tinygo/src/runtime/runtime_nrf.go
Ayke van Laethem 3c55689566 runtime: refactor time handling
This commit refactors both determining the current time and sleeping for
a given time. It also improves precision for many chips.

  * The nrf chips had a long-standing TODO comment about a slightly
    inaccurate clock. This should now be fixed.
  * The SAM D2x/D5x chips may have a slightly more accurate clock,
    although probably within the error margin of the RTC. Also, by
    working with RTC ticks and converting in the least number of places,
    code size is often slightly reduced (usually just a few bytes, up to
    around 1kB in some cases).
  * I believe the HiFive1 rev B timer was slightly wrong (32768Hz vs
    30517.6Hz). Because the datasheet says the clock runs at 32768Hz,
    I've used the same conversion code here as in the nrf and sam cases.
  * I couldn't test both stm32 timers, so I kept them as they currently
    are. It may be possible to make them more efficient by using the
    native tick frequency instead of using microseconds everywhere.
2020-05-25 22:08:28 +02:00

119 строки
2,8 КиБ
Go

// +build nrf
package runtime
import (
"device/arm"
"device/nrf"
"machine"
"runtime/interrupt"
"runtime/volatile"
)
type timeUnit int64
//go:linkname systemInit SystemInit
func systemInit()
func postinit() {}
//export Reset_Handler
func main() {
systemInit()
preinit()
run()
abort()
}
func init() {
machine.UART0.Configure(machine.UARTConfig{})
initLFCLK()
initRTC()
}
func initLFCLK() {
if machine.HasLowFrequencyCrystal {
nrf.CLOCK.LFCLKSRC.Set(nrf.CLOCK_LFCLKSTAT_SRC_Xtal)
}
nrf.CLOCK.TASKS_LFCLKSTART.Set(1)
for nrf.CLOCK.EVENTS_LFCLKSTARTED.Get() == 0 {
}
nrf.CLOCK.EVENTS_LFCLKSTARTED.Set(0)
}
func initRTC() {
nrf.RTC1.TASKS_START.Set(1)
intr := interrupt.New(nrf.IRQ_RTC1, func(intr interrupt.Interrupt) {
nrf.RTC1.INTENCLR.Set(nrf.RTC_INTENSET_COMPARE0)
nrf.RTC1.EVENTS_COMPARE[0].Set(0)
rtc_wakeup.Set(1)
})
intr.SetPriority(0xc0) // low priority
intr.Enable()
}
func putchar(c byte) {
machine.UART0.WriteByte(c)
}
const asyncScheduler = false
func sleepTicks(d timeUnit) {
for d != 0 {
ticks() // update timestamp
ticks := uint32(d) & 0x7fffff // 23 bits (to be on the safe side)
rtc_sleep(ticks)
d -= timeUnit(ticks)
}
}
var (
timestamp timeUnit // nanoseconds since boottime
rtcLastCounter uint32 // 24 bits ticks
)
// ticksToNanoseconds converts RTC ticks (at 32768Hz) to nanoseconds.
func ticksToNanoseconds(ticks timeUnit) int64 {
// The following calculation is actually the following, but with both sides
// reduced to reduce the risk of overflow:
// ticks * 1e9 / 32768
return int64(ticks) * 1953125 / 64
}
// nanosecondsToTicks converts nanoseconds to RTC ticks (running at 32768Hz).
func nanosecondsToTicks(ns int64) timeUnit {
// The following calculation is actually the following, but with both sides
// reduced to reduce the risk of overflow:
// ns * 32768 / 1e9
return timeUnit(ns * 64 / 1953125)
}
// Monotonically increasing numer of ticks since start.
//
// Note: very long pauses between measurements (more than 8 minutes) may
// overflow the counter, leading to incorrect results. This might be fixed by
// handling the overflow event.
func ticks() timeUnit {
rtcCounter := uint32(nrf.RTC1.COUNTER.Get())
offset := (rtcCounter - rtcLastCounter) & 0xffffff // change since last measurement
rtcLastCounter = rtcCounter
timestamp += timeUnit(offset)
return timestamp
}
var rtc_wakeup volatile.Register8
func rtc_sleep(ticks uint32) {
nrf.RTC1.INTENSET.Set(nrf.RTC_INTENSET_COMPARE0)
rtc_wakeup.Set(0)
if ticks == 1 {
// Race condition (even in hardware) at ticks == 1.
// TODO: fix this in a better way by detecting it, like the manual
// describes.
ticks = 2
}
nrf.RTC1.CC[0].Set((nrf.RTC1.COUNTER.Get() + ticks) & 0x00ffffff)
for rtc_wakeup.Get() == 0 {
arm.Asm("wfi")
}
}