
Call Frame Information is stored in the .debug_frame section and is used by debuggers for unwinding. For assembly, this information is not known. Debuggers will normally use heuristics to figure out the parent function in the absence of call frame information. This usually works fine, but is not enough for determining stack sizes. Instead, I hardcoded the stack size information in stacksize/stacksize.go, which is somewhat fragile. This change uses CFI assembly directives to store this information instead of hardcoding it. This change also fixes the following error message that would appear in GDB: Backtrace stopped: previous frame identical to this frame (corrupt stack?) More information on CFI: * https://sourceware.org/binutils/docs/as/CFI-directives.html * https://www.imperialviolet.org/2017/01/18/cfi.html
289 строки
7,3 КиБ
Go
289 строки
7,3 КиБ
Go
package stacksize
|
|
|
|
// This file implements parsing DWARF call frame information and interpreting
|
|
// the CFI bytecode, or enough of it for most practical code.
|
|
|
|
import (
|
|
"bytes"
|
|
"debug/elf"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
)
|
|
|
|
// dwarfCIE represents one DWARF Call Frame Information structure.
|
|
type dwarfCIE struct {
|
|
bytecode []byte
|
|
codeAlignmentFactor uint64
|
|
}
|
|
|
|
// parseFrames parses all call frame information from a .debug_frame section and
|
|
// provides the passed in symbols map with frame size information.
|
|
func parseFrames(f *elf.File, data []byte, symbols map[uint64]*CallNode) error {
|
|
if f.Class != elf.ELFCLASS32 {
|
|
// TODO: ELF64
|
|
return fmt.Errorf("expected ELF32")
|
|
}
|
|
cies := make(map[uint32]*dwarfCIE)
|
|
|
|
// Read each entity.
|
|
r := bytes.NewBuffer(data)
|
|
for {
|
|
start := len(data) - r.Len()
|
|
var length uint32
|
|
err := binary.Read(r, binary.LittleEndian, &length)
|
|
if err == io.EOF {
|
|
return nil
|
|
}
|
|
if err != nil {
|
|
return err
|
|
}
|
|
var cie uint32
|
|
err = binary.Read(r, binary.LittleEndian, &cie)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if cie == 0xffffffff {
|
|
// This is a CIE.
|
|
var fields struct {
|
|
Version uint8
|
|
Augmentation uint8
|
|
AddressSize uint8
|
|
SegmentSize uint8
|
|
}
|
|
err = binary.Read(r, binary.LittleEndian, &fields)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if fields.Version != 4 {
|
|
return fmt.Errorf("unimplemented: .debug_frame version %d", fields.Version)
|
|
}
|
|
if fields.Augmentation != 0 {
|
|
return fmt.Errorf("unimplemented: .debug_frame with augmentation")
|
|
}
|
|
if fields.SegmentSize != 0 {
|
|
return fmt.Errorf("unimplemented: .debug_frame with segment size")
|
|
}
|
|
codeAlignmentFactor, err := readULEB128(r)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, err = readSLEB128(r) // data alignment factor
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, err = readULEB128(r) // return address register
|
|
if err != nil {
|
|
return err
|
|
}
|
|
rest := (start + int(length) + 4) - (len(data) - r.Len())
|
|
bytecode := r.Next(rest)
|
|
cies[uint32(start)] = &dwarfCIE{
|
|
codeAlignmentFactor: codeAlignmentFactor,
|
|
bytecode: bytecode,
|
|
}
|
|
} else {
|
|
// This is a FDE.
|
|
var fields struct {
|
|
InitialLocation uint32
|
|
AddressRange uint32
|
|
}
|
|
err = binary.Read(r, binary.LittleEndian, &fields)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if _, ok := cies[cie]; !ok {
|
|
return fmt.Errorf("could not find CIE 0x%x in .debug_frame section", cie)
|
|
}
|
|
frame := frameInfo{
|
|
cie: cies[cie],
|
|
start: uint64(fields.InitialLocation),
|
|
loc: uint64(fields.InitialLocation),
|
|
length: uint64(fields.AddressRange),
|
|
}
|
|
rest := (start + int(length) + 4) - (len(data) - r.Len())
|
|
bytecode := r.Next(rest)
|
|
|
|
if frame.start == 0 {
|
|
// Not sure where these come from but they don't seem to be
|
|
// important.
|
|
continue
|
|
}
|
|
|
|
_, err = frame.exec(frame.cie.bytecode)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
entries, err := frame.exec(bytecode)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
var maxFrameSize uint64
|
|
for _, entry := range entries {
|
|
switch f.Machine {
|
|
case elf.EM_ARM:
|
|
if entry.cfaRegister != 13 { // r13 or sp
|
|
// something other than a stack pointer (on ARM)
|
|
return fmt.Errorf("%08x..%08x: unknown CFA register number %d", frame.start, frame.start+frame.length, entry.cfaRegister)
|
|
}
|
|
default:
|
|
return fmt.Errorf("unknown architecture: %s", f.Machine)
|
|
}
|
|
if entry.cfaOffset > maxFrameSize {
|
|
maxFrameSize = entry.cfaOffset
|
|
}
|
|
}
|
|
node := symbols[frame.start]
|
|
if node.Size != frame.length {
|
|
return fmt.Errorf("%s: symtab gives symbol length %d while DWARF gives symbol length %d", node, node.Size, frame.length)
|
|
}
|
|
node.FrameSize = maxFrameSize
|
|
node.FrameSizeType = Bounded
|
|
if debugPrint {
|
|
fmt.Printf("%08x..%08x: frame size %4d %s\n", frame.start, frame.start+frame.length, maxFrameSize, node)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// frameInfo contains the state of executing call frame information bytecode.
|
|
type frameInfo struct {
|
|
cie *dwarfCIE
|
|
start uint64
|
|
loc uint64
|
|
length uint64
|
|
cfaRegister uint64
|
|
cfaOffset uint64
|
|
}
|
|
|
|
// frameInfoLine represents one line in the frame table (.debug_frame) at one
|
|
// point in the execution of the bytecode.
|
|
type frameInfoLine struct {
|
|
loc uint64
|
|
cfaRegister uint64
|
|
cfaOffset uint64
|
|
}
|
|
|
|
func (fi *frameInfo) newLine() frameInfoLine {
|
|
return frameInfoLine{
|
|
loc: fi.loc,
|
|
cfaRegister: fi.cfaRegister,
|
|
cfaOffset: fi.cfaOffset,
|
|
}
|
|
}
|
|
|
|
// exec executes the given bytecode in the CFI. Most CFI bytecode is actually
|
|
// very simple and provides a way to determine the maximum call frame size.
|
|
//
|
|
// The frame size often changes multiple times in a function, for example the
|
|
// frame size may be adjusted in the prologue and epilogue. Each frameInfoLine
|
|
// may contain such a change.
|
|
func (fi *frameInfo) exec(bytecode []byte) ([]frameInfoLine, error) {
|
|
var entries []frameInfoLine
|
|
r := bytes.NewBuffer(bytecode)
|
|
for {
|
|
op, err := r.ReadByte()
|
|
if err != nil {
|
|
if err == io.EOF {
|
|
entries = append(entries, fi.newLine())
|
|
return entries, nil
|
|
}
|
|
return nil, err
|
|
}
|
|
highBits := op >> 6 // high order 2 bits
|
|
lowBits := op & 0x1f
|
|
switch highBits {
|
|
case 1: // DW_CFA_advance_loc
|
|
fi.loc += uint64(lowBits) * fi.cie.codeAlignmentFactor
|
|
entries = append(entries, fi.newLine())
|
|
case 2: // DW_CFA_offset
|
|
// This indicates where a register is saved on the stack in the
|
|
// prologue. We can ignore that for our purposes.
|
|
_, err := readULEB128(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
case 0:
|
|
switch lowBits {
|
|
case 0: // DW_CFA_nop
|
|
// no operation
|
|
case 0x07: // DW_CFA_undefined
|
|
// Marks a single register as undefined. This is used to stop
|
|
// unwinding in tinygo_startTask using:
|
|
// .cfi_undefined lr
|
|
// Ignore this directive.
|
|
_, err := readULEB128(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
case 0x0c: // DW_CFA_def_cfa
|
|
register, err := readULEB128(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
offset, err := readULEB128(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
fi.cfaRegister = register
|
|
fi.cfaOffset = offset
|
|
case 0x0e: // DW_CFA_def_cfa_offset
|
|
offset, err := readULEB128(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
fi.cfaOffset = offset
|
|
default:
|
|
return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x (for address 0x%x)", op, fi.loc)
|
|
}
|
|
default:
|
|
return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x (for address 0x%x)", op, fi.loc)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Source: https://en.wikipedia.org/wiki/LEB128#Decode_unsigned_integer
|
|
func readULEB128(r *bytes.Buffer) (result uint64, err error) {
|
|
// TODO: guard against overflowing 64-bit integers.
|
|
var shift uint8
|
|
for {
|
|
b, err := r.ReadByte()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
result |= uint64(b&0x7f) << shift
|
|
if b&0x80 == 0 {
|
|
break
|
|
}
|
|
shift += 7
|
|
}
|
|
return
|
|
}
|
|
|
|
// Source: https://en.wikipedia.org/wiki/LEB128#Decode_signed_integer
|
|
func readSLEB128(r *bytes.Buffer) (result int64, err error) {
|
|
var shift uint8
|
|
|
|
var b byte
|
|
var rawResult uint64
|
|
for {
|
|
b, err = r.ReadByte()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
rawResult |= uint64(b&0x7f) << shift
|
|
shift += 7
|
|
if b&0x80 == 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
// sign bit of byte is second high order bit (0x40)
|
|
if shift < 64 && b&0x40 != 0 {
|
|
// sign extend
|
|
rawResult |= ^uint64(0) << shift
|
|
}
|
|
result = int64(rawResult)
|
|
|
|
return
|
|
}
|