tinygo/src/machine/machine_nrf51.go
Ayke van Laethem b67351babe machine: define Serial as the default output
Previously, the machine.UART0 object had two meanings:

  - it was the first UART on the chip
  - it was the default output for println

These two meanings conflict, and resulted in workarounds like:

  - Defining UART0 to refer to the USB-CDC interface (atsamd21,
    atsamd51, nrf52840), even though that clearly isn't an UART.
  - Defining NRF_UART0 to avoid a conflict with UART0 (which was
    redefined as a USB-CDC interface).
  - Defining aliases like UART0 = UART1, which refer to the same
    hardware peripheral (stm32).

This commit changes this to use a new machine.Serial object for the
default serial port. It might refer to the first or second UART
depending on the board, or even to the USB-CDC interface. Also, UART0
now really refers to the first UART on the chip, no longer to a USB-CDC
interface.

The changes in the runtime package are all just search+replace. The
changes in the machine package are a mixture of search+replace and
manual modifications.

This commit does not affect binary size, in fact it doesn't affect the
resulting binary at all.
2021-05-13 16:43:37 +02:00

193 строки
4,7 КиБ
Go

// +build nrf51
package machine
import (
"device/nrf"
)
func CPUFrequency() uint32 {
return 16000000
}
// Get peripheral and pin number for this GPIO pin.
func (p Pin) getPortPin() (*nrf.GPIO_Type, uint32) {
return nrf.GPIO, uint32(p)
}
func (uart *UART) setPins(tx, rx Pin) {
nrf.UART0.PSELTXD.Set(uint32(tx))
nrf.UART0.PSELRXD.Set(uint32(rx))
}
func (i2c *I2C) setPins(scl, sda Pin) {
i2c.Bus.PSELSCL.Set(uint32(scl))
i2c.Bus.PSELSDA.Set(uint32(sda))
}
// SPI on the NRF.
type SPI struct {
Bus *nrf.SPI_Type
}
// There are 2 SPI interfaces on the NRF51.
var (
SPI0 = SPI{Bus: nrf.SPI0}
SPI1 = SPI{Bus: nrf.SPI1}
)
// SPIConfig is used to store config info for SPI.
type SPIConfig struct {
Frequency uint32
SCK Pin
SDO Pin
SDI Pin
LSBFirst bool
Mode uint8
}
// Configure is intended to setup the SPI interface.
func (spi SPI) Configure(config SPIConfig) {
// Disable bus to configure it
spi.Bus.ENABLE.Set(nrf.SPI_ENABLE_ENABLE_Disabled)
// set frequency
var freq uint32
if config.Frequency == 0 {
config.Frequency = 4000000 // 4MHz
}
switch {
case config.Frequency >= 8000000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_M8
case config.Frequency >= 4000000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_M4
case config.Frequency >= 2000000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_M2
case config.Frequency >= 1000000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_M1
case config.Frequency >= 500000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_K500
case config.Frequency >= 250000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_K250
default: // below 250kHz, default to the lowest speed available
freq = nrf.SPI_FREQUENCY_FREQUENCY_K125
}
spi.Bus.FREQUENCY.Set(freq)
var conf uint32
// set bit transfer order
if config.LSBFirst {
conf = (nrf.SPI_CONFIG_ORDER_LsbFirst << nrf.SPI_CONFIG_ORDER_Pos)
}
// set mode
switch config.Mode {
case 0:
conf &^= (nrf.SPI_CONFIG_CPOL_ActiveHigh << nrf.SPI_CONFIG_CPOL_Pos)
conf &^= (nrf.SPI_CONFIG_CPHA_Leading << nrf.SPI_CONFIG_CPHA_Pos)
case 1:
conf &^= (nrf.SPI_CONFIG_CPOL_ActiveHigh << nrf.SPI_CONFIG_CPOL_Pos)
conf |= (nrf.SPI_CONFIG_CPHA_Trailing << nrf.SPI_CONFIG_CPHA_Pos)
case 2:
conf |= (nrf.SPI_CONFIG_CPOL_ActiveLow << nrf.SPI_CONFIG_CPOL_Pos)
conf &^= (nrf.SPI_CONFIG_CPHA_Leading << nrf.SPI_CONFIG_CPHA_Pos)
case 3:
conf |= (nrf.SPI_CONFIG_CPOL_ActiveLow << nrf.SPI_CONFIG_CPOL_Pos)
conf |= (nrf.SPI_CONFIG_CPHA_Trailing << nrf.SPI_CONFIG_CPHA_Pos)
default: // to mode
conf &^= (nrf.SPI_CONFIG_CPOL_ActiveHigh << nrf.SPI_CONFIG_CPOL_Pos)
conf &^= (nrf.SPI_CONFIG_CPHA_Leading << nrf.SPI_CONFIG_CPHA_Pos)
}
spi.Bus.CONFIG.Set(conf)
// set pins
if config.SCK == 0 && config.SDO == 0 && config.SDI == 0 {
config.SCK = SPI0_SCK_PIN
config.SDO = SPI0_SDO_PIN
config.SDI = SPI0_SDI_PIN
}
spi.Bus.PSELSCK.Set(uint32(config.SCK))
spi.Bus.PSELMOSI.Set(uint32(config.SDO))
spi.Bus.PSELMISO.Set(uint32(config.SDI))
// Re-enable bus now that it is configured.
spi.Bus.ENABLE.Set(nrf.SPI_ENABLE_ENABLE_Enabled)
}
// Transfer writes/reads a single byte using the SPI interface.
func (spi SPI) Transfer(w byte) (byte, error) {
spi.Bus.TXD.Set(uint32(w))
for spi.Bus.EVENTS_READY.Get() == 0 {
}
r := spi.Bus.RXD.Get()
spi.Bus.EVENTS_READY.Set(0)
// TODO: handle SPI errors
return byte(r), nil
}
// Tx handles read/write operation for SPI interface. Since SPI is a syncronous write/read
// interface, there must always be the same number of bytes written as bytes read.
// The Tx method knows about this, and offers a few different ways of calling it.
//
// This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer.
// Note that the tx and rx buffers must be the same size:
//
// spi.Tx(tx, rx)
//
// This form sends the tx buffer, ignoring the result. Useful for sending "commands" that return zeros
// until all the bytes in the command packet have been received:
//
// spi.Tx(tx, nil)
//
// This form sends zeros, putting the result into the rx buffer. Good for reading a "result packet":
//
// spi.Tx(nil, rx)
//
func (spi SPI) Tx(w, r []byte) error {
var err error
switch {
case len(w) == 0:
// read only, so write zero and read a result.
for i := range r {
r[i], err = spi.Transfer(0)
if err != nil {
return err
}
}
case len(r) == 0:
// write only
spi.Bus.TXD.Set(uint32(w[0]))
w = w[1:]
for _, b := range w {
spi.Bus.TXD.Set(uint32(b))
for spi.Bus.EVENTS_READY.Get() == 0 {
}
spi.Bus.EVENTS_READY.Set(0)
_ = spi.Bus.RXD.Get()
}
for spi.Bus.EVENTS_READY.Get() == 0 {
}
spi.Bus.EVENTS_READY.Set(0)
_ = spi.Bus.RXD.Get()
default:
// write/read
if len(w) != len(r) {
return ErrTxInvalidSliceSize
}
for i, b := range w {
r[i], err = spi.Transfer(b)
if err != nil {
return err
}
}
}
return nil
}