section.Addr,
Size: section.Size,
Type: memoryROData,
})
}
}
} else if file, err := macho.NewFile(f); err == nil {
// Read segments, for use while reading through sections.
segments := map[string]*macho.Segment{}
for _, load := range file.Loads {
switch load := load.(type) {
case *macho.Segment:
segments[load.Name] = load
}
}
// Read MachO sections.
for _, section := range file.Sections {
sectionType := section.Flags & 0xff
sectionFlags := section.Flags >> 8
segment := segments[section.Seg]
// For the constants used here, see:
// https://github.com/llvm/llvm-project/blob/release/14.x/llvm/include/llvm/BinaryFormat/MachO.h
if sectionFlags&0x800000 != 0 { // S_ATTR_PURE_INSTRUCTIONS
// Section containing only instructions.
sections = append(sections, memorySection{
Address: section.Addr,
Size: uint64(section.Size),
Type: memoryCode,
})
} else if sectionType == 1 { // S_ZEROFILL
// Section filled with zeroes on demand.
sections = append(sections, memorySection{
Address: section.Addr,
Size: uint64(section.Size),
Type: memoryBSS,
})
} else if segment.Maxprot&0b011 == 0b001 { // --r (read-only data)
// Protection doesn't allow writes, so mark this section read-only.
sections = append(sections, memorySection{
Address: section.Addr,
Size: uint64(section.Size),
Type: memoryROData,
})
} else {
// The rest is assumed to be regular data.
sections = append(sections, memorySection{
Address: section.Addr,
Size: uint64(section.Size),
Type: memoryData,
})
}
}
// Read DWARF information.
// The data isn't stored directly in the binary as in most executable
// formats. Instead, it is left in the object files that were used as a
// basis for linking. The executable does however contain STABS debug
// information that points to the source object file and is used by
// debuggers.
// For more information:
// http://wiki.dwarfstd.org/index.php?title=Apple%27s_%22Lazy%22_DWARF_Scheme
var objSymbolNames map[string]int
var objAddresses []addressLine
var previousSymbol macho.Symbol
for _, symbol := range file.Symtab.Syms {
// STABS constants, from mach-o/stab.h:
// https://opensource.apple.com/source/xnu/xnu-7195.141.2/EXTERNAL_HEADERS/mach-o/stab.h.auto.html
const (
N_GSYM = 0x20
N_FUN = 0x24
N_STSYM = 0x26
N_SO = 0x64
N_OSO = 0x66
)
if symbol.Type == N_OSO {
// Found an object file. Now try to parse it.
objSymbolNames, objAddresses, err = readMachOSymbolAddresses(symbol.Name)
if err != nil && sizesDebug {
// Errors are normally ignored. If there is an error, it's
// simply treated as that the DWARF is not available.
fmt.Fprintf(os.Stderr, "could not read DWARF from file %s: %s\n", symbol.Name, err)
}
} else if symbol.Type == N_FUN {
// Found a function.
// The way this is encoded is a bit weird. MachO symbols don't
// have a length. What I've found is that the length is encoded
// by first having a N_FUN symbol as usual, and then having a
// symbol with a zero-length name that has the value not set to
// the address of the symbol but to the length. So in order to
// get both the address and the length, we look for a symbol
// with a name followed by a symbol without a name.
if symbol.Name == "" && previousSymbol.Type == N_FUN && previousSymbol.Name != "" {
// Functions are encoded as many small chunks in the line
// table (one or a few instructions per source line). But
// the symbol length covers the whole symbols, over many
// lines and possibly including inlined functions. So we
// continue to iterate through the objAddresses slice until
// we've found all the source lines that are part of this
// symbol.
address := previousSymbol.Value
length := symbol.Value
if index, ok := objSymbolNames[previousSymbol.Name]; ok && index >= 0 {
for length > 0 {
line := objAddresses[index]
line.Address = address
if line.Length > length {
// Line extends beyond the end of te symbol?
// Weird, shouldn't happen.
break
}
addresses = append(addresses, line)
index++
length -= line.Length
address += line.Length
}
}
}
} else if symbol.Type == N_GSYM || symbol.Type == N_STSYM {
// Global variables.
if index, ok := objSymbolNames[symbol.Name]; ok {
address := objAddresses[index]
address.Address = symbol.Value
addresses = append(addresses, address)
}
}
previousSymbol = symbol
}
} else if file, err := pe.NewFile(f); err == nil {
// Read DWARF information. The error is intentionally ignored.
data, _ := file.DWARF()
if data != nil {
addresses, err = readProgramSizeFromDWARF(data, 0, true)
if err != nil {
// However, _do_ report an error here. Something must have gone
// wrong while trying to parse DWARF data.
return nil, err
}
}
// Read COFF sections.
optionalHeader := file.OptionalHeader.(*pe.OptionalHeader64)
for _, section := range file.Sections {
// For more information:
// https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_section_header
const (
IMAGE_SCN_CNT_CODE = 0x00000020
IMAGE_SCN_CNT_INITIALIZED_DATA = 0x00000040
IMAGE_SCN_MEM_DISCARDABLE = 0x02000000
IMAGE_SCN_MEM_READ = 0x40000000
IMAGE_SCN_MEM_WRITE = 0x80000000
)
if section.Characteristics&IMAGE_SCN_MEM_DISCARDABLE != 0 {
// Debug sections, etc.
continue
}
address := uint64(section.VirtualAddress) + optionalHeader.ImageBase
if section.Characteristics&IMAGE_SCN_CNT_CODE != 0 {
// .text
sections = append(sections, memorySection{
Address: address,
Size: uint64(section.VirtualSize),
Type: memoryCode,
})
} else if section.Characteristics&IMAGE_SCN_CNT_INITIALIZED_DATA != 0 {
if section.Characteristics&IMAGE_SCN_MEM_WRITE != 0 {
// .data
sections = append(sections, memorySection{
Address: address,
Size: uint64(section.Size),
Type: memoryData,
})
if section.Size < section.VirtualSize {
// Equivalent of a .bss section.
// Note: because of how the PE/COFF format is
// structured, not all zero-initialized data is marked
// as such. A portion may be at the end of the .data
// section and is thus marked as initialized data.
sections = append(sections, memorySection{
Address: address + uint64(section.Size),
Size: uint64(section.VirtualSize) - uint64(section.Size),
Type: memoryBSS,
})
}
} else if section.Characteristics&IMAGE_SCN_MEM_READ != 0 {
// .rdata, .buildid, .pdata
sections = append(sections, memorySection{
Address: address,
Size: uint64(section.VirtualSize),
Type: memoryROData,
})
}
}
}
} else if file, err := wasm.Parse(f); err == nil {
// File is in WebAssembly format.
// Put code at a very high address, so that it won't conflict with the
// data in the memory section.
const codeOffset = 0x8000_0000_0000_0000
// Read DWARF information. The error is intentionally ignored.
data, _ := file.DWARF()
if data != nil {
addresses, err = readProgramSizeFromDWARF(data, codeOffset, true)
if err != nil {
// However, _do_ report an error here. Something must have gone
// wrong while trying to parse DWARF data.
return nil, err
}
}
var linearMemorySize uint64
for _, section := range file.Sections {
switch section := section.(type) {
case *wasm.SectionCode:
sections = append(sections, memorySection{
Address: codeOffset,
Size: uint64(section.Size()),
Type: memoryCode,
})
case *wasm.SectionMemory:
// This value is used when processing *wasm.SectionData (which
// always comes after *wasm.SectionMemory).
linearMemorySize = uint64(section.Entries[0].Limits.Initial) * 64 * 1024
case *wasm.SectionData:
// Data sections contain initial values for linear memory.
// First load the list of data sections, and sort them by
// address for easier processing.
var dataSections []memorySection
for _, entry := range section.Entries {
address, err := wasm.Eval(bytes.NewBuffer(entry.Offset))
if err != nil {
return nil, fmt.Errorf("could not parse data section address: %w", err)
}
dataSections = append(dataSections, memorySection{
Address: uint64(address[0].(int32)),
Size: uint64(len(entry.Data)),
Type: memoryData,
})
}
sort.Slice(dataSections, func(i, j int) bool {
return dataSections[i].Address < dataSections[j].Address
})
// And now add all data sections for linear memory.
// Parts that are in the slice of data sections are added as
// memoryData, and parts that are not are added as memoryBSS.
addr := uint64(0)
for _, section := range dataSections {
if addr < section.Address {
sections = append(sections, memorySection{
Address: addr,
Size: section.Address - addr,
Type: memoryBSS,
})
}
if addr > section.Address {
// This might be allowed, I'm not sure.
// It certainly doesn't make a lot of sense.
return nil, fmt.Errorf("overlapping data section")
}
// addr == section.Address
sections = append(sections, section)
addr = section.Address + section.Size
}
if addr < linearMemorySize {
sections = append(sections, memorySection{
Address: addr,
Size: linearMemorySize - addr,
Type: memoryBSS,
})
}
}
}
} else {
return nil, fmt.Errorf("could not parse file: %w", err)
}
// Sort the slice of address chunks by address, so that we can iterate
// through it to calculate section sizes.
sort.Slice(addresses, func(i, j int) bool {
if addresses[i].Address == addresses[j].Address {
// Very rarely, there might be duplicate addresses.
// If that happens, sort the largest chunks first.
return addresses[i].Length > addresses[j].Length
}
return addresses[i].Address < addresses[j].Address
})
// Now finally determine the binary/RAM size usage per package by going
// through each allocated section.
sizes := make(map[string]packageSize)
for _, section := range sections {
switch section.Type {
case memoryCode:
readSection(section, addresses, func(path string, size uint64, isVariable bool) {
field := sizes[path]
if isVariable {
field.ROData += size
} else {
field.Code += size
}
sizes[path] = field
}, packagePathMap)
case memoryROData:
readSection(section, addresses, func(path string, size uint64, isVariable bool) {
field := sizes[path]
field.ROData += size
sizes[path] = field
}, packagePathMap)
case memoryData:
readSection(section, addresses, func(path string, size uint64, isVariable bool) {
field := sizes[path]
field.Data += size
sizes[path] = field
}, packagePathMap)
case memoryBSS:
readSection(section, addresses, func(path string, size uint64, isVariable bool) {
field := sizes[path]
field.BSS += size
sizes[path] = field
}, packagePathMap)
case memoryStack:
// We store the C stack as a pseudo-package.
sizes["C stack"] = packageSize{
BSS: section.Size,
}
}
}
// ...and summarize the results.
program := &programSize{
Packages: sizes,
}
for _, pkg := range sizes {
program.Code += pkg.Code
program.ROData += pkg.ROData
program.Data += pkg.Data
program.BSS += pkg.BSS
}
return program, nil
}
// readSection determines for each byte in this section to which package it
// belongs. It reports this usage through the addSize callback.
func readSection(section memorySection, addresses []addressLine, addSize func(string, uint64, bool), packagePathMap map[string]string) {
// The addr variable tracks at which address we are while going through this
// section. We start at the beginning.
addr := section.Address
sectionEnd := section.Address + section.Size
if sizesDebug {
fmt.Printf("%08x..%08x %5d: %s\n", addr, sectionEnd, section.Size, section.Type)
}
for _, line := range addresses {
if line.Address < section.Address || line.Address+line.Length > sectionEnd {
// Check that this line is entirely within the section.
// Don't bother dealing with line entries that cross sections (that
// seems rather unlikely anyway).
continue
}
if addr < line.Address {
// There is a gap: there is a space between the current and the
// previous line entry.
addSize("(unknown)", line.Address-addr, false)
if sizesDebug {
fmt.Printf("%08x..%08x %5d: unknown (gap)\n", addr, line.Address, line.Address-addr)
}
}
if addr > line.Address+line.Length {
// The current line is already covered by a previous line entry.
// Simply skip it.
continue
}
// At this point, addr falls within the current line (probably at the
// start).
length := line.Length
if addr > line.Address {
// There is some overlap: the previous line entry already covered
// part of this line entry. So reduce the length to add to the
// remaining bit of the line entry.
length = line.Length - (addr - line.Address)
}
// Finally, mark this chunk of memory as used by the given package.
addSize(findPackagePath(line.File, packagePathMap), length, line.IsVariable)
addr = line.Address + line.Length
}
if addr < sectionEnd {
// There is a gap at the end of the section.
addSize("(unknown)", sectionEnd-addr, false)
if sizesDebug {
fmt.Printf("%08x..%08x %5d: unknown (end)\n", addr, sectionEnd, sectionEnd-addr)
}
}
}
// findPackagePath returns the Go package (or a pseudo package) for the given
// path. It uses some heuristics, for example for some C libraries.
func findPackagePath(path string, packagePathMap map[string]string) string {
// Check whether this path is part of one of the compiled packages.
packagePath, ok := packagePathMap[filepath.Dir(path)]
if !ok {
if strings.HasPrefix(path, filepath.Join(goenv.Get("TINYGOROOT"), "lib")) {
// Emit C libraries (in the lib subdirectory of TinyGo) as a single
// package, with a "C" prefix. For example: "C compiler-rt" for the
// compiler runtime library from LLVM.
packagePath = "C " + strings.Split(strings.TrimPrefix(path, filepath.Join(goenv.Get("TINYGOROOT"), "lib")), string(os.PathSeparator))[1]
} else if packageSymbolRegexp.MatchString(path) {
// Parse symbol names like main$alloc or runtime$string.
packagePath = path[:strings.LastIndex(path, "$")]
} else if reflectDataRegexp.MatchString(path) {
// Parse symbol names like reflect.structTypesSidetable.
packagePath = "Go reflect data"
} else if path == "<Go interface assert>" {
// Interface type assert, generated by the interface lowering pass.
packagePath = "Go interface assert"
} else if path == "<Go interface method>" {
// Interface method wrapper (switch over all concrete types),
// generated by the interface lowering pass.
packagePath = "Go interface method"
} else if path == "<stdin>" {
// This can happen when the source code (in Go) doesn't have a
// source file and uses "-" as the location. Somewhere this is
// converted to "<stdin>".
// Convert this back to the "-" string. Eventually, this should be
// fixed in the compiler.
packagePath = "-"
} else {
// This is some other path. Not sure what it is, so just emit its directory.
packagePath = filepath.Dir(path) // fallback
}
}
return packagePath
}