
This implements the block-based GC as a partially precise GC. This means that for most heap allocations it is known which words contain a pointer and which don't. This should in theory make the GC faster (because it can skip non-pointer object) and have fewer false positives in a GC cycle. It does however use a bit more RAM to store the layout of each object. Right now this GC seems to be slower than the conservative GC, but should be less likely to run out of memory as a result of false positives.
1352 строки
41 КиБ
Go
1352 строки
41 КиБ
Go
package interp
|
|
|
|
// This file implements memory as used by interp in a reversible way.
|
|
// Each new function call creates a new layer which is merged in the parent on
|
|
// successful return and is thrown away when the function couldn't complete (in
|
|
// which case the function call is done at runtime).
|
|
// Memory is not typed, except that there is a difference between pointer and
|
|
// non-pointer data. A pointer always points to an object. This implies:
|
|
// * Nil pointers are zero, and are not considered a pointer.
|
|
// * Pointers for memory-mapped I/O point to numeric pointer values, and are
|
|
// thus not considered pointers but regular values. Dereferencing them cannot be
|
|
// done in interp and results in a revert.
|
|
//
|
|
// Right now the memory is assumed to be little endian. This will need an update
|
|
// for big endian arcitectures, if TinyGo ever adds support for one.
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
"math/big"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"tinygo.org/x/go-llvm"
|
|
)
|
|
|
|
// An object is a memory buffer that may be an already existing global or a
|
|
// global created with runtime.alloc or the alloca instruction. If llvmGlobal is
|
|
// set, that's the global for this object, otherwise it needs to be created (if
|
|
// it is still reachable when the package initializer returns). The
|
|
// llvmLayoutType is not necessarily a complete type: it may need to be
|
|
// repeated (for example, for a slice value).
|
|
//
|
|
// Objects are copied in a memory view when they are stored to, to provide the
|
|
// ability to roll back interpreting a function.
|
|
type object struct {
|
|
llvmGlobal llvm.Value
|
|
llvmType llvm.Type // must match llvmGlobal.GlobalValueType() if both are set, may be unset if llvmGlobal is set
|
|
llvmLayoutType llvm.Type // LLVM type based on runtime.alloc layout parameter, if available
|
|
globalName string // name, if not yet created (not guaranteed to be the final name)
|
|
buffer value // buffer with value as given by interp, nil if external
|
|
size uint32 // must match buffer.len(), if available
|
|
constant bool // true if this is a constant global
|
|
marked uint8 // 0 means unmarked, 1 means external read, 2 means external write
|
|
}
|
|
|
|
// clone() returns a cloned version of this object, for when an object needs to
|
|
// be written to for example.
|
|
func (obj object) clone() object {
|
|
if obj.buffer != nil {
|
|
obj.buffer = obj.buffer.clone()
|
|
}
|
|
return obj
|
|
}
|
|
|
|
// A memoryView is bound to a function activation. Loads are done from this view
|
|
// or a parent view (up to the *runner if it isn't included in a view). Stores
|
|
// copy the object to the current view.
|
|
//
|
|
// For details, see the README in the package.
|
|
type memoryView struct {
|
|
r *runner
|
|
parent *memoryView
|
|
objects map[uint32]object
|
|
|
|
// These instructions were added to runtime.initAll while interpreting a
|
|
// function. They are stored here in a list so they can be removed if the
|
|
// execution of the function needs to be rolled back.
|
|
instructions []llvm.Value
|
|
}
|
|
|
|
// extend integrates the changes done by the sub-memoryView into this memory
|
|
// view. This happens when a function is successfully interpreted and returns to
|
|
// the parent, in which case all changed objects should be included in this
|
|
// memory view.
|
|
func (mv *memoryView) extend(sub memoryView) {
|
|
if mv.objects == nil && len(sub.objects) != 0 {
|
|
mv.objects = make(map[uint32]object)
|
|
}
|
|
for key, value := range sub.objects {
|
|
mv.objects[key] = value
|
|
}
|
|
mv.instructions = append(mv.instructions, sub.instructions...)
|
|
}
|
|
|
|
// revert undoes changes done in this memory view: it removes all instructions
|
|
// created in this memoryView. Do not reuse this memoryView.
|
|
func (mv *memoryView) revert() {
|
|
// Erase instructions in reverse order.
|
|
for i := len(mv.instructions) - 1; i >= 0; i-- {
|
|
llvmInst := mv.instructions[i]
|
|
if llvmInst.IsAInstruction().IsNil() {
|
|
// The IR builder will try to create constant versions of
|
|
// instructions whenever possible. If it does this, it's not an
|
|
// instruction and thus shouldn't be removed.
|
|
continue
|
|
}
|
|
llvmInst.EraseFromParentAsInstruction()
|
|
}
|
|
}
|
|
|
|
// markExternalLoad marks the given LLVM value as having an external read. That
|
|
// means that the interpreter can still read from it, but cannot write to it as
|
|
// that would mean the external read (done at runtime) reads from a state that
|
|
// would not exist had the whole initialization been done at runtime.
|
|
func (mv *memoryView) markExternalLoad(llvmValue llvm.Value) error {
|
|
return mv.markExternal(llvmValue, 1)
|
|
}
|
|
|
|
// markExternalStore marks the given LLVM value as having an external write.
|
|
// This means that the interpreter can no longer read from it or write to it, as
|
|
// that would happen in a different order than if all initialization were
|
|
// happening at runtime.
|
|
func (mv *memoryView) markExternalStore(llvmValue llvm.Value) error {
|
|
return mv.markExternal(llvmValue, 2)
|
|
}
|
|
|
|
// markExternal is a helper for markExternalLoad and markExternalStore, and
|
|
// should not be called directly.
|
|
func (mv *memoryView) markExternal(llvmValue llvm.Value, mark uint8) error {
|
|
if llvmValue.IsUndef() || llvmValue.IsNull() {
|
|
// Null and undef definitely don't contain (valid) pointers.
|
|
return nil
|
|
}
|
|
if !llvmValue.IsAInstruction().IsNil() || !llvmValue.IsAArgument().IsNil() {
|
|
// These are considered external by default, there is nothing to mark.
|
|
return nil
|
|
}
|
|
|
|
if !llvmValue.IsAGlobalValue().IsNil() {
|
|
objectIndex := mv.r.getValue(llvmValue).(pointerValue).index()
|
|
obj := mv.get(objectIndex)
|
|
if obj.marked < mark {
|
|
obj = obj.clone()
|
|
obj.marked = mark
|
|
if mv.objects == nil {
|
|
mv.objects = make(map[uint32]object)
|
|
}
|
|
mv.objects[objectIndex] = obj
|
|
if !llvmValue.IsAGlobalVariable().IsNil() {
|
|
initializer := llvmValue.Initializer()
|
|
if !initializer.IsNil() {
|
|
// Using mark '2' (which means read/write access) because
|
|
// even from an object that is only read from, the resulting
|
|
// loaded pointer can be written to.
|
|
err := mv.markExternal(initializer, 2)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
} else {
|
|
// This is a function. Go through all instructions and mark all
|
|
// objects in there.
|
|
for bb := llvmValue.FirstBasicBlock(); !bb.IsNil(); bb = llvm.NextBasicBlock(bb) {
|
|
for inst := bb.FirstInstruction(); !inst.IsNil(); inst = llvm.NextInstruction(inst) {
|
|
opcode := inst.InstructionOpcode()
|
|
if opcode == llvm.Call {
|
|
calledValue := inst.CalledValue()
|
|
if !calledValue.IsAFunction().IsNil() {
|
|
functionName := calledValue.Name()
|
|
if functionName == "llvm.dbg.value" || strings.HasPrefix(functionName, "llvm.lifetime.") {
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
if opcode == llvm.Br || opcode == llvm.Switch {
|
|
// These don't affect memory. Skipped here because
|
|
// they also have a label as operand.
|
|
continue
|
|
}
|
|
numOperands := inst.OperandsCount()
|
|
for i := 0; i < numOperands; i++ {
|
|
// Using mark '2' (which means read/write access)
|
|
// because this might be a store instruction.
|
|
err := mv.markExternal(inst.Operand(i), 2)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if !llvmValue.IsAConstantExpr().IsNil() {
|
|
switch llvmValue.Opcode() {
|
|
case llvm.IntToPtr, llvm.PtrToInt, llvm.BitCast, llvm.GetElementPtr:
|
|
err := mv.markExternal(llvmValue.Operand(0), mark)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
case llvm.Add, llvm.Sub, llvm.Mul, llvm.UDiv, llvm.SDiv, llvm.URem, llvm.SRem, llvm.Shl, llvm.LShr, llvm.AShr, llvm.And, llvm.Or, llvm.Xor:
|
|
// Integer binary operators. Mark both operands.
|
|
err := mv.markExternal(llvmValue.Operand(0), mark)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
err = mv.markExternal(llvmValue.Operand(1), mark)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
default:
|
|
return fmt.Errorf("interp: unknown constant expression '%s'", instructionNameMap[llvmValue.Opcode()])
|
|
}
|
|
} else if !llvmValue.IsAInlineAsm().IsNil() {
|
|
// Inline assembly can modify globals but only exported globals. Let's
|
|
// hope the author knows what they're doing.
|
|
} else {
|
|
llvmType := llvmValue.Type()
|
|
switch llvmType.TypeKind() {
|
|
case llvm.IntegerTypeKind, llvm.FloatTypeKind, llvm.DoubleTypeKind:
|
|
// Nothing to do here. Integers and floats aren't pointers so don't
|
|
// need any marking.
|
|
case llvm.StructTypeKind:
|
|
numElements := llvmType.StructElementTypesCount()
|
|
for i := 0; i < numElements; i++ {
|
|
element := mv.r.builder.CreateExtractValue(llvmValue, i, "")
|
|
err := mv.markExternal(element, mark)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
case llvm.ArrayTypeKind:
|
|
numElements := llvmType.ArrayLength()
|
|
for i := 0; i < numElements; i++ {
|
|
element := mv.r.builder.CreateExtractValue(llvmValue, i, "")
|
|
err := mv.markExternal(element, mark)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
default:
|
|
return errors.New("interp: unknown type kind in markExternalValue")
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// hasExternalLoadOrStore returns true if this object has an external load or
|
|
// store. If this has happened, it is not possible for the interpreter to load
|
|
// from the object or store to it without affecting the behavior of the program.
|
|
func (mv *memoryView) hasExternalLoadOrStore(v pointerValue) bool {
|
|
obj := mv.get(v.index())
|
|
return obj.marked >= 1
|
|
}
|
|
|
|
// hasExternalStore returns true if this object has an external store. If this
|
|
// is true, stores to this object are no longer allowed by the interpreter.
|
|
// It returns false if it only has an external load, in which case it is still
|
|
// possible for the interpreter to read from the object.
|
|
func (mv *memoryView) hasExternalStore(v pointerValue) bool {
|
|
obj := mv.get(v.index())
|
|
return obj.marked >= 2 && !obj.constant
|
|
}
|
|
|
|
// get returns an object that can only be read from, as it may return an object
|
|
// of a parent view.
|
|
func (mv *memoryView) get(index uint32) object {
|
|
if obj, ok := mv.objects[index]; ok {
|
|
return obj
|
|
}
|
|
if mv.parent != nil {
|
|
return mv.parent.get(index)
|
|
}
|
|
return mv.r.objects[index]
|
|
}
|
|
|
|
// getWritable returns an object that can be written to.
|
|
func (mv *memoryView) getWritable(index uint32) object {
|
|
if obj, ok := mv.objects[index]; ok {
|
|
// Object is already in the current memory view, so can be modified.
|
|
return obj
|
|
}
|
|
// Object is not currently in this view. Get it, and clone it for use.
|
|
obj := mv.get(index).clone()
|
|
mv.r.objects[index] = obj
|
|
return obj
|
|
}
|
|
|
|
// Replace the object (indicated with index) with the given object. This put is
|
|
// only done at the current memory view, so that if this memory view is reverted
|
|
// the object is not changed.
|
|
func (mv *memoryView) put(index uint32, obj object) {
|
|
if mv.objects == nil {
|
|
mv.objects = make(map[uint32]object)
|
|
}
|
|
if checks && mv.get(index).buffer == nil {
|
|
panic("writing to external object")
|
|
}
|
|
if checks && mv.get(index).buffer.len(mv.r) != obj.buffer.len(mv.r) {
|
|
panic("put() with a differently-sized object")
|
|
}
|
|
if checks && obj.constant {
|
|
panic("interp: store to a constant")
|
|
}
|
|
mv.objects[index] = obj
|
|
}
|
|
|
|
// Load the value behind the given pointer. Returns nil if the pointer points to
|
|
// an external global.
|
|
func (mv *memoryView) load(p pointerValue, size uint32) value {
|
|
if checks && mv.hasExternalStore(p) {
|
|
panic("interp: load from object with external store")
|
|
}
|
|
obj := mv.get(p.index())
|
|
if obj.buffer == nil {
|
|
// External global, return nil.
|
|
return nil
|
|
}
|
|
if p.offset() == 0 && size == obj.size {
|
|
return obj.buffer.clone()
|
|
}
|
|
if checks && p.offset()+size > obj.size {
|
|
panic("interp: load out of bounds")
|
|
}
|
|
v := obj.buffer.asRawValue(mv.r)
|
|
loadedValue := rawValue{
|
|
buf: v.buf[p.offset() : p.offset()+size],
|
|
}
|
|
return loadedValue
|
|
}
|
|
|
|
// Store to the value behind the given pointer. This overwrites the value in the
|
|
// memory view, so that the changed value is discarded when the memory view is
|
|
// reverted. Returns true on success, false if the object to store to is
|
|
// external.
|
|
func (mv *memoryView) store(v value, p pointerValue) bool {
|
|
if checks && mv.hasExternalLoadOrStore(p) {
|
|
panic("interp: store to object with external load/store")
|
|
}
|
|
obj := mv.get(p.index())
|
|
if obj.buffer == nil {
|
|
// External global, return false (for a failure).
|
|
return false
|
|
}
|
|
if checks && p.offset()+v.len(mv.r) > obj.size {
|
|
panic("interp: store out of bounds")
|
|
}
|
|
if p.offset() == 0 && v.len(mv.r) == obj.buffer.len(mv.r) {
|
|
obj.buffer = v
|
|
} else {
|
|
obj = obj.clone()
|
|
buffer := obj.buffer.asRawValue(mv.r)
|
|
obj.buffer = buffer
|
|
v := v.asRawValue(mv.r)
|
|
for i := uint32(0); i < v.len(mv.r); i++ {
|
|
buffer.buf[p.offset()+i] = v.buf[i]
|
|
}
|
|
}
|
|
mv.put(p.index(), obj)
|
|
return true // success
|
|
}
|
|
|
|
// value is some sort of value, comparable to a LLVM constant. It can be
|
|
// implemented in various ways for efficiency, but the fallback value (that all
|
|
// implementations can be converted to except for localValue) is rawValue.
|
|
type value interface {
|
|
// len returns the length in bytes.
|
|
len(r *runner) uint32
|
|
clone() value
|
|
asPointer(*runner) (pointerValue, error)
|
|
asRawValue(*runner) rawValue
|
|
Uint() uint64
|
|
Int() int64
|
|
toLLVMValue(llvm.Type, *memoryView) (llvm.Value, error)
|
|
String() string
|
|
}
|
|
|
|
// literalValue contains simple integer values that don't need to be stored in a
|
|
// buffer.
|
|
type literalValue struct {
|
|
value interface{}
|
|
}
|
|
|
|
func (v literalValue) len(r *runner) uint32 {
|
|
switch v.value.(type) {
|
|
case uint64:
|
|
return 8
|
|
case uint32:
|
|
return 4
|
|
case uint16:
|
|
return 2
|
|
case uint8:
|
|
return 1
|
|
default:
|
|
panic("unknown value type")
|
|
}
|
|
}
|
|
|
|
func (v literalValue) String() string {
|
|
return strconv.FormatInt(v.Int(), 10)
|
|
}
|
|
|
|
func (v literalValue) clone() value {
|
|
return v
|
|
}
|
|
|
|
func (v literalValue) asPointer(r *runner) (pointerValue, error) {
|
|
return pointerValue{}, errIntegerAsPointer
|
|
}
|
|
|
|
func (v literalValue) asRawValue(r *runner) rawValue {
|
|
var buf []byte
|
|
switch value := v.value.(type) {
|
|
case uint64:
|
|
buf = make([]byte, 8)
|
|
binary.LittleEndian.PutUint64(buf, value)
|
|
case uint32:
|
|
buf = make([]byte, 4)
|
|
binary.LittleEndian.PutUint32(buf, uint32(value))
|
|
case uint16:
|
|
buf = make([]byte, 2)
|
|
binary.LittleEndian.PutUint16(buf, uint16(value))
|
|
case uint8:
|
|
buf = []byte{uint8(value)}
|
|
default:
|
|
panic("unknown value type")
|
|
}
|
|
raw := newRawValue(uint32(len(buf)))
|
|
for i, b := range buf {
|
|
raw.buf[i] = uint64(b)
|
|
}
|
|
return raw
|
|
}
|
|
|
|
func (v literalValue) Uint() uint64 {
|
|
switch value := v.value.(type) {
|
|
case uint64:
|
|
return value
|
|
case uint32:
|
|
return uint64(value)
|
|
case uint16:
|
|
return uint64(value)
|
|
case uint8:
|
|
return uint64(value)
|
|
default:
|
|
panic("inpterp: unknown literal type")
|
|
}
|
|
}
|
|
|
|
func (v literalValue) Int() int64 {
|
|
switch value := v.value.(type) {
|
|
case uint64:
|
|
return int64(value)
|
|
case uint32:
|
|
return int64(int32(value))
|
|
case uint16:
|
|
return int64(int16(value))
|
|
case uint8:
|
|
return int64(int8(value))
|
|
default:
|
|
panic("inpterp: unknown literal type")
|
|
}
|
|
}
|
|
|
|
func (v literalValue) toLLVMValue(llvmType llvm.Type, mem *memoryView) (llvm.Value, error) {
|
|
switch llvmType.TypeKind() {
|
|
case llvm.IntegerTypeKind:
|
|
switch value := v.value.(type) {
|
|
case uint64:
|
|
return llvm.ConstInt(llvmType, value, false), nil
|
|
case uint32:
|
|
return llvm.ConstInt(llvmType, uint64(value), false), nil
|
|
case uint16:
|
|
return llvm.ConstInt(llvmType, uint64(value), false), nil
|
|
case uint8:
|
|
return llvm.ConstInt(llvmType, uint64(value), false), nil
|
|
default:
|
|
return llvm.Value{}, errors.New("interp: unknown literal type")
|
|
}
|
|
case llvm.DoubleTypeKind:
|
|
return llvm.ConstFloat(llvmType, math.Float64frombits(v.value.(uint64))), nil
|
|
case llvm.FloatTypeKind:
|
|
return llvm.ConstFloat(llvmType, float64(math.Float32frombits(v.value.(uint32)))), nil
|
|
default:
|
|
return v.asRawValue(mem.r).toLLVMValue(llvmType, mem)
|
|
}
|
|
}
|
|
|
|
// pointerValue contains a single pointer, with an offset into the underlying
|
|
// object.
|
|
type pointerValue struct {
|
|
pointer uint64 // low 32 bits are offset, high 32 bits are index
|
|
}
|
|
|
|
func newPointerValue(r *runner, index, offset int) pointerValue {
|
|
return pointerValue{
|
|
pointer: uint64(index)<<32 | uint64(offset),
|
|
}
|
|
}
|
|
|
|
func (v pointerValue) index() uint32 {
|
|
return uint32(v.pointer >> 32)
|
|
}
|
|
|
|
func (v pointerValue) offset() uint32 {
|
|
return uint32(v.pointer)
|
|
}
|
|
|
|
// addOffset essentially does a GEP operation (pointer arithmetic): it adds the
|
|
// offset to the pointer. It also checks that the offset doesn't overflow the
|
|
// maximum offset size (which is 4GB).
|
|
func (v pointerValue) addOffset(offset uint32) pointerValue {
|
|
result := pointerValue{v.pointer + uint64(offset)}
|
|
if checks && v.index() != result.index() {
|
|
panic("interp: offset out of range")
|
|
}
|
|
return result
|
|
}
|
|
|
|
func (v pointerValue) len(r *runner) uint32 {
|
|
return r.pointerSize
|
|
}
|
|
|
|
func (v pointerValue) String() string {
|
|
name := strconv.Itoa(int(v.index()))
|
|
if v.offset() == 0 {
|
|
return "<" + name + ">"
|
|
}
|
|
return "<" + name + "+" + strconv.Itoa(int(v.offset())) + ">"
|
|
}
|
|
|
|
func (v pointerValue) clone() value {
|
|
return v
|
|
}
|
|
|
|
func (v pointerValue) asPointer(r *runner) (pointerValue, error) {
|
|
return v, nil
|
|
}
|
|
|
|
func (v pointerValue) asRawValue(r *runner) rawValue {
|
|
rv := newRawValue(r.pointerSize)
|
|
for i := range rv.buf {
|
|
rv.buf[i] = v.pointer
|
|
}
|
|
return rv
|
|
}
|
|
|
|
func (v pointerValue) Uint() uint64 {
|
|
panic("cannot convert pointer to integer")
|
|
}
|
|
|
|
func (v pointerValue) Int() int64 {
|
|
panic("cannot convert pointer to integer")
|
|
}
|
|
|
|
func (v pointerValue) equal(rhs pointerValue) bool {
|
|
return v.pointer == rhs.pointer
|
|
}
|
|
|
|
func (v pointerValue) llvmValue(mem *memoryView) llvm.Value {
|
|
return mem.get(v.index()).llvmGlobal
|
|
}
|
|
|
|
// toLLVMValue returns the LLVM value for this pointer, which may be a GEP or
|
|
// bitcast. The llvm.Type parameter is optional, if omitted the pointer type may
|
|
// be different than expected.
|
|
func (v pointerValue) toLLVMValue(llvmType llvm.Type, mem *memoryView) (llvm.Value, error) {
|
|
// If a particular LLVM type is requested, cast to it.
|
|
if !llvmType.IsNil() && llvmType.TypeKind() != llvm.PointerTypeKind {
|
|
// The LLVM value has (or should have) the same bytes once compiled, but
|
|
// does not have the right LLVM type. This can happen for example when
|
|
// storing to a struct with a single pointer field: this pointer may
|
|
// then become the value even though the pointer should be wrapped in a
|
|
// struct.
|
|
// This can be worked around by simply converting to a raw value,
|
|
// rawValue knows how to create such structs.
|
|
return v.asRawValue(mem.r).toLLVMValue(llvmType, mem)
|
|
}
|
|
|
|
// Obtain the llvmValue, creating it if it doesn't exist yet.
|
|
llvmValue := v.llvmValue(mem)
|
|
if llvmValue.IsNil() {
|
|
// The global does not yet exist. Probably this is the result of a
|
|
// runtime.alloc.
|
|
// First allocate a new global for this object.
|
|
obj := mem.get(v.index())
|
|
if obj.llvmType.IsNil() && obj.llvmLayoutType.IsNil() {
|
|
// Create an initializer without knowing the global type.
|
|
// This is probably the result of a runtime.alloc call.
|
|
initializer, err := obj.buffer.asRawValue(mem.r).rawLLVMValue(mem)
|
|
if err != nil {
|
|
return llvm.Value{}, err
|
|
}
|
|
globalType := initializer.Type()
|
|
llvmValue = llvm.AddGlobal(mem.r.mod, globalType, obj.globalName)
|
|
llvmValue.SetInitializer(initializer)
|
|
llvmValue.SetAlignment(mem.r.maxAlign)
|
|
obj.llvmGlobal = llvmValue
|
|
mem.put(v.index(), obj)
|
|
} else {
|
|
// The global type is known, or at least its structure.
|
|
var globalType llvm.Type
|
|
if !obj.llvmType.IsNil() {
|
|
// The exact type is known.
|
|
globalType = obj.llvmType
|
|
} else { // !obj.llvmLayoutType.IsNil()
|
|
// The exact type isn't known, but the object layout is known.
|
|
globalType = obj.llvmLayoutType
|
|
// The layout may not span the full size of the global because
|
|
// of repetition. One example would be make([]string, 5) which
|
|
// would be 10 words in size but the layout would only be two
|
|
// words (for the string type).
|
|
typeSize := mem.r.targetData.TypeAllocSize(globalType)
|
|
if typeSize != uint64(obj.size) {
|
|
globalType = llvm.ArrayType(globalType, int(uint64(obj.size)/typeSize))
|
|
}
|
|
}
|
|
if checks && mem.r.targetData.TypeAllocSize(globalType) != uint64(obj.size) {
|
|
panic("size of the globalType isn't the same as the object size")
|
|
}
|
|
llvmValue = llvm.AddGlobal(mem.r.mod, globalType, obj.globalName)
|
|
obj.llvmGlobal = llvmValue
|
|
mem.put(v.index(), obj)
|
|
|
|
// Set the initializer for the global. Do this after creation to avoid
|
|
// infinite recursion between creating the global and creating the
|
|
// contents of the global (if the global contains itself).
|
|
initializer, err := obj.buffer.toLLVMValue(globalType, mem)
|
|
if err != nil {
|
|
return llvm.Value{}, err
|
|
}
|
|
if checks && initializer.Type() != globalType {
|
|
return llvm.Value{}, errors.New("interp: allocated value does not match allocated type")
|
|
}
|
|
llvmValue.SetInitializer(initializer)
|
|
if obj.llvmType.IsNil() {
|
|
// The exact type isn't known (only the layout), so use the
|
|
// alignment that would normally be expected from runtime.alloc.
|
|
llvmValue.SetAlignment(mem.r.maxAlign)
|
|
}
|
|
}
|
|
|
|
// It should be included in r.globals because otherwise markExternal
|
|
// would consider it a new global (and would fail to mark this global as
|
|
// having an externa load/store).
|
|
mem.r.globals[llvmValue] = int(v.index())
|
|
llvmValue.SetLinkage(llvm.InternalLinkage)
|
|
}
|
|
|
|
if v.offset() != 0 {
|
|
// If there is an offset, make sure to use a GEP to index into the
|
|
// pointer.
|
|
// Cast to an i8* first (if needed) for easy indexing.
|
|
if llvmValue.Type() != mem.r.i8ptrType {
|
|
llvmValue = llvm.ConstBitCast(llvmValue, mem.r.i8ptrType)
|
|
}
|
|
llvmValue = llvm.ConstInBoundsGEP(mem.r.mod.Context().Int8Type(), llvmValue, []llvm.Value{
|
|
llvm.ConstInt(mem.r.mod.Context().Int32Type(), uint64(v.offset()), false),
|
|
})
|
|
}
|
|
|
|
// If a particular LLVM pointer type is requested, cast to it.
|
|
if !llvmType.IsNil() && llvmType != llvmValue.Type() {
|
|
llvmValue = llvm.ConstBitCast(llvmValue, llvmType)
|
|
}
|
|
|
|
return llvmValue, nil
|
|
}
|
|
|
|
// rawValue is a raw memory buffer that can store either pointers or regular
|
|
// data. This is the fallback data for everything that isn't clearly a
|
|
// literalValue or pointerValue.
|
|
type rawValue struct {
|
|
// An integer in buf contains either pointers or bytes.
|
|
// If it is a byte, it is smaller than 256.
|
|
// If it is a pointer, the index is contained in the upper 32 bits and the
|
|
// offset is contained in the lower 32 bits.
|
|
buf []uint64
|
|
}
|
|
|
|
func newRawValue(size uint32) rawValue {
|
|
return rawValue{make([]uint64, size)}
|
|
}
|
|
|
|
func (v rawValue) len(r *runner) uint32 {
|
|
return uint32(len(v.buf))
|
|
}
|
|
|
|
func (v rawValue) String() string {
|
|
if len(v.buf) == 2 || len(v.buf) == 4 || len(v.buf) == 8 {
|
|
// Format as a pointer if the entire buf is this pointer.
|
|
if v.buf[0] > 255 {
|
|
isPointer := true
|
|
for _, p := range v.buf {
|
|
if p != v.buf[0] {
|
|
isPointer = false
|
|
break
|
|
}
|
|
}
|
|
if isPointer {
|
|
return pointerValue{v.buf[0]}.String()
|
|
}
|
|
}
|
|
// Format as number if none of the buf is a pointer.
|
|
if !v.hasPointer() {
|
|
return strconv.FormatInt(v.Int(), 10)
|
|
}
|
|
}
|
|
return "<[…" + strconv.Itoa(len(v.buf)) + "]>"
|
|
}
|
|
|
|
func (v rawValue) clone() value {
|
|
newValue := v
|
|
newValue.buf = make([]uint64, len(v.buf))
|
|
copy(newValue.buf, v.buf)
|
|
return newValue
|
|
}
|
|
|
|
func (v rawValue) asPointer(r *runner) (pointerValue, error) {
|
|
if v.buf[0] <= 255 {
|
|
// Probably a null pointer or memory-mapped I/O.
|
|
return pointerValue{}, errIntegerAsPointer
|
|
}
|
|
return pointerValue{v.buf[0]}, nil
|
|
}
|
|
|
|
func (v rawValue) asRawValue(r *runner) rawValue {
|
|
return v
|
|
}
|
|
|
|
func (v rawValue) bytes() []byte {
|
|
buf := make([]byte, len(v.buf))
|
|
for i, p := range v.buf {
|
|
if p > 255 {
|
|
panic("cannot convert pointer value to byte")
|
|
}
|
|
buf[i] = byte(p)
|
|
}
|
|
return buf
|
|
}
|
|
|
|
func (v rawValue) Uint() uint64 {
|
|
buf := v.bytes()
|
|
|
|
switch len(v.buf) {
|
|
case 1:
|
|
return uint64(buf[0])
|
|
case 2:
|
|
return uint64(binary.LittleEndian.Uint16(buf))
|
|
case 4:
|
|
return uint64(binary.LittleEndian.Uint32(buf))
|
|
case 8:
|
|
return binary.LittleEndian.Uint64(buf)
|
|
default:
|
|
panic("unknown integer size")
|
|
}
|
|
}
|
|
|
|
func (v rawValue) Int() int64 {
|
|
switch len(v.buf) {
|
|
case 1:
|
|
return int64(int8(v.Uint()))
|
|
case 2:
|
|
return int64(int16(v.Uint()))
|
|
case 4:
|
|
return int64(int32(v.Uint()))
|
|
case 8:
|
|
return int64(int64(v.Uint()))
|
|
default:
|
|
panic("unknown integer size")
|
|
}
|
|
}
|
|
|
|
// equal returns true if (and only if) the value matches rhs.
|
|
func (v rawValue) equal(rhs rawValue) bool {
|
|
if len(v.buf) != len(rhs.buf) {
|
|
panic("comparing values of different size")
|
|
}
|
|
for i, p := range v.buf {
|
|
if rhs.buf[i] != p {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// rawLLVMValue returns a llvm.Value for this rawValue, making up a type as it
|
|
// goes. The resulting value does not have a specified type, but it will be the
|
|
// same size and have the same bytes if it was created with a provided LLVM type
|
|
// (through toLLVMValue).
|
|
func (v rawValue) rawLLVMValue(mem *memoryView) (llvm.Value, error) {
|
|
var structFields []llvm.Value
|
|
ctx := mem.r.mod.Context()
|
|
int8Type := ctx.Int8Type()
|
|
|
|
var bytesBuf []llvm.Value
|
|
// addBytes can be called after adding to bytesBuf to flush remaining bytes
|
|
// to a new array in structFields.
|
|
addBytes := func() {
|
|
if len(bytesBuf) == 0 {
|
|
return
|
|
}
|
|
if len(bytesBuf) == 1 {
|
|
structFields = append(structFields, bytesBuf[0])
|
|
} else {
|
|
structFields = append(structFields, llvm.ConstArray(int8Type, bytesBuf))
|
|
}
|
|
bytesBuf = nil
|
|
}
|
|
|
|
// Create structFields, converting the rawValue to a LLVM value.
|
|
for i := uint32(0); i < uint32(len(v.buf)); {
|
|
if v.buf[i] > 255 {
|
|
addBytes()
|
|
field, err := pointerValue{v.buf[i]}.toLLVMValue(llvm.Type{}, mem)
|
|
if err != nil {
|
|
return llvm.Value{}, err
|
|
}
|
|
if !field.IsAGlobalVariable().IsNil() {
|
|
elementType := field.GlobalValueType()
|
|
if elementType.TypeKind() == llvm.StructTypeKind {
|
|
// There are some special pointer types that should be used
|
|
// as a ptrtoint, so that they can be used in certain
|
|
// optimizations.
|
|
name := elementType.StructName()
|
|
if name == "runtime.typecodeID" || name == "runtime.funcValueWithSignature" {
|
|
uintptrType := ctx.IntType(int(mem.r.pointerSize) * 8)
|
|
field = llvm.ConstPtrToInt(field, uintptrType)
|
|
}
|
|
}
|
|
}
|
|
structFields = append(structFields, field)
|
|
i += mem.r.pointerSize
|
|
continue
|
|
}
|
|
val := llvm.ConstInt(int8Type, uint64(v.buf[i]), false)
|
|
bytesBuf = append(bytesBuf, val)
|
|
i++
|
|
}
|
|
addBytes()
|
|
|
|
// Return the created data.
|
|
if len(structFields) == 1 {
|
|
return structFields[0], nil
|
|
}
|
|
return ctx.ConstStruct(structFields, false), nil
|
|
}
|
|
|
|
func (v rawValue) toLLVMValue(llvmType llvm.Type, mem *memoryView) (llvm.Value, error) {
|
|
isZero := true
|
|
for _, p := range v.buf {
|
|
if p != 0 {
|
|
isZero = false
|
|
break
|
|
}
|
|
}
|
|
if isZero {
|
|
return llvm.ConstNull(llvmType), nil
|
|
}
|
|
switch llvmType.TypeKind() {
|
|
case llvm.IntegerTypeKind:
|
|
if v.buf[0] > 255 {
|
|
ptr, err := v.asPointer(mem.r)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
if checks && mem.r.targetData.TypeAllocSize(llvmType) != mem.r.targetData.TypeAllocSize(mem.r.i8ptrType) {
|
|
// Probably trying to serialize a pointer to a byte array,
|
|
// perhaps as a result of rawLLVMValue() in a previous interp
|
|
// run.
|
|
return llvm.Value{}, errInvalidPtrToIntSize
|
|
}
|
|
v, err := ptr.toLLVMValue(llvm.Type{}, mem)
|
|
if err != nil {
|
|
return llvm.Value{}, err
|
|
}
|
|
return llvm.ConstPtrToInt(v, llvmType), nil
|
|
}
|
|
var n uint64
|
|
switch llvmType.IntTypeWidth() {
|
|
case 64:
|
|
n = rawValue{v.buf[:8]}.Uint()
|
|
case 32:
|
|
n = rawValue{v.buf[:4]}.Uint()
|
|
case 16:
|
|
n = rawValue{v.buf[:2]}.Uint()
|
|
case 8:
|
|
n = uint64(v.buf[0])
|
|
case 1:
|
|
n = uint64(v.buf[0])
|
|
if n != 0 && n != 1 {
|
|
panic("bool must be 0 or 1")
|
|
}
|
|
default:
|
|
panic("unknown integer size")
|
|
}
|
|
return llvm.ConstInt(llvmType, n, false), nil
|
|
case llvm.StructTypeKind:
|
|
fieldTypes := llvmType.StructElementTypes()
|
|
fields := make([]llvm.Value, len(fieldTypes))
|
|
for i, fieldType := range fieldTypes {
|
|
offset := mem.r.targetData.ElementOffset(llvmType, i)
|
|
field := rawValue{
|
|
buf: v.buf[offset:],
|
|
}
|
|
var err error
|
|
fields[i], err = field.toLLVMValue(fieldType, mem)
|
|
if err != nil {
|
|
return llvm.Value{}, err
|
|
}
|
|
}
|
|
if llvmType.StructName() != "" {
|
|
return llvm.ConstNamedStruct(llvmType, fields), nil
|
|
}
|
|
return llvmType.Context().ConstStruct(fields, false), nil
|
|
case llvm.ArrayTypeKind:
|
|
numElements := llvmType.ArrayLength()
|
|
childType := llvmType.ElementType()
|
|
childTypeSize := mem.r.targetData.TypeAllocSize(childType)
|
|
fields := make([]llvm.Value, numElements)
|
|
for i := range fields {
|
|
offset := i * int(childTypeSize)
|
|
field := rawValue{
|
|
buf: v.buf[offset:],
|
|
}
|
|
var err error
|
|
fields[i], err = field.toLLVMValue(childType, mem)
|
|
if err != nil {
|
|
return llvm.Value{}, err
|
|
}
|
|
if checks && fields[i].Type() != childType {
|
|
panic("child type doesn't match")
|
|
}
|
|
}
|
|
return llvm.ConstArray(childType, fields), nil
|
|
case llvm.PointerTypeKind:
|
|
if v.buf[0] > 255 {
|
|
// This is a regular pointer.
|
|
llvmValue, err := pointerValue{v.buf[0]}.toLLVMValue(llvm.Type{}, mem)
|
|
if err != nil {
|
|
return llvm.Value{}, err
|
|
}
|
|
if llvmValue.Type() != llvmType {
|
|
if llvmValue.Type().PointerAddressSpace() != llvmType.PointerAddressSpace() {
|
|
// Special case for AVR function pointers.
|
|
// Because go-llvm doesn't have addrspacecast at the moment,
|
|
// do it indirectly with a ptrtoint/inttoptr pair.
|
|
llvmValue = llvm.ConstIntToPtr(llvm.ConstPtrToInt(llvmValue, mem.r.uintptrType), llvmType)
|
|
} else {
|
|
llvmValue = llvm.ConstBitCast(llvmValue, llvmType)
|
|
}
|
|
}
|
|
return llvmValue, nil
|
|
}
|
|
// This is either a null pointer or a raw pointer for memory-mapped I/O
|
|
// (such as 0xe000ed00).
|
|
ptr := rawValue{v.buf[:mem.r.pointerSize]}.Uint()
|
|
if ptr == 0 {
|
|
// Null pointer.
|
|
return llvm.ConstNull(llvmType), nil
|
|
}
|
|
var ptrValue llvm.Value // the underlying int
|
|
switch mem.r.pointerSize {
|
|
case 8:
|
|
ptrValue = llvm.ConstInt(llvmType.Context().Int64Type(), ptr, false)
|
|
case 4:
|
|
ptrValue = llvm.ConstInt(llvmType.Context().Int32Type(), ptr, false)
|
|
case 2:
|
|
ptrValue = llvm.ConstInt(llvmType.Context().Int16Type(), ptr, false)
|
|
default:
|
|
return llvm.Value{}, errors.New("interp: unknown pointer size")
|
|
}
|
|
return llvm.ConstIntToPtr(ptrValue, llvmType), nil
|
|
case llvm.DoubleTypeKind:
|
|
b := rawValue{v.buf[:8]}.Uint()
|
|
f := math.Float64frombits(b)
|
|
return llvm.ConstFloat(llvmType, f), nil
|
|
case llvm.FloatTypeKind:
|
|
b := uint32(rawValue{v.buf[:4]}.Uint())
|
|
f := math.Float32frombits(b)
|
|
return llvm.ConstFloat(llvmType, float64(f)), nil
|
|
default:
|
|
return llvm.Value{}, errors.New("interp: todo: raw value to LLVM value: " + llvmType.String())
|
|
}
|
|
}
|
|
|
|
func (v *rawValue) set(llvmValue llvm.Value, r *runner) {
|
|
if llvmValue.IsNull() {
|
|
// A zero value is common so check that first.
|
|
return
|
|
}
|
|
if !llvmValue.IsAGlobalValue().IsNil() {
|
|
ptrSize := r.pointerSize
|
|
ptr, err := r.getValue(llvmValue).asPointer(r)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
for i := uint32(0); i < ptrSize; i++ {
|
|
v.buf[i] = ptr.pointer
|
|
}
|
|
} else if !llvmValue.IsAConstantExpr().IsNil() {
|
|
switch llvmValue.Opcode() {
|
|
case llvm.IntToPtr, llvm.PtrToInt, llvm.BitCast:
|
|
// All these instructions effectively just reinterprets the bits
|
|
// (like a bitcast) while no bits change and keeping the same
|
|
// length, so just read its contents.
|
|
v.set(llvmValue.Operand(0), r)
|
|
case llvm.GetElementPtr:
|
|
ptr := llvmValue.Operand(0)
|
|
index := llvmValue.Operand(1)
|
|
numOperands := llvmValue.OperandsCount()
|
|
elementType := llvmValue.GEPSourceElementType()
|
|
totalOffset := r.targetData.TypeAllocSize(elementType) * index.ZExtValue()
|
|
for i := 2; i < numOperands; i++ {
|
|
indexValue := llvmValue.Operand(i)
|
|
if checks && indexValue.IsAConstantInt().IsNil() {
|
|
panic("expected const gep index to be a constant integer")
|
|
}
|
|
index := indexValue.ZExtValue()
|
|
switch elementType.TypeKind() {
|
|
case llvm.StructTypeKind:
|
|
// Indexing into a struct field.
|
|
offsetInBytes := r.targetData.ElementOffset(elementType, int(index))
|
|
totalOffset += offsetInBytes
|
|
elementType = elementType.StructElementTypes()[index]
|
|
default:
|
|
// Indexing into an array.
|
|
elementType = elementType.ElementType()
|
|
elementSize := r.targetData.TypeAllocSize(elementType)
|
|
totalOffset += index * elementSize
|
|
}
|
|
}
|
|
ptrSize := r.pointerSize
|
|
ptrValue, err := r.getValue(ptr).asPointer(r)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
ptrValue.pointer += totalOffset
|
|
for i := uint32(0); i < ptrSize; i++ {
|
|
v.buf[i] = ptrValue.pointer
|
|
}
|
|
case llvm.ICmp:
|
|
size := r.targetData.TypeAllocSize(llvmValue.Operand(0).Type())
|
|
lhs := newRawValue(uint32(size))
|
|
rhs := newRawValue(uint32(size))
|
|
lhs.set(llvmValue.Operand(0), r)
|
|
rhs.set(llvmValue.Operand(1), r)
|
|
if r.interpretICmp(lhs, rhs, llvmValue.IntPredicate()) {
|
|
v.buf[0] = 1 // result is true
|
|
} else {
|
|
v.buf[0] = 0 // result is false
|
|
}
|
|
default:
|
|
llvmValue.Dump()
|
|
println()
|
|
panic("unknown constant expr")
|
|
}
|
|
} else if llvmValue.IsUndef() {
|
|
// Let undef be zero, by lack of an explicit 'undef' marker.
|
|
} else {
|
|
if checks && llvmValue.IsAConstant().IsNil() {
|
|
panic("expected a constant")
|
|
}
|
|
llvmType := llvmValue.Type()
|
|
switch llvmType.TypeKind() {
|
|
case llvm.IntegerTypeKind:
|
|
n := llvmValue.ZExtValue()
|
|
switch llvmValue.Type().IntTypeWidth() {
|
|
case 64:
|
|
var buf [8]byte
|
|
binary.LittleEndian.PutUint64(buf[:], n)
|
|
for i, b := range buf {
|
|
v.buf[i] = uint64(b)
|
|
}
|
|
case 32:
|
|
var buf [4]byte
|
|
binary.LittleEndian.PutUint32(buf[:], uint32(n))
|
|
for i, b := range buf {
|
|
v.buf[i] = uint64(b)
|
|
}
|
|
case 16:
|
|
var buf [2]byte
|
|
binary.LittleEndian.PutUint16(buf[:], uint16(n))
|
|
for i, b := range buf {
|
|
v.buf[i] = uint64(b)
|
|
}
|
|
case 8, 1:
|
|
v.buf[0] = n
|
|
default:
|
|
panic("unknown integer size")
|
|
}
|
|
case llvm.StructTypeKind:
|
|
numElements := llvmType.StructElementTypesCount()
|
|
for i := 0; i < numElements; i++ {
|
|
offset := r.targetData.ElementOffset(llvmType, i)
|
|
field := rawValue{
|
|
buf: v.buf[offset:],
|
|
}
|
|
field.set(r.builder.CreateExtractValue(llvmValue, i, ""), r)
|
|
}
|
|
case llvm.ArrayTypeKind:
|
|
numElements := llvmType.ArrayLength()
|
|
childType := llvmType.ElementType()
|
|
childTypeSize := r.targetData.TypeAllocSize(childType)
|
|
for i := 0; i < numElements; i++ {
|
|
offset := i * int(childTypeSize)
|
|
field := rawValue{
|
|
buf: v.buf[offset:],
|
|
}
|
|
field.set(r.builder.CreateExtractValue(llvmValue, i, ""), r)
|
|
}
|
|
case llvm.DoubleTypeKind:
|
|
f, _ := llvmValue.DoubleValue()
|
|
var buf [8]byte
|
|
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(f))
|
|
for i, b := range buf {
|
|
v.buf[i] = uint64(b)
|
|
}
|
|
case llvm.FloatTypeKind:
|
|
f, _ := llvmValue.DoubleValue()
|
|
var buf [4]byte
|
|
binary.LittleEndian.PutUint32(buf[:], math.Float32bits(float32(f)))
|
|
for i, b := range buf {
|
|
v.buf[i] = uint64(b)
|
|
}
|
|
default:
|
|
llvmValue.Dump()
|
|
println()
|
|
panic("unknown constant")
|
|
}
|
|
}
|
|
}
|
|
|
|
// hasPointer returns true if this raw value contains a pointer somewhere in the
|
|
// buffer.
|
|
func (v rawValue) hasPointer() bool {
|
|
for _, p := range v.buf {
|
|
if p > 255 {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// localValue is a special implementation of the value interface. It is a
|
|
// placeholder for other values in instruction operands, and is replaced with
|
|
// one of the others before executing.
|
|
type localValue struct {
|
|
value llvm.Value
|
|
}
|
|
|
|
func (v localValue) len(r *runner) uint32 {
|
|
panic("interp: localValue.len")
|
|
}
|
|
|
|
func (v localValue) String() string {
|
|
return "<!>"
|
|
}
|
|
|
|
func (v localValue) clone() value {
|
|
panic("interp: localValue.clone()")
|
|
}
|
|
|
|
func (v localValue) asPointer(r *runner) (pointerValue, error) {
|
|
return pointerValue{}, errors.New("interp: localValue.asPointer called")
|
|
}
|
|
|
|
func (v localValue) asRawValue(r *runner) rawValue {
|
|
panic("interp: localValue.asRawValue")
|
|
}
|
|
|
|
func (v localValue) Uint() uint64 {
|
|
panic("interp: localValue.Uint")
|
|
}
|
|
|
|
func (v localValue) Int() int64 {
|
|
panic("interp: localValue.Int")
|
|
}
|
|
|
|
func (v localValue) toLLVMValue(llvmType llvm.Type, mem *memoryView) (llvm.Value, error) {
|
|
return v.value, nil
|
|
}
|
|
|
|
func (r *runner) getValue(llvmValue llvm.Value) value {
|
|
if checks && llvmValue.IsNil() {
|
|
panic("nil llvmValue")
|
|
}
|
|
if !llvmValue.IsAGlobalValue().IsNil() {
|
|
index, ok := r.globals[llvmValue]
|
|
if !ok {
|
|
obj := object{
|
|
llvmGlobal: llvmValue,
|
|
}
|
|
index = len(r.objects)
|
|
r.globals[llvmValue] = index
|
|
r.objects = append(r.objects, obj)
|
|
if !llvmValue.IsAGlobalVariable().IsNil() {
|
|
obj.size = uint32(r.targetData.TypeAllocSize(llvmValue.GlobalValueType()))
|
|
if initializer := llvmValue.Initializer(); !initializer.IsNil() {
|
|
obj.buffer = r.getValue(initializer)
|
|
obj.constant = llvmValue.IsGlobalConstant()
|
|
}
|
|
} else if !llvmValue.IsAFunction().IsNil() {
|
|
// OK
|
|
} else {
|
|
panic("interp: unknown global value")
|
|
}
|
|
// Update the object after it has been created. This avoids an
|
|
// infinite recursion when using getValue on a global that contains
|
|
// a reference to itself.
|
|
r.objects[index] = obj
|
|
}
|
|
return newPointerValue(r, index, 0)
|
|
} else if !llvmValue.IsAConstant().IsNil() {
|
|
if !llvmValue.IsAConstantInt().IsNil() {
|
|
n := llvmValue.ZExtValue()
|
|
switch llvmValue.Type().IntTypeWidth() {
|
|
case 64:
|
|
return literalValue{n}
|
|
case 32:
|
|
return literalValue{uint32(n)}
|
|
case 16:
|
|
return literalValue{uint16(n)}
|
|
case 8, 1:
|
|
return literalValue{uint8(n)}
|
|
default:
|
|
panic("unknown integer size")
|
|
}
|
|
}
|
|
size := r.targetData.TypeAllocSize(llvmValue.Type())
|
|
v := newRawValue(uint32(size))
|
|
v.set(llvmValue, r)
|
|
return v
|
|
} else if !llvmValue.IsAInstruction().IsNil() || !llvmValue.IsAArgument().IsNil() {
|
|
return localValue{llvmValue}
|
|
} else if !llvmValue.IsAInlineAsm().IsNil() {
|
|
return localValue{llvmValue}
|
|
} else {
|
|
llvmValue.Dump()
|
|
println()
|
|
panic("unknown value")
|
|
}
|
|
}
|
|
|
|
// readObjectLayout reads the object layout as it is stored by the compiler. It
|
|
// returns the size in the number of words and the bitmap.
|
|
//
|
|
// For details on this format, see src/runtime/gc_precise.go.
|
|
func (r *runner) readObjectLayout(layoutValue value) (uint64, *big.Int) {
|
|
pointerSize := layoutValue.len(r)
|
|
if checks && uint64(pointerSize) != r.targetData.TypeAllocSize(r.i8ptrType) {
|
|
panic("inconsistent pointer size")
|
|
}
|
|
|
|
// The object layout can be stored in a global variable, directly as an
|
|
// integer value, or can be nil.
|
|
ptr, err := layoutValue.asPointer(r)
|
|
if err == errIntegerAsPointer {
|
|
// It's an integer, which means it's a small object or unknown.
|
|
layout := layoutValue.Uint()
|
|
if layout == 0 {
|
|
// Nil pointer, which means the layout is unknown.
|
|
return 0, nil
|
|
}
|
|
if layout%2 != 1 {
|
|
// Sanity check: the least significant bit must be set. This is how
|
|
// the runtime can separate pointers from integers.
|
|
panic("unexpected layout")
|
|
}
|
|
|
|
// Determine format of bitfields in the integer.
|
|
pointerBits := uint64(pointerSize * 8)
|
|
var sizeFieldBits uint64
|
|
switch pointerBits {
|
|
case 16:
|
|
sizeFieldBits = 4
|
|
case 32:
|
|
sizeFieldBits = 5
|
|
case 64:
|
|
sizeFieldBits = 6
|
|
default:
|
|
panic("unknown pointer size")
|
|
}
|
|
|
|
// Extract fields.
|
|
objectSizeWords := (layout >> 1) & (1<<sizeFieldBits - 1)
|
|
bitmap := new(big.Int).SetUint64(layout >> (1 + sizeFieldBits))
|
|
return objectSizeWords, bitmap
|
|
}
|
|
|
|
// Read the object size in words and the bitmap from the global.
|
|
buf := r.objects[ptr.index()].buffer.(rawValue)
|
|
objectSizeWords := rawValue{buf: buf.buf[:r.pointerSize]}.Uint()
|
|
rawByteValues := buf.buf[r.pointerSize:]
|
|
rawBytes := make([]byte, len(rawByteValues))
|
|
for i, v := range rawByteValues {
|
|
if uint64(byte(v)) != v {
|
|
panic("found pointer in data array?") // sanity check
|
|
}
|
|
rawBytes[i] = byte(v)
|
|
}
|
|
reverseBytes(rawBytes) // little-endian to big-endian
|
|
bitmap := new(big.Int).SetBytes(rawBytes)
|
|
return objectSizeWords, bitmap
|
|
}
|
|
|
|
// getLLVMTypeFromLayout returns the 'layout type', which is an approximation of
|
|
// the real type. Pointers are in the correct location but the actual object may
|
|
// have some additional repetition, for example in the buffer of a slice.
|
|
func (r *runner) getLLVMTypeFromLayout(layoutValue value) llvm.Type {
|
|
objectSizeWords, bitmap := r.readObjectLayout(layoutValue)
|
|
if bitmap == nil {
|
|
// No information available.
|
|
return llvm.Type{}
|
|
}
|
|
|
|
if bitmap.BitLen() == 0 {
|
|
// There are no pointers in this object, so treat this as a raw byte
|
|
// buffer. This is important because objects without pointers may have
|
|
// lower alignment.
|
|
return r.mod.Context().Int8Type()
|
|
}
|
|
|
|
// Create the LLVM type.
|
|
pointerSize := layoutValue.len(r)
|
|
pointerAlignment := r.targetData.PrefTypeAlignment(r.i8ptrType)
|
|
var fields []llvm.Type
|
|
for i := 0; i < int(objectSizeWords); {
|
|
if bitmap.Bit(i) != 0 {
|
|
// Pointer field.
|
|
fields = append(fields, r.i8ptrType)
|
|
i += int(pointerSize / uint32(pointerAlignment))
|
|
} else {
|
|
// Byte/word field.
|
|
fields = append(fields, r.mod.Context().IntType(pointerAlignment*8))
|
|
i += 1
|
|
}
|
|
}
|
|
var llvmLayoutType llvm.Type
|
|
if len(fields) == 1 {
|
|
llvmLayoutType = fields[0]
|
|
} else {
|
|
llvmLayoutType = r.mod.Context().StructType(fields, false)
|
|
}
|
|
|
|
objectSizeBytes := objectSizeWords * uint64(pointerAlignment)
|
|
if checks && r.targetData.TypeAllocSize(llvmLayoutType) != objectSizeBytes {
|
|
panic("unexpected size") // sanity check
|
|
}
|
|
return llvmLayoutType
|
|
}
|
|
|
|
// Reverse a slice of bytes. From the wiki:
|
|
// https://github.com/golang/go/wiki/SliceTricks#reversing
|
|
func reverseBytes(buf []byte) {
|
|
for i := len(buf)/2 - 1; i >= 0; i-- {
|
|
opp := len(buf) - 1 - i
|
|
buf[i], buf[opp] = buf[opp], buf[i]
|
|
}
|
|
}
|