tinygo/tools/gen-device-avr/gen-device-avr.go
Ayke van Laethem 2fb866ca86 avr: add attiny1616 support
This is just support for the chip, no boards are currently supported.
However, you can use this target on a custom board.

Notes:

  - This required a new runtime and machine implementation, because the
    hardware is actually very different (and much nicer than older
    AVRs!).
  - I had to update gen-device-avr to support this chip. This also
    affects the generated output of other AVRs, but I checked all chips
    we support and there shouldn't be any backwards incompatible
    changes.
  - I did not implement peripherals like UART, I2C, SPI, etc because I
    don't need them. That is left to do in the future.

You can flash these chips with only a UART and a 1kOhm resistor, which
is really nice (no special hardware needed). Here is the program I've
used for this purpose: https://pypi.org/project/pymcuprog/
2023-05-20 21:18:02 +02:00

723 строки
19 КиБ
Go
Исполняемый файл

package main
import (
"bufio"
"encoding/xml"
"fmt"
"html/template"
"math/bits"
"os"
"path/filepath"
"runtime"
"sort"
"strconv"
"strings"
"sync"
)
type AVRToolsDeviceFile struct {
XMLName xml.Name `xml:"avr-tools-device-file"`
Devices []struct {
Name string `xml:"name,attr"`
Architecture string `xml:"architecture,attr"`
Family string `xml:"family,attr"`
AddressSpaces []struct {
Name string `xml:"name,attr"`
Size string `xml:"size,attr"`
MemorySegments []struct {
Name string `xml:"name,attr"`
Start string `xml:"start,attr"`
Size string `xml:"size,attr"`
} `xml:"memory-segment"`
} `xml:"address-spaces>address-space"`
PeripheralInstances []struct {
Name string `xml:"name,attr"`
Caption string `xml:"caption,attr"`
RegisterGroup struct {
NameInModule string `xml:"name-in-module,attr"`
Offset string `xml:"offset,attr"`
} `xml:"register-group"`
} `xml:"peripherals>module>instance"`
Interrupts []*XMLInterrupt `xml:"interrupts>interrupt"`
} `xml:"devices>device"`
PeripheralRegisterGroups []struct {
Name string `xml:"name,attr"`
Caption string `xml:"caption,attr"`
Registers []struct {
Name string `xml:"name,attr"`
Caption string `xml:"caption,attr"`
Offset string `xml:"offset,attr"`
Size uint64 `xml:"size,attr"`
Bitfields []struct {
Name string `xml:"name,attr"`
Caption string `xml:"caption,attr"`
Mask string `xml:"mask,attr"`
} `xml:"bitfield"`
} `xml:"register"`
} `xml:"modules>module>register-group"`
}
type XMLInterrupt struct {
Index int `xml:"index,attr"`
Name string `xml:"name,attr"`
Instance string `xml:"module-instance,attr"`
Caption string `xml:"caption,attr"`
}
type Device struct {
metadata map[string]interface{}
interrupts []Interrupt
types []*PeripheralType
instances []*PeripheralInstance
oldStyle bool
}
// AddressSpace is the Go version of an XML element like the following:
//
// <address-space endianness="little" name="data" id="data" start="0x0000" size="0x0900">
//
// It describes one address space in an AVR microcontroller. One address space
// may have multiple memory segments.
type AddressSpace struct {
Size string
Segments map[string]MemorySegment
}
// MemorySegment is the Go version of an XML element like the following:
//
// <memory-segment name="IRAM" start="0x0100" size="0x0800" type="ram" external="false"/>
//
// It describes a single contiguous area of memory in a particular address space
// (see AddressSpace).
type MemorySegment struct {
start int64
size int64
}
type Interrupt struct {
Index int
Name string
Caption string
}
// Peripheral instance, for example PORTB
type PeripheralInstance struct {
Name string
Caption string
Address uint64
Type *PeripheralType
}
// Peripheral type, for example PORT (if it's shared between different
// instances, which is the case for new-style ATDF files).
type PeripheralType struct {
Name string
Caption string
Registers []*Register
Instances []*PeripheralInstance
}
// Single register or struct field in a peripheral type.
type Register struct {
Caption string
Name string
Type string
Offset uint64 // offset, only for old-style ATDF files
Bitfields []Bitfield
}
type Bitfield struct {
Name string
Caption string
Mask uint
}
func readATDF(path string) (*Device, error) {
// Read Atmel device descriptor files.
// See: http://packs.download.atmel.com
// Open the XML file.
f, err := os.Open(path)
if err != nil {
return nil, err
}
defer f.Close()
decoder := xml.NewDecoder(f)
xml := &AVRToolsDeviceFile{}
err = decoder.Decode(xml)
if err != nil {
return nil, err
}
device := xml.Devices[0]
memorySizes := make(map[string]*AddressSpace, len(device.AddressSpaces))
for _, el := range device.AddressSpaces {
memorySizes[el.Name] = &AddressSpace{
Size: el.Size,
Segments: make(map[string]MemorySegment),
}
for _, segmentEl := range el.MemorySegments {
start, err := strconv.ParseInt(segmentEl.Start, 0, 32)
if err != nil {
return nil, err
}
size, err := strconv.ParseInt(segmentEl.Size, 0, 32)
if err != nil {
return nil, err
}
memorySizes[el.Name].Segments[segmentEl.Name] = MemorySegment{
start: start,
size: size,
}
}
}
// There appear to be two kinds of devices and ATDF files: those before
// ~2017 and those introduced as part of the tinyAVR (1 and 2 series).
// The newer devices are structured slightly differently, with peripherals
// laid out more like Cortex-M chips and one or more instances per chip.
// Older designs basically just have a bunch of registers with little
// structure in them.
// The code generated for these chips is quite different:
// * For old-style chips we'll generate a bunch of registers without
// peripherals (e.g. PORTB, DDRB, etc).
// * For new-style chips we'll generate proper peripheral structs like we
// do for Cortex-M chips.
oldStyle := true
for _, instanceEl := range device.PeripheralInstances {
if instanceEl.RegisterGroup.NameInModule == "" {
continue
}
offset, err := strconv.ParseUint(instanceEl.RegisterGroup.Offset, 0, 16)
if err != nil {
return nil, fmt.Errorf("failed to parse offset %#v of peripheral %s: %v", instanceEl.RegisterGroup.Offset, instanceEl.Name, err)
}
if offset != 0 {
oldStyle = false
}
}
// Read all peripheral types.
var types []*PeripheralType
typeMap := make(map[string]*PeripheralType)
allRegisters := map[string]*Register{}
for _, registerGroupEl := range xml.PeripheralRegisterGroups {
var regs []*Register
regEls := registerGroupEl.Registers
if !oldStyle {
// We only need to sort registers when we're generating peripheral
// structs.
sort.SliceStable(regEls, func(i, j int) bool {
return regEls[i].Offset < regEls[j].Offset
})
}
addReg := func(reg *Register) {
if oldStyle {
// Check for duplicate registers (they happen).
if reg2 := allRegisters[reg.Name]; reg2 != nil {
return
}
allRegisters[reg.Name] = reg
}
regs = append(regs, reg)
}
offset := uint64(0)
for _, regEl := range regEls {
regOffset, err := strconv.ParseUint(regEl.Offset, 0, 64)
if err != nil {
return nil, fmt.Errorf("failed to parse offset %#v of register %s: %v", regEl.Offset, regEl.Name, err)
}
if !oldStyle {
// Add some padding to the gap in the struct, if needed.
if offset < regOffset {
regs = append(regs, &Register{
Name: "_",
Type: fmt.Sprintf("[%d]volatile.Register8", regOffset-offset),
})
offset = regOffset
}
// Check for overlapping registers.
if offset > regOffset {
return nil, fmt.Errorf("register %s in peripheral %s overlaps with another register", regEl.Name, registerGroupEl.Name)
}
}
var bitfields []Bitfield
for _, bitfieldEl := range regEl.Bitfields {
maskString := bitfieldEl.Mask
if len(maskString) == 2 {
// Two devices (ATtiny102 and ATtiny104) appear to have an
// error in the bitfields, leaving out the '0x' prefix.
maskString = "0x" + maskString
}
mask, err := strconv.ParseUint(maskString, 0, 32)
if err != nil {
return nil, fmt.Errorf("failed to parse mask %#v of bitfield %s: %v", maskString, bitfieldEl.Name, err)
}
name := regEl.Name + "_" + bitfieldEl.Name
if !oldStyle {
name = registerGroupEl.Name + "_" + name
}
bitfields = append(bitfields, Bitfield{
Name: name,
Caption: bitfieldEl.Caption,
Mask: uint(mask),
})
}
switch regEl.Size {
case 1:
addReg(&Register{
Name: regEl.Name,
Type: "volatile.Register8",
Caption: regEl.Caption,
Offset: regOffset,
Bitfields: bitfields,
})
case 2:
addReg(&Register{
Name: regEl.Name + "L",
Type: "volatile.Register8",
Caption: regEl.Caption + " (lower bits)",
Offset: regOffset + 0,
})
addReg(&Register{
Name: regEl.Name + "H",
Type: "volatile.Register8",
Caption: regEl.Caption + " (upper bits)",
Offset: regOffset + 1,
})
default:
panic("todo: unknown size")
}
offset += regEl.Size
}
periphType := &PeripheralType{
Name: registerGroupEl.Name,
Caption: registerGroupEl.Caption,
Registers: regs,
}
types = append(types, periphType)
typeMap[periphType.Name] = periphType
}
// Read all peripheral instances.
var instances []*PeripheralInstance
for _, instanceEl := range device.PeripheralInstances {
if instanceEl.RegisterGroup.NameInModule == "" {
continue
}
offset, err := strconv.ParseUint(instanceEl.RegisterGroup.Offset, 0, 16)
if err != nil {
return nil, fmt.Errorf("failed to parse offset %#v of peripheral %s: %v", instanceEl.RegisterGroup.Offset, instanceEl.Name, err)
}
periphType := typeMap[instanceEl.RegisterGroup.NameInModule]
instance := &PeripheralInstance{
Name: instanceEl.Name,
Caption: instanceEl.Caption,
Address: offset,
Type: periphType,
}
instances = append(instances, instance)
periphType.Instances = append(periphType.Instances, instance)
}
ramStart := int64(0)
ramSize := int64(0) // for devices with no RAM
for _, ramSegmentName := range []string{"IRAM", "INTERNAL_SRAM", "SRAM"} {
if segment, ok := memorySizes["data"].Segments[ramSegmentName]; ok {
ramStart = segment.start
ramSize = segment.size
}
}
// Flash that is mapped into the data address space (attiny10, attiny1616,
// etc).
mappedFlashStart := int64(0)
for _, name := range []string{"MAPPED_PROGMEM", "MAPPED_FLASH"} {
if segment, ok := memorySizes["data"].Segments[name]; ok {
mappedFlashStart = segment.start
}
}
flashSize, err := strconv.ParseInt(memorySizes["prog"].Size, 0, 32)
if err != nil {
return nil, err
}
// Process the interrupts to clean up inconsistencies between ATDF files.
var interrupts []Interrupt
hasResetInterrupt := false
for _, intr := range device.Interrupts {
name := intr.Name
if intr.Instance != "" {
// ATDF files for newer chips also have an instance name, which must
// be specified to make the interrupt name unique.
name = intr.Instance + "_" + name
}
if name == "RESET" {
hasResetInterrupt = true
}
interrupts = append(interrupts, Interrupt{
Index: intr.Index,
Name: name,
Caption: intr.Caption,
})
}
if !hasResetInterrupt {
interrupts = append(interrupts, Interrupt{
Index: 0,
Name: "RESET",
})
}
sort.SliceStable(interrupts, func(i, j int) bool {
return interrupts[i].Index < interrupts[j].Index
})
return &Device{
metadata: map[string]interface{}{
"file": filepath.Base(path),
"descriptorSource": "http://packs.download.atmel.com/",
"name": device.Name,
"nameLower": strings.ToLower(device.Name),
"description": fmt.Sprintf("Device information for the %s.", device.Name),
"arch": device.Architecture,
"family": device.Family,
"flashSize": int(flashSize),
"ramStart": ramStart,
"ramSize": ramSize,
"mappedFlashStart": mappedFlashStart,
"numInterrupts": len(device.Interrupts),
},
interrupts: interrupts,
types: types,
instances: instances,
oldStyle: oldStyle,
}, nil
}
func writeGo(outdir string, device *Device) error {
// The Go module for this device.
outf, err := os.Create(outdir + "/" + device.metadata["nameLower"].(string) + ".go")
if err != nil {
return err
}
defer outf.Close()
w := bufio.NewWriter(outf)
maxInterruptNum := 0
for _, intr := range device.interrupts {
if intr.Index > maxInterruptNum {
maxInterruptNum = intr.Index
}
}
t := template.Must(template.New("go").Parse(`// Automatically generated file. DO NOT EDIT.
// Generated by gen-device-avr.go from {{.metadata.file}}, see {{.metadata.descriptorSource}}
//go:build {{.pkgName}} && {{.metadata.nameLower}}
// {{.metadata.description}}
package {{.pkgName}}
import (
"runtime/volatile"
"unsafe"
)
// Some information about this device.
const (
DEVICE = "{{.metadata.name}}"
ARCH = "{{.metadata.arch}}"
FAMILY = "{{.metadata.family}}"
)
// Interrupts
const ({{range .interrupts}}
IRQ_{{.Name}} = {{.Index}} // {{.Caption}}{{end}}
IRQ_max = {{.interruptMax}} // Highest interrupt number on this device.
)
// Pseudo function call that is replaced by the compiler with the actual
// functions registered through interrupt.New.
//go:linkname callHandlers runtime/interrupt.callHandlers
func callHandlers(num int)
{{- range .interrupts}}
//export __vector_{{.Name}}
//go:interrupt
func interrupt{{.Name}}() {
callHandlers(IRQ_{{.Name}})
}
{{- end}}
{{if .oldStyle -}}
// Peripherals.
var (
{{- range .instances}}
// {{.Caption}}
{{range .Type.Registers -}}
{{if ne .Name "_" -}}
{{.Name}} = (*{{.Type}})(unsafe.Pointer(uintptr(0x{{printf "%x" .Offset}})))
{{end -}}
{{end -}}
{{end}})
{{else}}
// Peripherals instances.
var (
{{- range .instances -}}
{{.Name}} = (*{{.Type.Name}}_Type)(unsafe.Pointer(uintptr(0x{{printf "%x" .Address}})))
{{- if .Caption}}// {{.Caption}}{{end}}
{{end -}}
)
// Peripheral type definitions.
{{range .types}}
type {{.Name}}_Type struct {
{{range .Registers -}}
{{.Name}} {{.Type}} {{if .Caption}} // {{.Caption}} {{end}}
{{end -}}
}
{{end}}
{{end}}
`))
err = t.Execute(w, map[string]interface{}{
"metadata": device.metadata,
"pkgName": filepath.Base(strings.TrimRight(outdir, "/")),
"interrupts": device.interrupts,
"interruptMax": maxInterruptNum,
"instances": device.instances,
"types": device.types,
"oldStyle": device.oldStyle,
})
if err != nil {
return err
}
// Write bitfields.
for _, peripheral := range device.types {
// Only write bitfields when there are any.
numFields := 0
for _, r := range peripheral.Registers {
numFields += len(r.Bitfields)
}
if numFields == 0 {
continue
}
fmt.Fprintf(w, "\n// Bitfields for %s: %s\nconst(", peripheral.Name, peripheral.Caption)
for _, register := range peripheral.Registers {
if len(register.Bitfields) == 0 {
continue
}
fmt.Fprintf(w, "\n\t// %s", register.Name)
if register.Caption != "" {
fmt.Fprintf(w, ": %s", register.Caption)
}
fmt.Fprintf(w, "\n")
allBits := map[string]interface{}{}
for _, bitfield := range register.Bitfields {
if bits.OnesCount(bitfield.Mask) == 1 {
fmt.Fprintf(w, "\t%s = 0x%x", bitfield.Name, bitfield.Mask)
if len(bitfield.Caption) != 0 {
fmt.Fprintf(w, " // %s", bitfield.Caption)
}
fmt.Fprintf(w, "\n")
fmt.Fprintf(w, "\t%s_Msk = 0x%x", bitfield.Name, bitfield.Mask)
if len(bitfield.Caption) != 0 {
fmt.Fprintf(w, " // %s", bitfield.Caption)
}
fmt.Fprintf(w, "\n")
allBits[bitfield.Name] = nil
} else {
n := 0
for i := uint(0); i < 8; i++ {
if (bitfield.Mask>>i)&1 == 0 {
continue
}
name := fmt.Sprintf("%s%d", bitfield.Name, n)
if _, ok := allBits[name]; !ok {
fmt.Fprintf(w, "\t%s = 0x%x", name, 1<<i)
if len(bitfield.Caption) != 0 {
fmt.Fprintf(w, " // %s", bitfield.Caption)
}
fmt.Fprintf(w, "\n")
allBits[name] = nil
}
n++
}
fmt.Fprintf(w, "\t%s_Msk = 0x%x", bitfield.Name, bitfield.Mask)
if len(bitfield.Caption) != 0 {
fmt.Fprintf(w, " // %s", bitfield.Caption)
}
fmt.Fprintf(w, "\n")
}
}
}
fmt.Fprintf(w, ")\n")
}
return w.Flush()
}
func writeAsm(outdir string, device *Device) error {
// The interrupt vector, which is hard to write directly in Go.
out, err := os.Create(outdir + "/" + device.metadata["nameLower"].(string) + ".s")
if err != nil {
return err
}
defer out.Close()
t := template.Must(template.New("asm").Parse(
`; Automatically generated file. DO NOT EDIT.
; Generated by gen-device-avr.go from {{.file}}, see {{.descriptorSource}}
; This is the default handler for interrupts, if triggered but not defined.
; Sleep inside so that an accidentally triggered interrupt won't drain the
; battery of a battery-powered device.
.section .text.__vector_default
.global __vector_default
__vector_default:
sleep
rjmp __vector_default
; Avoid the need for repeated .weak and .set instructions.
.macro IRQ handler
.weak \handler
.set \handler, __vector_default
.endm
; The interrupt vector of this device. Must be placed at address 0 by the linker.
.section .vectors, "a", %progbits
.global __vectors
`))
err = t.Execute(out, device.metadata)
if err != nil {
return err
}
num := 0
for _, intr := range device.interrupts {
jmp := "jmp"
if device.metadata["flashSize"].(int) <= 8*1024 {
// When a device has 8kB or less flash, rjmp (2 bytes) must be used
// instead of jmp (4 bytes).
// https://www.avrfreaks.net/forum/rjmp-versus-jmp
jmp = "rjmp"
}
if intr.Index < num {
// Some devices have duplicate interrupts, probably for historical
// reasons.
continue
}
for intr.Index > num {
fmt.Fprintf(out, " %s __vector_default\n", jmp)
num++
}
num++
fmt.Fprintf(out, " %s __vector_%s\n", jmp, intr.Name)
}
fmt.Fprint(out, `
; Define default implementations for interrupts, redirecting to
; __vector_default when not implemented.
`)
for _, intr := range device.interrupts {
fmt.Fprintf(out, " IRQ __vector_%s\n", intr.Name)
}
return nil
}
func writeLD(outdir string, device *Device) error {
// Variables for the linker script.
out, err := os.Create(outdir + "/" + device.metadata["nameLower"].(string) + ".ld")
if err != nil {
return err
}
defer out.Close()
t := template.Must(template.New("ld").Parse(`/* Automatically generated file. DO NOT EDIT. */
/* Generated by gen-device-avr.go from {{.file}}, see {{.descriptorSource}} */
__flash_size = 0x{{printf "%x" .flashSize}};
{{if .mappedFlashStart -}}
__mapped_flash_start = 0x{{printf "%x" .mappedFlashStart}};
{{end -}}
__ram_start = 0x{{printf "%x" .ramStart}};
__ram_size = 0x{{printf "%x" .ramSize}};
__num_isrs = {{.numInterrupts}};
`))
return t.Execute(out, device.metadata)
}
func processFile(filepath, outdir string) error {
device, err := readATDF(filepath)
if err != nil {
return err
}
err = writeGo(outdir, device)
if err != nil {
return err
}
err = writeAsm(outdir, device)
if err != nil {
return err
}
return writeLD(outdir, device)
}
func generate(indir, outdir string) error {
// Read list of ATDF files to process.
matches, err := filepath.Glob(indir + "/*.atdf")
if err != nil {
return err
}
// Start worker goroutines.
var wg sync.WaitGroup
workChan := make(chan string)
errChan := make(chan error, 1)
for i := 0; i < runtime.NumCPU(); i++ {
go func() {
for filepath := range workChan {
err := processFile(filepath, outdir)
wg.Done()
if err != nil {
// Store error to errChan if no error was stored before.
select {
case errChan <- err:
default:
}
}
}
}()
}
// Submit all jobs to the goroutines.
wg.Add(len(matches))
for _, filepath := range matches {
fmt.Println(filepath)
workChan <- filepath
}
close(workChan)
// Wait until all workers have finished.
wg.Wait()
// Check for an error.
select {
case err := <-errChan:
return err
default:
return nil
}
}
func main() {
indir := os.Args[1] // directory with register descriptor files (*.atdf)
outdir := os.Args[2] // output directory
err := generate(indir, outdir)
if err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
}