tinygo/builder/build.go
Ayke van Laethem 603fff78d4 all: add support for ThinLTO
ThinLTO optimizes across LLVM modules at link time. This means that
optimizations (such as inlining and const-propagation) are possible
between C and Go. This makes this change especially useful for CGo, but
not just for CGo. By doing some optimizations at link time, the linker
can discard some unused functions and this leads to a size reduction on
average. It does increase code size in some cases, but that's true for
most optimizations.

I've excluded a number of targets for now (wasm, avr, xtensa, windows,
macos). They can probably be supported with some more work, but that
should be done in separate PRs.

Overall, this change results in an average 3.24% size reduction over all
the tinygo.org/x/drivers smoke tests.

TODO: this commit runs part of the pass pipeline twice. We should set
the PrepareForThinLTO flag in the PassManagerBuilder for even further
reduced code size (0.7%) and improved compilation speed.
2022-03-12 12:55:38 +01:00

1260 строки
44 КиБ
Go

// Package builder is the compiler driver of TinyGo. It takes in a package name
// and an output path, and outputs an executable. It manages the entire
// compilation pipeline in between.
package builder
import (
"crypto/sha512"
"debug/elf"
"encoding/binary"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"go/types"
"hash/crc32"
"io/ioutil"
"math/bits"
"os"
"os/exec"
"path/filepath"
"runtime"
"sort"
"strconv"
"strings"
"github.com/gofrs/flock"
"github.com/tinygo-org/tinygo/compileopts"
"github.com/tinygo-org/tinygo/compiler"
"github.com/tinygo-org/tinygo/goenv"
"github.com/tinygo-org/tinygo/interp"
"github.com/tinygo-org/tinygo/loader"
"github.com/tinygo-org/tinygo/stacksize"
"github.com/tinygo-org/tinygo/transform"
"tinygo.org/x/go-llvm"
)
// BuildResult is the output of a build. This includes the binary itself and
// some other metadata that is obtained while building the binary.
type BuildResult struct {
// A path to the output binary. It will be removed after Build returns, so
// if it should be kept it must be copied or moved away.
Binary string
// The directory of the main package. This is useful for testing as the test
// binary must be run in the directory of the tested package.
MainDir string
// The root of the Go module tree. This is used for running tests in emulator
// that restrict file system access to allow them to grant access to the entire
// source tree they're likely to need to read testdata from.
ModuleRoot string
// ImportPath is the import path of the main package. This is useful for
// correctly printing test results: the import path isn't always the same as
// the path listed on the command line.
ImportPath string
}
// packageAction is the struct that is serialized to JSON and hashed, to work as
// a cache key of compiled packages. It should contain all the information that
// goes into a compiled package to avoid using stale data.
//
// Right now it's still important to include a hash of every import, because a
// dependency might have a public constant that this package uses and thus this
// package will need to be recompiled if that constant changes. In the future,
// the type data should be serialized to disk which can then be used as cache
// key, avoiding the need for recompiling all dependencies when only the
// implementation of an imported package changes.
type packageAction struct {
ImportPath string
CompilerBuildID string
TinyGoVersion string
LLVMVersion string
Config *compiler.Config
CFlags []string
FileHashes map[string]string // hash of every file that's part of the package
Imports map[string]string // map from imported package to action ID hash
OptLevel int // LLVM optimization level (0-3)
SizeLevel int // LLVM optimization for size level (0-2)
UndefinedGlobals []string // globals that are left as external globals (no initializer)
}
// Build performs a single package to executable Go build. It takes in a package
// name, an output path, and set of compile options and from that it manages the
// whole compilation process.
//
// The error value may be of type *MultiError. Callers will likely want to check
// for this case and print such errors individually.
func Build(pkgName, outpath string, config *compileopts.Config, action func(BuildResult) error) error {
// Read the build ID of the tinygo binary.
// Used as a cache key for package builds.
compilerBuildID, err := ReadBuildID()
if err != nil {
return err
}
// Create a temporary directory for intermediary files.
dir, err := ioutil.TempDir("", "tinygo")
if err != nil {
return err
}
if config.Options.Work {
fmt.Printf("WORK=%s\n", dir)
} else {
defer os.RemoveAll(dir)
}
// Look up the build cache directory, which is used to speed up incremental
// builds.
cacheDir := goenv.Get("GOCACHE")
if cacheDir == "off" {
// Use temporary build directory instead, effectively disabling the
// build cache.
cacheDir = dir
}
// Check for a libc dependency.
// As a side effect, this also creates the headers for the given libc, if
// the libc needs them.
root := goenv.Get("TINYGOROOT")
var libcDependencies []*compileJob
switch config.Target.Libc {
case "darwin-libSystem":
job := makeDarwinLibSystemJob(config, dir)
libcDependencies = append(libcDependencies, job)
case "musl":
job, unlock, err := Musl.load(config, dir)
if err != nil {
return err
}
defer unlock()
libcDependencies = append(libcDependencies, dummyCompileJob(filepath.Join(filepath.Dir(job.result), "crt1.o")))
libcDependencies = append(libcDependencies, job)
case "picolibc":
libcJob, unlock, err := Picolibc.load(config, dir)
if err != nil {
return err
}
defer unlock()
libcDependencies = append(libcDependencies, libcJob)
case "wasi-libc":
path := filepath.Join(root, "lib/wasi-libc/sysroot/lib/wasm32-wasi/libc.a")
if _, err := os.Stat(path); os.IsNotExist(err) {
return errors.New("could not find wasi-libc, perhaps you need to run `make wasi-libc`?")
}
libcDependencies = append(libcDependencies, dummyCompileJob(path))
case "mingw-w64":
_, unlock, err := MinGW.load(config, dir)
if err != nil {
return err
}
unlock()
libcDependencies = append(libcDependencies, makeMinGWExtraLibs(dir)...)
case "":
// no library specified, so nothing to do
default:
return fmt.Errorf("unknown libc: %s", config.Target.Libc)
}
optLevel, sizeLevel, _ := config.OptLevels()
compilerConfig := &compiler.Config{
Triple: config.Triple(),
CPU: config.CPU(),
Features: config.Features(),
GOOS: config.GOOS(),
GOARCH: config.GOARCH(),
CodeModel: config.CodeModel(),
RelocationModel: config.RelocationModel(),
SizeLevel: sizeLevel,
Scheduler: config.Scheduler(),
AutomaticStackSize: config.AutomaticStackSize(),
DefaultStackSize: config.Target.DefaultStackSize,
NeedsStackObjects: config.NeedsStackObjects(),
Debug: true,
}
// Load the target machine, which is the LLVM object that contains all
// details of a target (alignment restrictions, pointer size, default
// address spaces, etc).
machine, err := compiler.NewTargetMachine(compilerConfig)
if err != nil {
return err
}
// Load entire program AST into memory.
lprogram, err := loader.Load(config, []string{pkgName}, config.ClangHeaders, types.Config{
Sizes: compiler.Sizes(machine),
})
if err != nil {
return err
}
err = lprogram.Parse()
if err != nil {
return err
}
// Create the *ssa.Program. This does not yet build the entire SSA of the
// program so it's pretty fast and doesn't need to be parallelized.
program := lprogram.LoadSSA()
// Add jobs to compile each package.
// Packages that have a cache hit will not be compiled again.
var packageJobs []*compileJob
packageBitcodePaths := make(map[string]string)
packageActionIDs := make(map[string]string)
for _, pkg := range lprogram.Sorted() {
pkg := pkg // necessary to avoid a race condition
var undefinedGlobals []string
for name := range config.Options.GlobalValues[pkg.Pkg.Path()] {
undefinedGlobals = append(undefinedGlobals, name)
}
sort.Strings(undefinedGlobals)
// Create a cache key: a hash from the action ID below that contains all
// the parameters for the build.
actionID := packageAction{
ImportPath: pkg.ImportPath,
CompilerBuildID: string(compilerBuildID),
TinyGoVersion: goenv.Version,
LLVMVersion: llvm.Version,
Config: compilerConfig,
CFlags: pkg.CFlags,
FileHashes: make(map[string]string, len(pkg.FileHashes)),
Imports: make(map[string]string, len(pkg.Pkg.Imports())),
OptLevel: optLevel,
SizeLevel: sizeLevel,
UndefinedGlobals: undefinedGlobals,
}
for filePath, hash := range pkg.FileHashes {
actionID.FileHashes[filePath] = hex.EncodeToString(hash)
}
for _, imported := range pkg.Pkg.Imports() {
hash, ok := packageActionIDs[imported.Path()]
if !ok {
return fmt.Errorf("package %s imports %s but couldn't find dependency", pkg.ImportPath, imported.Path())
}
actionID.Imports[imported.Path()] = hash
}
buf, err := json.Marshal(actionID)
if err != nil {
panic(err) // shouldn't happen
}
hash := sha512.Sum512_224(buf)
packageActionIDs[pkg.ImportPath] = hex.EncodeToString(hash[:])
// Determine the path of the bitcode file (which is a serialized version
// of a LLVM module).
bitcodePath := filepath.Join(cacheDir, "pkg-"+hex.EncodeToString(hash[:])+".bc")
packageBitcodePaths[pkg.ImportPath] = bitcodePath
// The package has not yet been compiled, so create a job to do so.
job := &compileJob{
description: "compile package " + pkg.ImportPath,
run: func(*compileJob) error {
// Acquire a lock (if supported).
unlock := lock(bitcodePath + ".lock")
defer unlock()
if _, err := os.Stat(bitcodePath); err == nil {
// Already cached, don't recreate this package.
return nil
}
// Compile AST to IR. The compiler.CompilePackage function will
// build the SSA as needed.
mod, errs := compiler.CompilePackage(pkg.ImportPath, pkg, program.Package(pkg.Pkg), machine, compilerConfig, config.DumpSSA())
if errs != nil {
return newMultiError(errs)
}
if err := llvm.VerifyModule(mod, llvm.PrintMessageAction); err != nil {
return errors.New("verification error after compiling package " + pkg.ImportPath)
}
// Load bitcode of CGo headers and join the modules together.
// This may seem vulnerable to cache problems, but this is not
// the case: the Go code that was just compiled already tracks
// all C files that are read and hashes them.
// These headers could be compiled in parallel but the benefit
// is so small that it's probably not worth parallelizing.
// Packages are compiled independently anyway.
for _, cgoHeader := range pkg.CGoHeaders {
// Store the header text in a temporary file.
f, err := ioutil.TempFile(dir, "cgosnippet-*.c")
if err != nil {
return err
}
_, err = f.Write([]byte(cgoHeader))
if err != nil {
return err
}
f.Close()
// Compile the code (if there is any) to bitcode.
flags := append([]string{"-c", "-emit-llvm", "-o", f.Name() + ".bc", f.Name()}, pkg.CFlags...)
if config.Options.PrintCommands != nil {
config.Options.PrintCommands("clang", flags...)
}
err = runCCompiler(flags...)
if err != nil {
return &commandError{"failed to build CGo header", "", err}
}
// Load and link the bitcode.
// This makes it possible to optimize the functions defined
// in the header together with the Go code. In particular,
// this allows inlining. It also ensures there is only one
// file per package to cache.
headerMod, err := mod.Context().ParseBitcodeFile(f.Name() + ".bc")
if err != nil {
return fmt.Errorf("failed to load bitcode file: %w", err)
}
err = llvm.LinkModules(mod, headerMod)
if err != nil {
return fmt.Errorf("failed to link module: %w", err)
}
}
// Erase all globals that are part of the undefinedGlobals list.
// This list comes from the -ldflags="-X pkg.foo=val" option.
// Instead of setting the value directly in the AST (which would
// mean the value, which may be a secret, is stored in the build
// cache), the global itself is left external (undefined) and is
// only set at the end of the compilation.
for _, name := range undefinedGlobals {
globalName := pkg.Pkg.Path() + "." + name
global := mod.NamedGlobal(globalName)
if global.IsNil() {
return errors.New("global not found: " + globalName)
}
name := global.Name()
newGlobal := llvm.AddGlobal(mod, global.Type().ElementType(), name+".tmp")
global.ReplaceAllUsesWith(newGlobal)
global.EraseFromParentAsGlobal()
newGlobal.SetName(name)
}
// Try to interpret package initializers at compile time.
// It may only be possible to do this partially, in which case
// it is completed after all IR files are linked.
pkgInit := mod.NamedFunction(pkg.Pkg.Path() + ".init")
if pkgInit.IsNil() {
panic("init not found for " + pkg.Pkg.Path())
}
err := interp.RunFunc(pkgInit, config.DumpSSA())
if err != nil {
return err
}
if err := llvm.VerifyModule(mod, llvm.PrintMessageAction); err != nil {
return errors.New("verification error after interpreting " + pkgInit.Name())
}
// Run function passes for each function in the module.
// These passes are intended to be run on each function right
// after they're created to reduce IR size (and maybe also for
// cache locality to improve performance), but for now they're
// run here for each function in turn. Maybe this can be
// improved in the future.
builder := llvm.NewPassManagerBuilder()
defer builder.Dispose()
builder.SetOptLevel(optLevel)
builder.SetSizeLevel(sizeLevel)
funcPasses := llvm.NewFunctionPassManagerForModule(mod)
defer funcPasses.Dispose()
builder.PopulateFunc(funcPasses)
funcPasses.InitializeFunc()
for fn := mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
if fn.IsDeclaration() {
continue
}
funcPasses.RunFunc(fn)
}
funcPasses.FinalizeFunc()
// Serialize the LLVM module as a bitcode file.
// Write to a temporary path that is renamed to the destination
// file to avoid race conditions with other TinyGo invocatiosn
// that might also be compiling this package at the same time.
f, err := ioutil.TempFile(filepath.Dir(bitcodePath), filepath.Base(bitcodePath))
if err != nil {
return err
}
if runtime.GOOS == "windows" {
// Work around a problem on Windows.
// For some reason, WriteBitcodeToFile causes TinyGo to
// exit with the following message:
// LLVM ERROR: IO failure on output stream: Bad file descriptor
buf := llvm.WriteBitcodeToMemoryBuffer(mod)
defer buf.Dispose()
_, err = f.Write(buf.Bytes())
} else {
// Otherwise, write bitcode directly to the file (probably
// faster).
err = llvm.WriteBitcodeToFile(mod, f)
}
if err != nil {
// WriteBitcodeToFile doesn't produce a useful error on its
// own, so create a somewhat useful error message here.
return fmt.Errorf("failed to write bitcode for package %s to file %s", pkg.ImportPath, bitcodePath)
}
err = f.Close()
if err != nil {
return err
}
return os.Rename(f.Name(), bitcodePath)
},
}
packageJobs = append(packageJobs, job)
}
// Add job that links and optimizes all packages together.
var mod llvm.Module
var stackSizeLoads []string
programJob := &compileJob{
description: "link+optimize packages (LTO)",
dependencies: packageJobs,
run: func(*compileJob) error {
// Load and link all the bitcode files. This does not yet optimize
// anything, it only links the bitcode files together.
ctx := llvm.NewContext()
mod = ctx.NewModule("main")
for _, pkg := range lprogram.Sorted() {
pkgMod, err := ctx.ParseBitcodeFile(packageBitcodePaths[pkg.ImportPath])
if err != nil {
return fmt.Errorf("failed to load bitcode file: %w", err)
}
err = llvm.LinkModules(mod, pkgMod)
if err != nil {
return fmt.Errorf("failed to link module: %w", err)
}
}
// Create runtime.initAll function that calls the runtime
// initializer of each package.
llvmInitFn := mod.NamedFunction("runtime.initAll")
llvmInitFn.SetLinkage(llvm.InternalLinkage)
llvmInitFn.SetUnnamedAddr(true)
transform.AddStandardAttributes(llvmInitFn, config)
llvmInitFn.Param(0).SetName("context")
block := mod.Context().AddBasicBlock(llvmInitFn, "entry")
irbuilder := mod.Context().NewBuilder()
defer irbuilder.Dispose()
irbuilder.SetInsertPointAtEnd(block)
i8ptrType := llvm.PointerType(mod.Context().Int8Type(), 0)
for _, pkg := range lprogram.Sorted() {
pkgInit := mod.NamedFunction(pkg.Pkg.Path() + ".init")
if pkgInit.IsNil() {
panic("init not found for " + pkg.Pkg.Path())
}
irbuilder.CreateCall(pkgInit, []llvm.Value{llvm.Undef(i8ptrType)}, "")
}
irbuilder.CreateRetVoid()
// After linking, functions should (as far as possible) be set to
// private linkage or internal linkage. The compiler package marks
// non-exported functions by setting the visibility to hidden or
// (for thunks) to linkonce_odr linkage. Change the linkage here to
// internal to benefit much more from interprocedural optimizations.
for fn := mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
if fn.Visibility() == llvm.HiddenVisibility {
fn.SetVisibility(llvm.DefaultVisibility)
fn.SetLinkage(llvm.InternalLinkage)
} else if fn.Linkage() == llvm.LinkOnceODRLinkage {
fn.SetLinkage(llvm.InternalLinkage)
}
}
// Do the same for globals.
for global := mod.FirstGlobal(); !global.IsNil(); global = llvm.NextGlobal(global) {
if global.Visibility() == llvm.HiddenVisibility {
global.SetVisibility(llvm.DefaultVisibility)
global.SetLinkage(llvm.InternalLinkage)
} else if global.Linkage() == llvm.LinkOnceODRLinkage {
global.SetLinkage(llvm.InternalLinkage)
}
}
if config.Options.PrintIR {
fmt.Println("; Generated LLVM IR:")
fmt.Println(mod.String())
}
// Run all optimization passes, which are much more effective now
// that the optimizer can see the whole program at once.
err := optimizeProgram(mod, config)
if err != nil {
return err
}
// Make sure stack sizes are loaded from a separate section so they can be
// modified after linking.
if config.AutomaticStackSize() {
stackSizeLoads = transform.CreateStackSizeLoads(mod, config)
}
return nil
},
}
// Check whether we only need to create an object file.
// If so, we don't need to link anything and will be finished quickly.
outext := filepath.Ext(outpath)
if outext == ".o" || outext == ".bc" || outext == ".ll" {
// Run jobs to produce the LLVM module.
err := runJobs(programJob, config.Options.Semaphore)
if err != nil {
return err
}
// Generate output.
switch outext {
case ".o":
llvmBuf, err := machine.EmitToMemoryBuffer(mod, llvm.ObjectFile)
if err != nil {
return err
}
return ioutil.WriteFile(outpath, llvmBuf.Bytes(), 0666)
case ".bc":
var buf llvm.MemoryBuffer
if config.UseThinLTO() {
buf = llvm.WriteThinLTOBitcodeToMemoryBuffer(mod)
} else {
buf = llvm.WriteBitcodeToMemoryBuffer(mod)
}
defer buf.Dispose()
return ioutil.WriteFile(outpath, buf.Bytes(), 0666)
case ".ll":
data := []byte(mod.String())
return ioutil.WriteFile(outpath, data, 0666)
default:
panic("unreachable")
}
}
// Act as a compiler driver, as we need to produce a complete executable.
// First add all jobs necessary to build this object file, then afterwards
// run all jobs in parallel as far as possible.
// Add job to write the output object file.
objfile := filepath.Join(dir, "main.o")
outputObjectFileJob := &compileJob{
description: "generate output file",
dependencies: []*compileJob{programJob},
result: objfile,
run: func(*compileJob) error {
var llvmBuf llvm.MemoryBuffer
if config.UseThinLTO() {
llvmBuf = llvm.WriteThinLTOBitcodeToMemoryBuffer(mod)
} else {
var err error
llvmBuf, err = machine.EmitToMemoryBuffer(mod, llvm.ObjectFile)
if err != nil {
return err
}
}
defer llvmBuf.Dispose()
return ioutil.WriteFile(objfile, llvmBuf.Bytes(), 0666)
},
}
// Prepare link command.
linkerDependencies := []*compileJob{outputObjectFileJob}
executable := filepath.Join(dir, "main")
if config.GOOS() == "windows" {
executable += ".exe"
}
tmppath := executable // final file
ldflags := append(config.LDFlags(), "-o", executable)
// Add compiler-rt dependency if needed. Usually this is a simple load from
// a cache.
if config.Target.RTLib == "compiler-rt" {
job, unlock, err := CompilerRT.load(config, dir)
if err != nil {
return err
}
defer unlock()
linkerDependencies = append(linkerDependencies, job)
}
// Add jobs to compile extra files. These files are in C or assembly and
// contain things like the interrupt vector table and low level operations
// such as stack switching.
for _, path := range config.ExtraFiles() {
abspath := filepath.Join(root, path)
job := &compileJob{
description: "compile extra file " + path,
run: func(job *compileJob) error {
result, err := compileAndCacheCFile(abspath, dir, config.CFlags(), config.UseThinLTO(), config.Options.PrintCommands)
job.result = result
return err
},
}
linkerDependencies = append(linkerDependencies, job)
}
// Add jobs to compile C files in all packages. This is part of CGo.
// TODO: do this as part of building the package to be able to link the
// bitcode files together.
for _, pkg := range lprogram.Sorted() {
pkg := pkg
for _, filename := range pkg.CFiles {
abspath := filepath.Join(pkg.Dir, filename)
job := &compileJob{
description: "compile CGo file " + abspath,
run: func(job *compileJob) error {
result, err := compileAndCacheCFile(abspath, dir, pkg.CFlags, config.UseThinLTO(), config.Options.PrintCommands)
job.result = result
return err
},
}
linkerDependencies = append(linkerDependencies, job)
}
}
// Linker flags from CGo lines:
// #cgo LDFLAGS: foo
if len(lprogram.LDFlags) > 0 {
ldflags = append(ldflags, lprogram.LDFlags...)
}
// Add libc dependencies, if they exist.
linkerDependencies = append(linkerDependencies, libcDependencies...)
// Strip debug information with -no-debug.
if !config.Debug() {
for _, tag := range config.BuildTags() {
if tag == "baremetal" {
// Don't use -no-debug on baremetal targets. It makes no sense:
// the debug information isn't flashed to the device anyway.
return fmt.Errorf("stripping debug information is unnecessary for baremetal targets")
}
}
if config.Target.Linker == "wasm-ld" {
// Don't just strip debug information, also compress relocations
// while we're at it. Relocations can only be compressed when debug
// information is stripped.
ldflags = append(ldflags, "--strip-debug", "--compress-relocations")
} else if config.Target.Linker == "ld.lld" {
// ld.lld is also used on Linux.
ldflags = append(ldflags, "--strip-debug")
} else {
switch config.GOOS() {
case "linux":
// Either real linux or an embedded system (like AVR) that
// pretends to be Linux. It's a ELF linker wrapped by GCC in any
// case (not ld.lld - that case is handled above).
ldflags = append(ldflags, "-Wl,--strip-debug")
case "darwin":
// MacOS (darwin) doesn't have a linker flag to strip debug
// information. Apple expects you to use the strip command
// instead.
return errors.New("cannot remove debug information: MacOS doesn't suppor this linker flag")
default:
// Other OSes may have different flags.
return errors.New("cannot remove debug information: unknown OS: " + config.GOOS())
}
}
}
// Create a linker job, which links all object files together and does some
// extra stuff that can only be done after linking.
linkJob := &compileJob{
description: "link",
dependencies: linkerDependencies,
run: func(job *compileJob) error {
for _, dependency := range job.dependencies {
if dependency.result == "" {
return errors.New("dependency without result: " + dependency.description)
}
ldflags = append(ldflags, dependency.result)
}
if config.Options.PrintCommands != nil {
config.Options.PrintCommands(config.Target.Linker, ldflags...)
}
if config.UseThinLTO() {
ldflags = append(ldflags,
"--thinlto-cache-dir="+filepath.Join(cacheDir, "thinlto"),
"-plugin-opt=mcpu="+config.CPU(),
"-plugin-opt=O"+strconv.Itoa(optLevel),
"-plugin-opt=thinlto")
if config.CodeModel() != "default" {
ldflags = append(ldflags,
"-mllvm", "-code-model="+config.CodeModel())
}
if sizeLevel >= 2 {
// Workaround with roughly the same effect as
// https://reviews.llvm.org/D119342.
// Can hopefully be removed in LLVM 15.
ldflags = append(ldflags,
"-mllvm", "--rotation-max-header-size=0")
}
}
err = link(config.Target.Linker, ldflags...)
if err != nil {
return &commandError{"failed to link", executable, err}
}
var calculatedStacks []string
var stackSizes map[string]functionStackSize
if config.Options.PrintStacks || config.AutomaticStackSize() {
// Try to determine stack sizes at compile time.
// Don't do this by default as it usually doesn't work on
// unsupported architectures.
calculatedStacks, stackSizes, err = determineStackSizes(mod, executable)
if err != nil {
return err
}
}
// Apply ELF patches
if config.AutomaticStackSize() {
// Modify the .tinygo_stacksizes section that contains a stack size
// for each goroutine.
err = modifyStackSizes(executable, stackSizeLoads, stackSizes)
if err != nil {
return fmt.Errorf("could not modify stack sizes: %w", err)
}
}
if config.RP2040BootPatch() {
// Patch the second stage bootloader CRC into the .boot2 section
err = patchRP2040BootCRC(executable)
if err != nil {
return fmt.Errorf("could not patch RP2040 second stage boot loader: %w", err)
}
}
// Run wasm-opt if necessary.
if config.Scheduler() == "asyncify" {
var optLevel, shrinkLevel int
switch config.Options.Opt {
case "none", "0":
case "1":
optLevel = 1
case "2":
optLevel = 2
case "s":
optLevel = 2
shrinkLevel = 1
case "z":
optLevel = 2
shrinkLevel = 2
default:
return fmt.Errorf("unknown opt level: %q", config.Options.Opt)
}
cmd := exec.Command(goenv.Get("WASMOPT"), "--asyncify", "-g",
"--optimize-level", strconv.Itoa(optLevel),
"--shrink-level", strconv.Itoa(shrinkLevel),
executable, "--output", executable)
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
err := cmd.Run()
if err != nil {
return fmt.Errorf("wasm-opt failed: %w", err)
}
}
// Print code size if requested.
if config.Options.PrintSizes == "short" || config.Options.PrintSizes == "full" {
packagePathMap := make(map[string]string, len(lprogram.Packages))
for _, pkg := range lprogram.Sorted() {
packagePathMap[pkg.OriginalDir()] = pkg.Pkg.Path()
}
sizes, err := loadProgramSize(executable, packagePathMap)
if err != nil {
return err
}
if config.Options.PrintSizes == "short" {
fmt.Printf(" code data bss | flash ram\n")
fmt.Printf("%7d %7d %7d | %7d %7d\n", sizes.Code+sizes.ROData, sizes.Data, sizes.BSS, sizes.Flash(), sizes.RAM())
} else {
if !config.Debug() {
fmt.Println("warning: data incomplete, remove the -no-debug flag for more detail")
}
fmt.Printf(" code rodata data bss | flash ram | package\n")
fmt.Printf("------------------------------- | --------------- | -------\n")
for _, name := range sizes.sortedPackageNames() {
pkgSize := sizes.Packages[name]
fmt.Printf("%7d %7d %7d %7d | %7d %7d | %s\n", pkgSize.Code, pkgSize.ROData, pkgSize.Data, pkgSize.BSS, pkgSize.Flash(), pkgSize.RAM(), name)
}
fmt.Printf("------------------------------- | --------------- | -------\n")
fmt.Printf("%7d %7d %7d %7d | %7d %7d | total\n", sizes.Code, sizes.ROData, sizes.Data, sizes.BSS, sizes.Code+sizes.ROData+sizes.Data, sizes.Data+sizes.BSS)
}
}
// Print goroutine stack sizes, as far as possible.
if config.Options.PrintStacks {
printStacks(calculatedStacks, stackSizes)
}
return nil
},
}
// Run all jobs to compile and link the program.
// Do this now (instead of after elf-to-hex and similar conversions) as it
// is simpler and cannot be parallelized.
err = runJobs(linkJob, config.Options.Semaphore)
if err != nil {
return err
}
// Get an Intel .hex file or .bin file from the .elf file.
outputBinaryFormat := config.BinaryFormat(outext)
switch outputBinaryFormat {
case "elf":
// do nothing, file is already in ELF format
case "hex", "bin":
// Extract raw binary, either encoding it as a hex file or as a raw
// firmware file.
tmppath = filepath.Join(dir, "main"+outext)
err := objcopy(executable, tmppath, outputBinaryFormat)
if err != nil {
return err
}
case "uf2":
// Get UF2 from the .elf file.
tmppath = filepath.Join(dir, "main"+outext)
err := convertELFFileToUF2File(executable, tmppath, config.Target.UF2FamilyID)
if err != nil {
return err
}
case "esp32", "esp32c3", "esp8266":
// Special format for the ESP family of chips (parsed by the ROM
// bootloader).
tmppath = filepath.Join(dir, "main"+outext)
err := makeESPFirmareImage(executable, tmppath, outputBinaryFormat)
if err != nil {
return err
}
case "nrf-dfu":
// special format for nrfutil for Nordic chips
tmphexpath := filepath.Join(dir, "main.hex")
err := objcopy(executable, tmphexpath, "hex")
if err != nil {
return err
}
tmppath = filepath.Join(dir, "main"+outext)
err = makeDFUFirmwareImage(config.Options, tmphexpath, tmppath)
if err != nil {
return err
}
default:
return fmt.Errorf("unknown output binary format: %s", outputBinaryFormat)
}
// If there's a module root, use that.
moduleroot := lprogram.MainPkg().Module.Dir
if moduleroot == "" {
// if not, just the regular root
moduleroot = lprogram.MainPkg().Root
}
return action(BuildResult{
Binary: tmppath,
MainDir: lprogram.MainPkg().Dir,
ModuleRoot: moduleroot,
ImportPath: lprogram.MainPkg().ImportPath,
})
}
// optimizeProgram runs a series of optimizations and transformations that are
// needed to convert a program to its final form. Some transformations are not
// optional and must be run as the compiler expects them to run.
func optimizeProgram(mod llvm.Module, config *compileopts.Config) error {
err := interp.Run(mod, config.DumpSSA())
if err != nil {
return err
}
if config.VerifyIR() {
// Only verify if we really need it.
// The IR has already been verified before writing the bitcode to disk
// and the interp function above doesn't need to do a lot as most of the
// package initializers have already run. Additionally, verifying this
// linked IR is _expensive_ because dead code hasn't been removed yet,
// easily costing a few hundred milliseconds. Therefore, only do it when
// specifically requested.
if err := llvm.VerifyModule(mod, llvm.PrintMessageAction); err != nil {
return errors.New("verification error after interpreting runtime.initAll")
}
}
if config.GOOS() != "darwin" && !config.UseThinLTO() {
transform.ApplyFunctionSections(mod) // -ffunction-sections
}
// Insert values from -ldflags="-X ..." into the IR.
err = setGlobalValues(mod, config.Options.GlobalValues)
if err != nil {
return err
}
// Browsers cannot handle external functions that have type i64 because it
// cannot be represented exactly in JavaScript (JS only has doubles). To
// keep functions interoperable, pass int64 types as pointers to
// stack-allocated values.
// Use -wasm-abi=generic to disable this behaviour.
if config.WasmAbi() == "js" {
err := transform.ExternalInt64AsPtr(mod, config)
if err != nil {
return err
}
}
// Optimization levels here are roughly the same as Clang, but probably not
// exactly.
optLevel, sizeLevel, inlinerThreshold := config.OptLevels()
errs := transform.Optimize(mod, config, optLevel, sizeLevel, inlinerThreshold)
if len(errs) > 0 {
return newMultiError(errs)
}
if err := llvm.VerifyModule(mod, llvm.PrintMessageAction); err != nil {
return errors.New("verification failure after LLVM optimization passes")
}
// LLVM 11 by default tries to emit tail calls (even with the target feature
// disabled) unless it is explicitly disabled with a function attribute.
// This is a problem, as it tries to emit them and prints an error when it
// can't with this feature disabled.
// Because as of september 2020 tail calls are not yet widely supported,
// they need to be disabled until they are widely supported (at which point
// the +tail-call target feautre can be set).
if strings.HasPrefix(config.Triple(), "wasm") {
transform.DisableTailCalls(mod)
}
return nil
}
// setGlobalValues sets the global values from the -ldflags="-X ..." compiler
// option in the given module. An error may be returned if the global is not of
// the expected type.
func setGlobalValues(mod llvm.Module, globals map[string]map[string]string) error {
var pkgPaths []string
for pkgPath := range globals {
pkgPaths = append(pkgPaths, pkgPath)
}
sort.Strings(pkgPaths)
for _, pkgPath := range pkgPaths {
pkg := globals[pkgPath]
var names []string
for name := range pkg {
names = append(names, name)
}
sort.Strings(names)
for _, name := range names {
value := pkg[name]
globalName := pkgPath + "." + name
global := mod.NamedGlobal(globalName)
if global.IsNil() || !global.Initializer().IsNil() {
// The global either does not exist (optimized away?) or has
// some value, in which case it has already been initialized at
// package init time.
continue
}
// A strin is a {ptr, len} pair. We need these types to build the
// initializer.
initializerType := global.Type().ElementType()
if initializerType.TypeKind() != llvm.StructTypeKind || initializerType.StructName() == "" {
return fmt.Errorf("%s: not a string", globalName)
}
elementTypes := initializerType.StructElementTypes()
if len(elementTypes) != 2 {
return fmt.Errorf("%s: not a string", globalName)
}
// Create a buffer for the string contents.
bufInitializer := mod.Context().ConstString(value, false)
buf := llvm.AddGlobal(mod, bufInitializer.Type(), ".string")
buf.SetInitializer(bufInitializer)
buf.SetAlignment(1)
buf.SetUnnamedAddr(true)
buf.SetLinkage(llvm.PrivateLinkage)
// Create the string value, which is a {ptr, len} pair.
zero := llvm.ConstInt(mod.Context().Int32Type(), 0, false)
ptr := llvm.ConstGEP(buf, []llvm.Value{zero, zero})
if ptr.Type() != elementTypes[0] {
return fmt.Errorf("%s: not a string", globalName)
}
length := llvm.ConstInt(elementTypes[1], uint64(len(value)), false)
initializer := llvm.ConstNamedStruct(initializerType, []llvm.Value{
ptr,
length,
})
// Set the initializer. No initializer should be set at this point.
global.SetInitializer(initializer)
}
}
return nil
}
// functionStackSizes keeps stack size information about a single function
// (usually a goroutine).
type functionStackSize struct {
humanName string
stackSize uint64
stackSizeType stacksize.SizeType
missingStackSize *stacksize.CallNode
}
// determineStackSizes tries to determine the stack sizes of all started
// goroutines and of the reset vector. The LLVM module is necessary to find
// functions that call a function pointer.
func determineStackSizes(mod llvm.Module, executable string) ([]string, map[string]functionStackSize, error) {
var callsIndirectFunction []string
gowrappers := []string{}
gowrapperNames := make(map[string]string)
for fn := mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
// Determine which functions call a function pointer.
for bb := fn.FirstBasicBlock(); !bb.IsNil(); bb = llvm.NextBasicBlock(bb) {
for inst := bb.FirstInstruction(); !inst.IsNil(); inst = llvm.NextInstruction(inst) {
if inst.IsACallInst().IsNil() {
continue
}
if callee := inst.CalledValue(); callee.IsAFunction().IsNil() && callee.IsAInlineAsm().IsNil() {
callsIndirectFunction = append(callsIndirectFunction, fn.Name())
}
}
}
// Get a list of "go wrappers", small wrapper functions that decode
// parameters when starting a new goroutine.
attr := fn.GetStringAttributeAtIndex(-1, "tinygo-gowrapper")
if !attr.IsNil() {
gowrappers = append(gowrappers, fn.Name())
gowrapperNames[fn.Name()] = attr.GetStringValue()
}
}
sort.Strings(gowrappers)
// Load the ELF binary.
f, err := elf.Open(executable)
if err != nil {
return nil, nil, fmt.Errorf("could not load executable for stack size analysis: %w", err)
}
defer f.Close()
// Determine the frame size of each function (if available) and the callgraph.
functions, err := stacksize.CallGraph(f, callsIndirectFunction)
if err != nil {
return nil, nil, fmt.Errorf("could not parse executable for stack size analysis: %w", err)
}
// Goroutines need to be started and finished and take up some stack space
// that way. This can be measured by measuing the stack size of
// tinygo_startTask.
if numFuncs := len(functions["tinygo_startTask"]); numFuncs != 1 {
return nil, nil, fmt.Errorf("expected exactly one definition of tinygo_startTask, got %d", numFuncs)
}
baseStackSize, baseStackSizeType, baseStackSizeFailedAt := functions["tinygo_startTask"][0].StackSize()
sizes := make(map[string]functionStackSize)
// Add the reset handler function, for convenience. The reset handler runs
// startup code and the scheduler. The listed stack size is not the full
// stack size: interrupts are not counted.
var resetFunction string
switch f.Machine {
case elf.EM_ARM:
// Note: all interrupts happen on this stack so the real size is bigger.
resetFunction = "Reset_Handler"
}
if resetFunction != "" {
funcs := functions[resetFunction]
if len(funcs) != 1 {
return nil, nil, fmt.Errorf("expected exactly one definition of %s in the callgraph, found %d", resetFunction, len(funcs))
}
stackSize, stackSizeType, missingStackSize := funcs[0].StackSize()
sizes[resetFunction] = functionStackSize{
stackSize: stackSize,
stackSizeType: stackSizeType,
missingStackSize: missingStackSize,
humanName: resetFunction,
}
}
// Add all goroutine wrapper functions.
for _, name := range gowrappers {
funcs := functions[name]
if len(funcs) != 1 {
return nil, nil, fmt.Errorf("expected exactly one definition of %s in the callgraph, found %d", name, len(funcs))
}
humanName := gowrapperNames[name]
if humanName == "" {
humanName = name // fallback
}
stackSize, stackSizeType, missingStackSize := funcs[0].StackSize()
if baseStackSizeType != stacksize.Bounded {
// It was not possible to determine the stack size at compile time
// because tinygo_startTask does not have a fixed stack size. This
// can happen when using -opt=1.
stackSizeType = baseStackSizeType
missingStackSize = baseStackSizeFailedAt
} else if stackSize < baseStackSize {
// This goroutine has a very small stack, but still needs to fit all
// registers to start and suspend the goroutine. Otherwise a stack
// overflow will occur even before the goroutine is started.
stackSize = baseStackSize
}
sizes[name] = functionStackSize{
stackSize: stackSize,
stackSizeType: stackSizeType,
missingStackSize: missingStackSize,
humanName: humanName,
}
}
if resetFunction != "" {
return append([]string{resetFunction}, gowrappers...), sizes, nil
}
return gowrappers, sizes, nil
}
// modifyStackSizes modifies the .tinygo_stacksizes section with the updated
// stack size information. Before this modification, all stack sizes in the
// section assume the default stack size (which is relatively big).
func modifyStackSizes(executable string, stackSizeLoads []string, stackSizes map[string]functionStackSize) error {
data, fileHeader, err := getElfSectionData(executable, ".tinygo_stacksizes")
if err != nil {
return err
}
if len(stackSizeLoads)*4 != len(data) {
// Note: while AVR should use 2 byte stack sizes, even 64-bit platforms
// should probably stick to 4 byte stack sizes as a larger than 4GB
// stack doesn't make much sense.
return errors.New("expected 4 byte stack sizes")
}
// Modify goroutine stack sizes with a compile-time known worst case stack
// size.
for i, name := range stackSizeLoads {
fn, ok := stackSizes[name]
if !ok {
return fmt.Errorf("could not find symbol %s in ELF file", name)
}
if fn.stackSizeType == stacksize.Bounded {
stackSize := uint32(fn.stackSize)
// Add stack size used by interrupts.
switch fileHeader.Machine {
case elf.EM_ARM:
if stackSize%8 != 0 {
// If the stack isn't a multiple of 8, it means the leaf
// function with the biggest stack depth doesn't have an aligned
// stack. If the STKALIGN flag is set (which it is by default)
// the interrupt controller will forcibly align the stack before
// storing in-use registers. This will thus overwrite one word
// past the end of the stack (off-by-one).
stackSize += 4
}
// On Cortex-M (assumed here), this stack size is 8 words or 32
// bytes. This is only to store the registers that the interrupt
// may modify, the interrupt will switch to the interrupt stack
// (MSP).
// Some background:
// https://interrupt.memfault.com/blog/cortex-m-rtos-context-switching
stackSize += 32
// Adding 4 for the stack canary, and another 4 to keep the
// stack aligned. Even though the size may be automatically
// determined, stack overflow checking is still important as the
// stack size cannot be determined for all goroutines.
stackSize += 8
default:
return fmt.Errorf("unknown architecture: %s", fileHeader.Machine.String())
}
// Finally write the stack size to the binary.
binary.LittleEndian.PutUint32(data[i*4:], stackSize)
}
}
return replaceElfSection(executable, ".tinygo_stacksizes", data)
}
// printStacks prints the maximum stack depth for functions that are started as
// goroutines. Stack sizes cannot always be determined statically, in particular
// recursive functions and functions that call interface methods or function
// pointers may have an unknown stack depth (depending on what the optimizer
// manages to optimize away).
//
// It might print something like the following:
//
// function stack usage (in bytes)
// Reset_Handler 316
// examples/blinky2.led1 92
// runtime.run$1 300
func printStacks(calculatedStacks []string, stackSizes map[string]functionStackSize) {
// Print the sizes of all stacks.
fmt.Printf("%-32s %s\n", "function", "stack usage (in bytes)")
for _, name := range calculatedStacks {
fn := stackSizes[name]
switch fn.stackSizeType {
case stacksize.Bounded:
fmt.Printf("%-32s %d\n", fn.humanName, fn.stackSize)
case stacksize.Unknown:
fmt.Printf("%-32s unknown, %s does not have stack frame information\n", fn.humanName, fn.missingStackSize)
case stacksize.Recursive:
fmt.Printf("%-32s recursive, %s may call itself\n", fn.humanName, fn.missingStackSize)
case stacksize.IndirectCall:
fmt.Printf("%-32s unknown, %s calls a function pointer\n", fn.humanName, fn.missingStackSize)
}
}
}
// RP2040 second stage bootloader CRC32 calculation
//
// Spec: https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
// Section: 2.8.1.3.1. Checksum
func patchRP2040BootCRC(executable string) error {
bytes, _, err := getElfSectionData(executable, ".boot2")
if err != nil {
return err
}
if len(bytes) != 256 {
return fmt.Errorf("rp2040 .boot2 section must be exactly 256 bytes")
}
// From the 'official' RP2040 checksum script:
//
// Our bootrom CRC32 is slightly bass-ackward but it's
// best to work around for now (FIXME)
// 100% worth it to save two Thumb instructions
revBytes := make([]byte, len(bytes))
for i := range bytes {
revBytes[i] = bits.Reverse8(bytes[i])
}
// crc32.Update does an initial negate and negates the
// result, so to meet RP2040 spec, pass 0x0 as initial
// hash and negate returned value.
//
// Note: checksum is over 252 bytes (256 - 4)
hash := bits.Reverse32(crc32.Update(0x0, crc32.IEEETable, revBytes[:252]) ^ 0xFFFFFFFF)
// Write the CRC to the end of the bootloader.
binary.LittleEndian.PutUint32(bytes[252:], hash)
// Update the .boot2 section to included the CRC
return replaceElfSection(executable, ".boot2", bytes)
}
// lock may acquire a lock at the specified path.
// It returns a function to release the lock.
// If flock is not supported, it does nothing.
func lock(path string) func() {
flock := flock.New(path)
err := flock.Lock()
if err != nil {
return func() {}
}
return func() { flock.Close() }
}