tinygo/src/machine/machine_stm32f4.go
2022-02-28 10:19:26 +01:00

794 строки
24 КиБ
Go

//go:build stm32f4
// +build stm32f4
package machine
// Peripheral abstraction layer for the stm32f4
import (
"device/stm32"
"math/bits"
"runtime/interrupt"
"runtime/volatile"
"unsafe"
)
const (
PA0 = portA + 0
PA1 = portA + 1
PA2 = portA + 2
PA3 = portA + 3
PA4 = portA + 4
PA5 = portA + 5
PA6 = portA + 6
PA7 = portA + 7
PA8 = portA + 8
PA9 = portA + 9
PA10 = portA + 10
PA11 = portA + 11
PA12 = portA + 12
PA13 = portA + 13
PA14 = portA + 14
PA15 = portA + 15
PB0 = portB + 0
PB1 = portB + 1
PB2 = portB + 2
PB3 = portB + 3
PB4 = portB + 4
PB5 = portB + 5
PB6 = portB + 6
PB7 = portB + 7
PB8 = portB + 8
PB9 = portB + 9
PB10 = portB + 10
PB11 = portB + 11
PB12 = portB + 12
PB13 = portB + 13
PB14 = portB + 14
PB15 = portB + 15
PC0 = portC + 0
PC1 = portC + 1
PC2 = portC + 2
PC3 = portC + 3
PC4 = portC + 4
PC5 = portC + 5
PC6 = portC + 6
PC7 = portC + 7
PC8 = portC + 8
PC9 = portC + 9
PC10 = portC + 10
PC11 = portC + 11
PC12 = portC + 12
PC13 = portC + 13
PC14 = portC + 14
PC15 = portC + 15
PD0 = portD + 0
PD1 = portD + 1
PD2 = portD + 2
PD3 = portD + 3
PD4 = portD + 4
PD5 = portD + 5
PD6 = portD + 6
PD7 = portD + 7
PD8 = portD + 8
PD9 = portD + 9
PD10 = portD + 10
PD11 = portD + 11
PD12 = portD + 12
PD13 = portD + 13
PD14 = portD + 14
PD15 = portD + 15
PE0 = portE + 0
PE1 = portE + 1
PE2 = portE + 2
PE3 = portE + 3
PE4 = portE + 4
PE5 = portE + 5
PE6 = portE + 6
PE7 = portE + 7
PE8 = portE + 8
PE9 = portE + 9
PE10 = portE + 10
PE11 = portE + 11
PE12 = portE + 12
PE13 = portE + 13
PE14 = portE + 14
PE15 = portE + 15
PF0 = portF + 0
PF1 = portF + 1
PF2 = portF + 2
PF3 = portF + 3
PF4 = portF + 4
PF5 = portF + 5
PF6 = portF + 6
PF7 = portF + 7
PF8 = portF + 8
PF9 = portF + 9
PF10 = portF + 10
PF11 = portF + 11
PF12 = portF + 12
PF13 = portF + 13
PF14 = portF + 14
PF15 = portF + 15
PG0 = portG + 0
PG1 = portG + 1
PG2 = portG + 2
PG3 = portG + 3
PG4 = portG + 4
PG5 = portG + 5
PG6 = portG + 6
PG7 = portG + 7
PG8 = portG + 8
PG9 = portG + 9
PG10 = portG + 10
PG11 = portG + 11
PG12 = portG + 12
PG13 = portG + 13
PG14 = portG + 14
PG15 = portG + 15
PH0 = portH + 0
PH1 = portH + 1
PH2 = portH + 2
PH3 = portH + 3
PH4 = portH + 4
PH5 = portH + 5
PH6 = portH + 6
PH7 = portH + 7
PH8 = portH + 8
PH9 = portH + 9
PH10 = portH + 10
PH11 = portH + 11
PH12 = portH + 12
PH13 = portH + 13
PH14 = portH + 14
PH15 = portH + 15
PI0 = portI + 0
PI1 = portI + 1
PI2 = portI + 2
PI3 = portI + 3
PI4 = portI + 4
PI5 = portI + 5
PI6 = portI + 6
PI7 = portI + 7
PI8 = portI + 8
PI9 = portI + 9
PI10 = portI + 10
PI11 = portI + 11
PI12 = portI + 12
PI13 = portI + 13
PI14 = portI + 14
PI15 = portI + 15
PK0 = portK + 0
PK1 = portK + 1
PK2 = portK + 2
PK3 = portK + 3
PK4 = portK + 4
PK5 = portK + 5
PK6 = portK + 6
PK7 = portK + 7
PK8 = portK + 8
PK9 = portK + 9
PK10 = portK + 10
PK11 = portK + 11
PK12 = portK + 12
PK13 = portK + 13
PK14 = portK + 14
PK15 = portK + 15
)
func (p Pin) getPort() *stm32.GPIO_Type {
switch p / 16 {
case 0:
return stm32.GPIOA
case 1:
return stm32.GPIOB
case 2:
return stm32.GPIOC
case 3:
return stm32.GPIOD
case 4:
return stm32.GPIOE
case 5:
return stm32.GPIOF
case 6:
return stm32.GPIOG
case 7:
return stm32.GPIOH
case 8:
return stm32.GPIOI
case 9:
return stm32.GPIOJ
case 10:
return stm32.GPIOK
default:
panic("machine: unknown port")
}
}
// enableClock enables the clock for this desired GPIO port.
func (p Pin) enableClock() {
bit := p / 16
if 0 <= bit && bit <= 10 {
stm32.RCC.AHB1ENR.SetBits(0b1 << bit)
} else {
panic("machine: unknown port")
}
}
func (p Pin) registerInterrupt() interrupt.Interrupt {
pin := uint8(p) % 16
switch pin {
case 0:
return interrupt.New(stm32.IRQ_EXTI0, func(interrupt.Interrupt) { handlePinInterrupt(0) })
case 1:
return interrupt.New(stm32.IRQ_EXTI1, func(interrupt.Interrupt) { handlePinInterrupt(1) })
case 2:
return interrupt.New(stm32.IRQ_EXTI2, func(interrupt.Interrupt) { handlePinInterrupt(2) })
case 3:
return interrupt.New(stm32.IRQ_EXTI3, func(interrupt.Interrupt) { handlePinInterrupt(3) })
case 4:
return interrupt.New(stm32.IRQ_EXTI4, func(interrupt.Interrupt) { handlePinInterrupt(4) })
case 5:
return interrupt.New(stm32.IRQ_EXTI9_5, func(interrupt.Interrupt) { handlePinInterrupt(5) })
case 6:
return interrupt.New(stm32.IRQ_EXTI9_5, func(interrupt.Interrupt) { handlePinInterrupt(6) })
case 7:
return interrupt.New(stm32.IRQ_EXTI9_5, func(interrupt.Interrupt) { handlePinInterrupt(7) })
case 8:
return interrupt.New(stm32.IRQ_EXTI9_5, func(interrupt.Interrupt) { handlePinInterrupt(8) })
case 9:
return interrupt.New(stm32.IRQ_EXTI9_5, func(interrupt.Interrupt) { handlePinInterrupt(9) })
case 10:
return interrupt.New(stm32.IRQ_EXTI15_10, func(interrupt.Interrupt) { handlePinInterrupt(10) })
case 11:
return interrupt.New(stm32.IRQ_EXTI15_10, func(interrupt.Interrupt) { handlePinInterrupt(11) })
case 12:
return interrupt.New(stm32.IRQ_EXTI15_10, func(interrupt.Interrupt) { handlePinInterrupt(12) })
case 13:
return interrupt.New(stm32.IRQ_EXTI15_10, func(interrupt.Interrupt) { handlePinInterrupt(13) })
case 14:
return interrupt.New(stm32.IRQ_EXTI15_10, func(interrupt.Interrupt) { handlePinInterrupt(14) })
case 15:
return interrupt.New(stm32.IRQ_EXTI15_10, func(interrupt.Interrupt) { handlePinInterrupt(15) })
}
return interrupt.Interrupt{}
}
// Enable peripheral clock
func enableAltFuncClock(bus unsafe.Pointer) {
switch bus {
case unsafe.Pointer(stm32.DAC): // DAC interface clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_DACEN)
case unsafe.Pointer(stm32.PWR): // Power interface clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_PWREN)
case unsafe.Pointer(stm32.CAN2): // CAN 2 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_CAN2EN)
case unsafe.Pointer(stm32.CAN1): // CAN 1 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_CAN1EN)
case unsafe.Pointer(stm32.I2C3): // I2C3 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_I2C3EN)
case unsafe.Pointer(stm32.I2C2): // I2C2 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_I2C2EN)
case unsafe.Pointer(stm32.I2C1): // I2C1 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_I2C1EN)
case unsafe.Pointer(stm32.UART5): // UART5 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_UART5EN)
case unsafe.Pointer(stm32.UART4): // UART4 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_UART4EN)
case unsafe.Pointer(stm32.USART3): // USART3 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_USART3EN)
case unsafe.Pointer(stm32.USART2): // USART2 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_USART2EN)
case unsafe.Pointer(stm32.SPI3): // SPI3 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_SPI3EN)
case unsafe.Pointer(stm32.SPI2): // SPI2 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_SPI2EN)
case unsafe.Pointer(stm32.WWDG): // Window watchdog clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_WWDGEN)
case unsafe.Pointer(stm32.TIM14): // TIM14 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM14EN)
case unsafe.Pointer(stm32.TIM13): // TIM13 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM13EN)
case unsafe.Pointer(stm32.TIM12): // TIM12 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM12EN)
case unsafe.Pointer(stm32.TIM7): // TIM7 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM7EN)
case unsafe.Pointer(stm32.TIM6): // TIM6 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM6EN)
case unsafe.Pointer(stm32.TIM5): // TIM5 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM5EN)
case unsafe.Pointer(stm32.TIM4): // TIM4 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM4EN)
case unsafe.Pointer(stm32.TIM3): // TIM3 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM3EN)
case unsafe.Pointer(stm32.TIM2): // TIM2 clock enable
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM2EN)
case unsafe.Pointer(stm32.TIM11): // TIM11 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM11EN)
case unsafe.Pointer(stm32.TIM10): // TIM10 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM10EN)
case unsafe.Pointer(stm32.TIM9): // TIM9 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM9EN)
case unsafe.Pointer(stm32.SYSCFG): // System configuration controller clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_SYSCFGEN)
case unsafe.Pointer(stm32.SPI1): // SPI1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_SPI1EN)
case unsafe.Pointer(stm32.SDIO): // SDIO clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_SDIOEN)
case unsafe.Pointer(stm32.ADC3): // ADC3 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_ADC3EN)
case unsafe.Pointer(stm32.ADC2): // ADC2 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_ADC2EN)
case unsafe.Pointer(stm32.ADC1): // ADC1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_ADC1EN)
case unsafe.Pointer(stm32.USART6): // USART6 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_USART6EN)
case unsafe.Pointer(stm32.USART1): // USART1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_USART1EN)
case unsafe.Pointer(stm32.TIM8): // TIM8 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM8EN)
case unsafe.Pointer(stm32.TIM1): // TIM1 clock enable
stm32.RCC.APB2ENR.SetBits(stm32.RCC_APB2ENR_TIM1EN)
}
}
//---------- Timer related code
var (
TIM1 = TIM{
EnableRegister: &stm32.RCC.APB2ENR,
EnableFlag: stm32.RCC_APB2ENR_TIM1EN,
Device: stm32.TIM1,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PA8, AF1_TIM1_2}, {PE9, AF1_TIM1_2}}},
TimerChannel{Pins: []PinFunction{{PA9, AF1_TIM1_2}, {PE11, AF1_TIM1_2}}},
TimerChannel{Pins: []PinFunction{{PA10, AF1_TIM1_2}, {PE13, AF1_TIM1_2}}},
TimerChannel{Pins: []PinFunction{{PA11, AF1_TIM1_2}, {PE14, AF1_TIM1_2}}},
},
busFreq: APB2_TIM_FREQ,
}
TIM2 = TIM{
EnableRegister: &stm32.RCC.APB1ENR,
EnableFlag: stm32.RCC_APB1ENR_TIM2EN,
Device: stm32.TIM2,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PA0, AF1_TIM1_2}, {PA5, AF1_TIM1_2}, {PA15, AF1_TIM1_2}}},
TimerChannel{Pins: []PinFunction{{PA1, AF1_TIM1_2}, {PB3, AF1_TIM1_2}}},
TimerChannel{Pins: []PinFunction{{PA2, AF1_TIM1_2}, {PB10, AF1_TIM1_2}}},
TimerChannel{Pins: []PinFunction{{PA3, AF1_TIM1_2}, {PB11, AF1_TIM1_2}}},
},
busFreq: APB1_TIM_FREQ,
}
TIM3 = TIM{
EnableRegister: &stm32.RCC.APB1ENR,
EnableFlag: stm32.RCC_APB1ENR_TIM3EN,
Device: stm32.TIM3,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PA6, AF2_TIM3_4_5}, {PB4, AF2_TIM3_4_5}, {PC6, AF2_TIM3_4_5}}},
TimerChannel{Pins: []PinFunction{{PA7, AF2_TIM3_4_5}, {PB5, AF2_TIM3_4_5}, {PC7, AF2_TIM3_4_5}}},
TimerChannel{Pins: []PinFunction{{PB0, AF2_TIM3_4_5}, {PC8, AF2_TIM3_4_5}}},
TimerChannel{Pins: []PinFunction{{PB1, AF2_TIM3_4_5}, {PC9, AF2_TIM3_4_5}}},
},
busFreq: APB1_TIM_FREQ,
}
TIM4 = TIM{
EnableRegister: &stm32.RCC.APB1ENR,
EnableFlag: stm32.RCC_APB1ENR_TIM4EN,
Device: stm32.TIM4,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PB6, AF2_TIM3_4_5}, {PD12, AF2_TIM3_4_5}}},
TimerChannel{Pins: []PinFunction{{PB7, AF2_TIM3_4_5}, {PD13, AF2_TIM3_4_5}}},
TimerChannel{Pins: []PinFunction{{PB8, AF2_TIM3_4_5}, {PD14, AF2_TIM3_4_5}}},
TimerChannel{Pins: []PinFunction{{PB9, AF2_TIM3_4_5}, {PD15, AF2_TIM3_4_5}}},
},
busFreq: APB1_TIM_FREQ,
}
TIM5 = TIM{
EnableRegister: &stm32.RCC.APB1ENR,
EnableFlag: stm32.RCC_APB1ENR_TIM5EN,
Device: stm32.TIM5,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PH10, AF2_TIM3_4_5}}},
TimerChannel{Pins: []PinFunction{{PH11, AF2_TIM3_4_5}}},
TimerChannel{Pins: []PinFunction{{PH12, AF2_TIM3_4_5}}},
TimerChannel{Pins: []PinFunction{{PI0, AF2_TIM3_4_5}}},
},
busFreq: APB1_TIM_FREQ,
}
TIM6 = TIM{
EnableRegister: &stm32.RCC.APB1ENR,
EnableFlag: stm32.RCC_APB1ENR_TIM6EN,
Device: stm32.TIM6,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
},
busFreq: APB1_TIM_FREQ,
}
TIM7 = TIM{
EnableRegister: &stm32.RCC.APB1ENR,
EnableFlag: stm32.RCC_APB1ENR_TIM7EN,
Device: stm32.TIM7,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
},
busFreq: APB1_TIM_FREQ,
}
TIM8 = TIM{
EnableRegister: &stm32.RCC.APB2ENR,
EnableFlag: stm32.RCC_APB2ENR_TIM8EN,
Device: stm32.TIM8,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PC6, AF3_TIM8_9_10_11}, {PI5, AF3_TIM8_9_10_11}}},
TimerChannel{Pins: []PinFunction{{PC7, AF3_TIM8_9_10_11}, {PI6, AF3_TIM8_9_10_11}}},
TimerChannel{Pins: []PinFunction{{PC8, AF3_TIM8_9_10_11}, {PI7, AF3_TIM8_9_10_11}}},
TimerChannel{Pins: []PinFunction{{PC9, AF3_TIM8_9_10_11}, {PI2, AF3_TIM8_9_10_11}}},
},
busFreq: APB2_TIM_FREQ,
}
TIM9 = TIM{
EnableRegister: &stm32.RCC.APB2ENR,
EnableFlag: stm32.RCC_APB2ENR_TIM9EN,
Device: stm32.TIM9,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PA2, AF3_TIM8_9_10_11}, {PE5, AF3_TIM8_9_10_11}}},
TimerChannel{Pins: []PinFunction{{PA3, AF3_TIM8_9_10_11}, {PE6, AF3_TIM8_9_10_11}}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
},
busFreq: APB2_TIM_FREQ,
}
TIM10 = TIM{
EnableRegister: &stm32.RCC.APB2ENR,
EnableFlag: stm32.RCC_APB2ENR_TIM10EN,
Device: stm32.TIM10,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PB8, AF3_TIM8_9_10_11}, {PF6, AF3_TIM8_9_10_11}}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
},
busFreq: APB2_TIM_FREQ,
}
TIM11 = TIM{
EnableRegister: &stm32.RCC.APB2ENR,
EnableFlag: stm32.RCC_APB2ENR_TIM11EN,
Device: stm32.TIM11,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PB9, AF3_TIM8_9_10_11}, {PF7, AF3_TIM8_9_10_11}}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
},
busFreq: APB2_TIM_FREQ,
}
TIM12 = TIM{
EnableRegister: &stm32.RCC.APB1ENR,
EnableFlag: stm32.RCC_APB1ENR_TIM12EN,
Device: stm32.TIM12,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PB14, AF9_CAN1_CAN2_TIM12_13_14}, {PH6, AF9_CAN1_CAN2_TIM12_13_14}}},
TimerChannel{Pins: []PinFunction{{PB15, AF9_CAN1_CAN2_TIM12_13_14}, {PH9, AF9_CAN1_CAN2_TIM12_13_14}}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
},
busFreq: APB1_TIM_FREQ,
}
TIM13 = TIM{
EnableRegister: &stm32.RCC.APB1ENR,
EnableFlag: stm32.RCC_APB1ENR_TIM13EN,
Device: stm32.TIM13,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PA6, AF9_CAN1_CAN2_TIM12_13_14}, {PF8, AF9_CAN1_CAN2_TIM12_13_14}}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
},
busFreq: APB1_TIM_FREQ,
}
TIM14 = TIM{
EnableRegister: &stm32.RCC.APB1ENR,
EnableFlag: stm32.RCC_APB1ENR_TIM14EN,
Device: stm32.TIM14,
Channels: [4]TimerChannel{
TimerChannel{Pins: []PinFunction{{PA7, AF9_CAN1_CAN2_TIM12_13_14}, {PF9, AF9_CAN1_CAN2_TIM12_13_14}}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
TimerChannel{Pins: []PinFunction{}},
},
busFreq: APB1_TIM_FREQ,
}
)
func (t *TIM) registerUPInterrupt() interrupt.Interrupt {
switch t {
case &TIM1:
return interrupt.New(stm32.IRQ_TIM1_UP_TIM10, TIM1.handleUPInterrupt)
case &TIM2:
return interrupt.New(stm32.IRQ_TIM2, TIM2.handleUPInterrupt)
case &TIM3:
return interrupt.New(stm32.IRQ_TIM3, TIM3.handleUPInterrupt)
case &TIM4:
return interrupt.New(stm32.IRQ_TIM4, TIM4.handleUPInterrupt)
case &TIM5:
return interrupt.New(stm32.IRQ_TIM5, TIM5.handleUPInterrupt)
case &TIM6:
return interrupt.New(stm32.IRQ_TIM6_DAC, TIM6.handleUPInterrupt)
case &TIM7:
return interrupt.New(stm32.IRQ_TIM7, TIM7.handleUPInterrupt)
case &TIM8:
return interrupt.New(stm32.IRQ_TIM8_UP_TIM13, TIM8.handleUPInterrupt)
case &TIM9:
return interrupt.New(stm32.IRQ_TIM1_BRK_TIM9, TIM9.handleUPInterrupt)
case &TIM10:
return interrupt.New(stm32.IRQ_TIM1_UP_TIM10, TIM10.handleUPInterrupt)
case &TIM11:
return interrupt.New(stm32.IRQ_TIM1_TRG_COM_TIM11, TIM11.handleUPInterrupt)
case &TIM12:
return interrupt.New(stm32.IRQ_TIM8_BRK_TIM12, TIM12.handleUPInterrupt)
case &TIM13:
return interrupt.New(stm32.IRQ_TIM8_UP_TIM13, TIM13.handleUPInterrupt)
case &TIM14:
return interrupt.New(stm32.IRQ_TIM8_TRG_COM_TIM14, TIM14.handleUPInterrupt)
}
return interrupt.Interrupt{}
}
func (t *TIM) registerOCInterrupt() interrupt.Interrupt {
switch t {
case &TIM1:
return interrupt.New(stm32.IRQ_TIM1_CC, TIM1.handleOCInterrupt)
case &TIM2:
return interrupt.New(stm32.IRQ_TIM2, TIM2.handleOCInterrupt)
case &TIM3:
return interrupt.New(stm32.IRQ_TIM3, TIM3.handleOCInterrupt)
case &TIM4:
return interrupt.New(stm32.IRQ_TIM4, TIM4.handleOCInterrupt)
case &TIM5:
return interrupt.New(stm32.IRQ_TIM5, TIM5.handleOCInterrupt)
case &TIM6:
return interrupt.New(stm32.IRQ_TIM6_DAC, TIM6.handleOCInterrupt)
case &TIM7:
return interrupt.New(stm32.IRQ_TIM7, TIM7.handleOCInterrupt)
case &TIM8:
return interrupt.New(stm32.IRQ_TIM8_UP_TIM13, TIM8.handleOCInterrupt)
case &TIM9:
return interrupt.New(stm32.IRQ_TIM1_BRK_TIM9, TIM9.handleOCInterrupt)
case &TIM10:
return interrupt.New(stm32.IRQ_TIM1_UP_TIM10, TIM10.handleOCInterrupt)
case &TIM11:
return interrupt.New(stm32.IRQ_TIM1_TRG_COM_TIM11, TIM11.handleOCInterrupt)
case &TIM12:
return interrupt.New(stm32.IRQ_TIM8_BRK_TIM12, TIM12.handleOCInterrupt)
case &TIM13:
return interrupt.New(stm32.IRQ_TIM8_UP_TIM13, TIM13.handleOCInterrupt)
case &TIM14:
return interrupt.New(stm32.IRQ_TIM8_TRG_COM_TIM14, TIM14.handleOCInterrupt)
}
return interrupt.Interrupt{}
}
func (t *TIM) enableMainOutput() {
t.Device.BDTR.SetBits(stm32.TIM_BDTR_MOE)
}
type arrtype = uint32
type arrRegType = volatile.Register32
const (
ARR_MAX = 0x10000
PSC_MAX = 0x10000
)
func initRNG() {
stm32.RCC.AHB2ENR.SetBits(stm32.RCC_AHB2ENR_RNGEN)
stm32.RNG.CR.SetBits(stm32.RNG_CR_RNGEN)
}
// Alternative peripheral pin functions
const (
AF0_SYSTEM = 0
AF1_TIM1_2 = 1
AF2_TIM3_4_5 = 2
AF3_TIM8_9_10_11 = 3
AF4_I2C1_2_3 = 4
AF5_SPI1_SPI2 = 5
AF6_SPI3 = 6
AF7_USART1_2_3 = 7
AF8_USART4_5_6 = 8
AF9_CAN1_CAN2_TIM12_13_14 = 9
AF10_OTG_FS_OTG_HS = 10
AF11_ETH = 11
AF12_FSMC_SDIO_OTG_HS_1 = 12
AF13_DCMI = 13
AF14 = 14
AF15_EVENTOUT = 15
)
// -- UART ---------------------------------------------------------------------
func (uart *UART) configurePins(config UARTConfig) {
// enable the alternate functions on the TX and RX pins
config.TX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTTX}, uart.TxAltFuncSelector)
config.RX.ConfigureAltFunc(PinConfig{Mode: PinModeUARTRX}, uart.RxAltFuncSelector)
}
func (uart *UART) getBaudRateDivisor(baudRate uint32) uint32 {
var clock uint32
switch uart.Bus {
case stm32.USART1, stm32.USART6:
clock = CPUFrequency() / 2 // APB2 Frequency
case stm32.USART2, stm32.USART3, stm32.UART4, stm32.UART5:
clock = CPUFrequency() / 4 // APB1 Frequency
}
return clock / baudRate
}
func (uart *UART) setRegisters() {
uart.rxReg = &uart.Bus.DR
uart.txReg = &uart.Bus.DR
uart.statusReg = &uart.Bus.SR
uart.txEmptyFlag = stm32.USART_SR_TXE
}
// -- SPI ----------------------------------------------------------------------
type SPI struct {
Bus *stm32.SPI_Type
AltFuncSelector uint8
}
func (spi SPI) config8Bits() {
// no-op on this series
}
func (spi SPI) configurePins(config SPIConfig) {
config.SCK.ConfigureAltFunc(PinConfig{Mode: PinModeSPICLK}, spi.AltFuncSelector)
config.SDO.ConfigureAltFunc(PinConfig{Mode: PinModeSPISDO}, spi.AltFuncSelector)
config.SDI.ConfigureAltFunc(PinConfig{Mode: PinModeSPISDI}, spi.AltFuncSelector)
}
func (spi SPI) getBaudRate(config SPIConfig) uint32 {
var clock uint32
switch spi.Bus {
case stm32.SPI1:
clock = CPUFrequency() / 2
case stm32.SPI2, stm32.SPI3:
clock = CPUFrequency() / 4
}
// limit requested frequency to bus frequency and min frequency (DIV256)
freq := config.Frequency
if min := clock / 256; freq < min {
freq = min
} else if freq > clock {
freq = clock
}
// calculate the exact clock divisor (freq=clock/div -> div=clock/freq).
// truncation is fine, since it produces a less-than-or-equal divisor, and
// thus a greater-than-or-equal frequency.
// divisors only come in consecutive powers of 2, so we can use log2 (or,
// equivalently, bits.Len - 1) to convert to respective enum value.
div := bits.Len32(clock/freq) - 1
// but DIV1 (2^0) is not permitted, as the least divisor is DIV2 (2^1), so
// subtract 1 from the log2 value, keeping a lower bound of 0
if div < 0 {
div = 0
} else if div > 0 {
div--
}
// finally, shift the enumerated value into position for SPI CR1
return uint32(div) << stm32.SPI_CR1_BR_Pos
}
// -- I2C ----------------------------------------------------------------------
type I2C struct {
Bus *stm32.I2C_Type
AltFuncSelector uint8
}
func (i2c *I2C) configurePins(config I2CConfig) {
config.SCL.ConfigureAltFunc(PinConfig{Mode: PinModeI2CSCL}, i2c.AltFuncSelector)
config.SDA.ConfigureAltFunc(PinConfig{Mode: PinModeI2CSDA}, i2c.AltFuncSelector)
}
func (i2c *I2C) getFreqRange(config I2CConfig) uint32 {
// all I2C interfaces are on APB1
clock := CPUFrequency() / 4
// convert to MHz
clock /= 1000000
// must be between 2 MHz (or 4 MHz for fast mode (Fm)) and 50 MHz, inclusive
var min, max uint32 = 2, 50
if config.Frequency > 100000 {
min = 4 // fast mode (Fm)
}
if clock < min {
clock = min
} else if clock > max {
clock = max
}
return clock << stm32.I2C_CR2_FREQ_Pos
}
func (i2c *I2C) getRiseTime(config I2CConfig) uint32 {
// These bits must be programmed with the maximum SCL rise time given in the
// I2C bus specification, incremented by 1.
// For instance: in Sm mode, the maximum allowed SCL rise time is 1000 ns.
// If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to 0x08
// and PCLK1 = 125 ns, therefore the TRISE[5:0] bits must be programmed with
// 09h (1000 ns / 125 ns = 8 + 1)
freqRange := i2c.getFreqRange(config)
if config.Frequency > 100000 {
// fast mode (Fm) adjustment
freqRange *= 300
freqRange /= 1000
}
return (freqRange + 1) << stm32.I2C_TRISE_TRISE_Pos
}
func (i2c *I2C) getSpeed(config I2CConfig) uint32 {
ccr := func(pclk uint32, freq uint32, coeff uint32) uint32 {
return (((pclk - 1) / (freq * coeff)) + 1) & stm32.I2C_CCR_CCR_Msk
}
sm := func(pclk uint32, freq uint32) uint32 { // standard mode (Sm)
if s := ccr(pclk, freq, 2); s < 4 {
return 4
} else {
return s
}
}
fm := func(pclk uint32, freq uint32, duty uint8) uint32 { // fast mode (Fm)
if duty == DutyCycle2 {
return ccr(pclk, freq, 3)
} else {
return ccr(pclk, freq, 25) | stm32.I2C_CCR_DUTY
}
}
// all I2C interfaces are on APB1
clock := CPUFrequency() / 4
if config.Frequency <= 100000 {
return sm(clock, config.Frequency)
} else {
s := fm(clock, config.Frequency, config.DutyCycle)
if (s & stm32.I2C_CCR_CCR_Msk) == 0 {
return 1
} else {
return s | stm32.I2C_CCR_F_S
}
}
}