tinygo/src/machine/machine_stm32l0.go
2022-12-19 23:20:11 +01:00

304 строки
7,9 КиБ
Go

//go:build stm32l0
package machine
// Peripheral abstraction layer for the stm32l0
import (
"device/stm32"
"runtime/interrupt"
)
func CPUFrequency() uint32 {
return 32000000
}
// Internal use: configured speed of the APB1 and APB2 timers, this should be kept
// in sync with any changes to runtime package which configures the oscillators
// and clock frequencies
const APB1_TIM_FREQ = 32e6 // 32MHz
const APB2_TIM_FREQ = 32e6 // 32MHz
const (
PA0 = portA + 0
PA1 = portA + 1
PA2 = portA + 2
PA3 = portA + 3
PA4 = portA + 4
PA5 = portA + 5
PA6 = portA + 6
PA7 = portA + 7
PA8 = portA + 8
PA9 = portA + 9
PA10 = portA + 10
PA11 = portA + 11
PA12 = portA + 12
PA13 = portA + 13
PA14 = portA + 14
PA15 = portA + 15
PB0 = portB + 0
PB1 = portB + 1
PB2 = portB + 2
PB3 = portB + 3
PB4 = portB + 4
PB5 = portB + 5
PB6 = portB + 6
PB7 = portB + 7
PB8 = portB + 8
PB9 = portB + 9
PB10 = portB + 10
PB11 = portB + 11
PB12 = portB + 12
PB13 = portB + 13
PB14 = portB + 14
PB15 = portB + 15
PC0 = portC + 0
PC1 = portC + 1
PC2 = portC + 2
PC3 = portC + 3
PC4 = portC + 4
PC5 = portC + 5
PC6 = portC + 6
PC7 = portC + 7
PC8 = portC + 8
PC9 = portC + 9
PC10 = portC + 10
PC11 = portC + 11
PC12 = portC + 12
PC13 = portC + 13
PC14 = portC + 14
PC15 = portC + 15
PD0 = portD + 0
PD1 = portD + 1
PD2 = portD + 2
PD3 = portD + 3
PD4 = portD + 4
PD5 = portD + 5
PD6 = portD + 6
PD7 = portD + 7
PD8 = portD + 8
PD9 = portD + 9
PD10 = portD + 10
PD11 = portD + 11
PD12 = portD + 12
PD13 = portD + 13
PD14 = portD + 14
PD15 = portD + 15
PE0 = portE + 0
PE1 = portE + 1
PE2 = portE + 2
PE3 = portE + 3
PE4 = portE + 4
PE5 = portE + 5
PE6 = portE + 6
PE7 = portE + 7
PE8 = portE + 8
PE9 = portE + 9
PE10 = portE + 10
PE11 = portE + 11
PE12 = portE + 12
PE13 = portE + 13
PE14 = portE + 14
PE15 = portE + 15
PH0 = portH + 0
PH1 = portH + 1
)
func (p Pin) getPort() *stm32.GPIO_Type {
switch p / 16 {
case 0:
return stm32.GPIOA
case 1:
return stm32.GPIOB
case 2:
return stm32.GPIOC
case 3:
return stm32.GPIOD
case 4:
return stm32.GPIOE
case 7:
return stm32.GPIOH
default:
panic("machine: unknown port")
}
}
// enableClock enables the clock for this desired GPIO port.
func (p Pin) enableClock() {
switch p / 16 {
case 0:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPAEN)
case 1:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPBEN)
case 2:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPCEN)
case 3:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPDEN)
case 4:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPEEN)
case 7:
stm32.RCC.IOPENR.SetBits(stm32.RCC_IOPENR_IOPHEN)
default:
panic("machine: unknown port")
}
}
func (p Pin) registerInterrupt() interrupt.Interrupt {
pin := uint8(p) % 16
switch pin {
case 0:
return interrupt.New(stm32.IRQ_EXTI0_1, func(interrupt.Interrupt) { handlePinInterrupt(0) })
case 1:
return interrupt.New(stm32.IRQ_EXTI0_1, func(interrupt.Interrupt) { handlePinInterrupt(1) })
case 2:
return interrupt.New(stm32.IRQ_EXTI2_3, func(interrupt.Interrupt) { handlePinInterrupt(2) })
case 3:
return interrupt.New(stm32.IRQ_EXTI2_3, func(interrupt.Interrupt) { handlePinInterrupt(3) })
case 4:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(4) })
case 5:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(5) })
case 6:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(6) })
case 7:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(7) })
case 8:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(8) })
case 9:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(9) })
case 10:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(10) })
case 11:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(11) })
case 12:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(12) })
case 13:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(13) })
case 14:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(14) })
case 15:
return interrupt.New(stm32.IRQ_EXTI4_15, func(interrupt.Interrupt) { handlePinInterrupt(15) })
}
return interrupt.Interrupt{}
}
//---------- UART related types and code
// Configure the UART.
func (uart *UART) configurePins(config UARTConfig) {
// enable the alternate functions on the TX and RX pins
config.TX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTTX}, uart.TxAltFuncSelector)
config.RX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTRX}, uart.RxAltFuncSelector)
}
// UART baudrate calc based on the bus and clockspeed
func (uart *UART) getBaudRateDivisor(baudRate uint32) uint32 {
var clock, rate uint32
switch uart.Bus {
case stm32.LPUART1:
clock = CPUFrequency() / 2 // APB1 Frequency
rate = uint32((256 * clock) / baudRate)
case stm32.USART1:
clock = CPUFrequency() / 2 // APB2 Frequency
rate = uint32(clock / baudRate)
case stm32.USART2:
clock = CPUFrequency() / 2 // APB1 Frequency
rate = uint32(clock / baudRate)
}
return rate
}
// Register names vary by ST processor, these are for STM L0 family
func (uart *UART) setRegisters() {
uart.rxReg = &uart.Bus.RDR
uart.txReg = &uart.Bus.TDR
uart.statusReg = &uart.Bus.ISR
uart.txEmptyFlag = stm32.USART_ISR_TXE
}
//---------- SPI related types and code
// SPI on the STM32Fxxx using MODER / alternate function pins
type SPI struct {
Bus *stm32.SPI_Type
AltFuncSelector uint8
}
func (spi SPI) config8Bits() {
// no-op on this series
}
// Set baud rate for SPI
func (spi SPI) getBaudRate(config SPIConfig) uint32 {
var conf uint32
localFrequency := config.Frequency
// Default
if config.Frequency == 0 {
config.Frequency = 4e6
}
if spi.Bus != stm32.SPI1 {
// Assume it's SPI2 or SPI3 on APB1 at 1/2 the clock frequency of APB2, so
// we want to pretend to request 2x the baudrate asked for
localFrequency = localFrequency * 2
}
// set frequency dependent on PCLK prescaler. Since these are rather weird
// speeds due to the CPU freqency, pick a range up to that frquency for
// clients to use more human-understandable numbers, e.g. nearest 100KHz
// These are based on APB2 clock frquency (84MHz on the discovery board)
// TODO: also include the MCU/APB clock setting in the equation
switch {
case localFrequency < 328125:
conf = stm32.SPI_CR1_BR_Div256
case localFrequency < 656250:
conf = stm32.SPI_CR1_BR_Div128
case localFrequency < 1312500:
conf = stm32.SPI_CR1_BR_Div64
case localFrequency < 2625000:
conf = stm32.SPI_CR1_BR_Div32
case localFrequency < 5250000:
conf = stm32.SPI_CR1_BR_Div16
case localFrequency < 10500000:
conf = stm32.SPI_CR1_BR_Div8
// NOTE: many SPI components won't operate reliably (or at all) above 10MHz
// Check the datasheet of the part
case localFrequency < 21000000:
conf = stm32.SPI_CR1_BR_Div4
case localFrequency < 42000000:
conf = stm32.SPI_CR1_BR_Div2
default:
// None of the specific baudrates were selected; choose the lowest speed
conf = stm32.SPI_CR1_BR_Div256
}
return conf << stm32.SPI_CR1_BR_Pos
}
// Configure SPI pins for input output and clock
func (spi SPI) configurePins(config SPIConfig) {
config.SCK.ConfigureAltFunc(PinConfig{Mode: PinModeSPICLK}, spi.AltFuncSelector)
config.SDO.ConfigureAltFunc(PinConfig{Mode: PinModeSPISDO}, spi.AltFuncSelector)
config.SDI.ConfigureAltFunc(PinConfig{Mode: PinModeSPISDI}, spi.AltFuncSelector)
}
//---------- I2C related types and code
// Gets the value for TIMINGR register
func (i2c I2C) getFreqRange() uint32 {
// This is a 'magic' value calculated by STM32CubeMX
// for 80MHz PCLK1.
// TODO: Do calculations based on PCLK1
return 0x00303D5B
}