
This makes it possible to //go:linkname them from other places, like in the reflect package. And is in my opinion a much cleaner solution.
136 строки
5 КиБ
Go
136 строки
5 КиБ
Go
package compiler
|
|
|
|
// This file contains helper functions to create calls to LLVM intrinsics.
|
|
|
|
import (
|
|
"go/token"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"golang.org/x/tools/go/ssa"
|
|
"tinygo.org/x/go-llvm"
|
|
)
|
|
|
|
// Define unimplemented intrinsic functions.
|
|
//
|
|
// Some functions are either normally implemented in Go assembly (like
|
|
// sync/atomic functions) or intentionally left undefined to be implemented
|
|
// directly in the compiler (like runtime/volatile functions). Either way, look
|
|
// for these and implement them if this is the case.
|
|
func (b *builder) defineIntrinsicFunction() {
|
|
name := b.fn.RelString(nil)
|
|
switch {
|
|
case name == "runtime.memcpy" || name == "runtime.memmove":
|
|
b.createMemoryCopyImpl()
|
|
case name == "runtime.memzero":
|
|
b.createMemoryZeroImpl()
|
|
case strings.HasPrefix(name, "runtime/volatile.Load"):
|
|
b.createVolatileLoad()
|
|
case strings.HasPrefix(name, "runtime/volatile.Store"):
|
|
b.createVolatileStore()
|
|
case strings.HasPrefix(name, "sync/atomic.") && token.IsExported(b.fn.Name()):
|
|
b.createFunctionStart()
|
|
returnValue := b.createAtomicOp(b.fn.Name())
|
|
if !returnValue.IsNil() {
|
|
b.CreateRet(returnValue)
|
|
} else {
|
|
b.CreateRetVoid()
|
|
}
|
|
}
|
|
}
|
|
|
|
// createMemoryCopyImpl creates a call to a builtin LLVM memcpy or memmove
|
|
// function, declaring this function if needed. These calls are treated
|
|
// specially by optimization passes possibly resulting in better generated code,
|
|
// and will otherwise be lowered to regular libc memcpy/memmove calls.
|
|
func (b *builder) createMemoryCopyImpl() {
|
|
b.createFunctionStart()
|
|
fnName := "llvm." + b.fn.Name() + ".p0i8.p0i8.i" + strconv.Itoa(b.uintptrType.IntTypeWidth())
|
|
llvmFn := b.mod.NamedFunction(fnName)
|
|
if llvmFn.IsNil() {
|
|
fnType := llvm.FunctionType(b.ctx.VoidType(), []llvm.Type{b.i8ptrType, b.i8ptrType, b.uintptrType, b.ctx.Int1Type()}, false)
|
|
llvmFn = llvm.AddFunction(b.mod, fnName, fnType)
|
|
}
|
|
var params []llvm.Value
|
|
for _, param := range b.fn.Params {
|
|
params = append(params, b.getValue(param))
|
|
}
|
|
params = append(params, llvm.ConstInt(b.ctx.Int1Type(), 0, false))
|
|
b.CreateCall(llvmFn, params, "")
|
|
b.CreateRetVoid()
|
|
}
|
|
|
|
// createMemoryZeroImpl creates calls to llvm.memset.* to zero a block of
|
|
// memory, declaring the function if needed. These calls will be lowered to
|
|
// regular libc memset calls if they aren't optimized out in a different way.
|
|
func (b *builder) createMemoryZeroImpl() {
|
|
b.createFunctionStart()
|
|
fnName := "llvm.memset.p0i8.i" + strconv.Itoa(b.uintptrType.IntTypeWidth())
|
|
llvmFn := b.mod.NamedFunction(fnName)
|
|
if llvmFn.IsNil() {
|
|
fnType := llvm.FunctionType(b.ctx.VoidType(), []llvm.Type{b.i8ptrType, b.ctx.Int8Type(), b.uintptrType, b.ctx.Int1Type()}, false)
|
|
llvmFn = llvm.AddFunction(b.mod, fnName, fnType)
|
|
}
|
|
params := []llvm.Value{
|
|
b.getValue(b.fn.Params[0]),
|
|
llvm.ConstInt(b.ctx.Int8Type(), 0, false),
|
|
b.getValue(b.fn.Params[1]),
|
|
llvm.ConstInt(b.ctx.Int1Type(), 0, false),
|
|
}
|
|
b.CreateCall(llvmFn, params, "")
|
|
b.CreateRetVoid()
|
|
}
|
|
|
|
var mathToLLVMMapping = map[string]string{
|
|
"math.Sqrt": "llvm.sqrt.f64",
|
|
"math.Floor": "llvm.floor.f64",
|
|
"math.Ceil": "llvm.ceil.f64",
|
|
"math.Trunc": "llvm.trunc.f64",
|
|
}
|
|
|
|
// createMathOp tries to lower the given call as a LLVM math intrinsic, if
|
|
// possible. It returns the call result if possible, and a boolean whether it
|
|
// succeeded. If it doesn't succeed, the architecture doesn't support the given
|
|
// intrinsic.
|
|
func (b *builder) createMathOp(call *ssa.CallCommon) (llvm.Value, bool) {
|
|
// Check whether this intrinsic is supported on the given GOARCH.
|
|
// If it is unsupported, this can have two reasons:
|
|
//
|
|
// 1. LLVM can expand the intrinsic inline (using float instructions), but
|
|
// the result doesn't pass the tests of the math package.
|
|
// 2. LLVM cannot expand the intrinsic inline, will therefore lower it as a
|
|
// libm function call, but the libm function call also fails the math
|
|
// package tests.
|
|
//
|
|
// Whatever the implementation, it must pass the tests in the math package
|
|
// so unfortunately only the below intrinsic+architecture combinations are
|
|
// supported.
|
|
name := call.StaticCallee().RelString(nil)
|
|
switch name {
|
|
case "math.Ceil", "math.Floor", "math.Trunc":
|
|
if b.GOARCH != "wasm" && b.GOARCH != "arm64" {
|
|
return llvm.Value{}, false
|
|
}
|
|
case "math.Sqrt":
|
|
if b.GOARCH != "wasm" && b.GOARCH != "amd64" && b.GOARCH != "386" {
|
|
return llvm.Value{}, false
|
|
}
|
|
default:
|
|
return llvm.Value{}, false // only the above functions are supported.
|
|
}
|
|
|
|
llvmFn := b.mod.NamedFunction(mathToLLVMMapping[name])
|
|
if llvmFn.IsNil() {
|
|
// The intrinsic doesn't exist yet, so declare it.
|
|
// At the moment, all supported intrinsics have the form "double
|
|
// foo(double %x)" so we can hardcode the signature here.
|
|
llvmType := llvm.FunctionType(b.ctx.DoubleType(), []llvm.Type{b.ctx.DoubleType()}, false)
|
|
llvmFn = llvm.AddFunction(b.mod, mathToLLVMMapping[name], llvmType)
|
|
}
|
|
// Create a call to the intrinsic.
|
|
args := make([]llvm.Value, len(call.Args))
|
|
for i, arg := range call.Args {
|
|
args[i] = b.getValue(arg)
|
|
}
|
|
return b.CreateCall(llvmFn, args, ""), true
|
|
}
|