tinygo/src/machine/machine_atsamd51.go
Ayke van Laethem 7513fa2c96 machine: add KHz, MHz, GHz constants, deprecate TWI_FREQ_* constants
There are two main issues with these constants:

  * They don't follow the Go naming convention.
  * They call themselves "TWI", while it makes a lot more sense to refer
    to the actual name which is I2C (or I²C).

I have not removed them but just deprecated them. Perhaps we can remove
them when we move towards version 1.0.
2022-09-20 21:00:17 +02:00

2082 строки
63 КиБ
Go

//go:build (sam && atsamd51) || (sam && atsame5x)
// +build sam,atsamd51 sam,atsame5x
// Peripheral abstraction layer for the atsamd51.
//
// Datasheet:
// http://ww1.microchip.com/downloads/en/DeviceDoc/60001507C.pdf
package machine
import (
"device/arm"
"device/sam"
"errors"
"runtime/interrupt"
"unsafe"
)
const deviceName = sam.Device
func CPUFrequency() uint32 {
return 120000000
}
const (
PinAnalog PinMode = 1
PinSERCOM PinMode = 2
PinSERCOMAlt PinMode = 3
PinTimer PinMode = 4
PinTimerAlt PinMode = 5
PinTCCPDEC PinMode = 6
PinCom PinMode = 7
PinSDHC PinMode = 8
PinI2S PinMode = 9
PinPCC PinMode = 10
PinGMAC PinMode = 11
PinACCLK PinMode = 12
PinCCL PinMode = 13
PinDigital PinMode = 14
PinInput PinMode = 15
PinInputPullup PinMode = 16
PinOutput PinMode = 17
PinTCCE PinMode = PinTimer
PinTCCF PinMode = PinTimerAlt
PinTCCG PinMode = PinTCCPDEC
PinInputPulldown PinMode = 18
PinCAN PinMode = 19
PinCAN0 PinMode = PinSDHC
PinCAN1 PinMode = PinCom
)
type PinChange uint8
// Pin change interrupt constants for SetInterrupt.
const (
PinRising PinChange = sam.EIC_CONFIG_SENSE0_RISE
PinFalling PinChange = sam.EIC_CONFIG_SENSE0_FALL
PinToggle PinChange = sam.EIC_CONFIG_SENSE0_BOTH
)
// Callbacks to be called for pins configured with SetInterrupt. Unfortunately,
// we also need to keep track of which interrupt channel is used by which pin,
// as the only alternative would be iterating through all pins.
//
// We're using the magic constant 16 here because the SAM D21 has 16 interrupt
// channels configurable for pins.
var (
interruptPins [16]Pin // warning: the value is invalid when pinCallbacks[i] is not set!
pinCallbacks [16]func(Pin)
)
// Hardware pins
const (
PA00 Pin = 0
PA01 Pin = 1
PA02 Pin = 2
PA03 Pin = 3
PA04 Pin = 4
PA05 Pin = 5
PA06 Pin = 6
PA07 Pin = 7
PA08 Pin = 8 // peripherals: TCC0 channel 0, TCC1 channel 4
PA09 Pin = 9 // peripherals: TCC0 channel 1, TCC1 channel 5
PA10 Pin = 10 // peripherals: TCC0 channel 2, TCC1 channel 6
PA11 Pin = 11 // peripherals: TCC0 channel 3, TCC1 channel 7
PA12 Pin = 12 // peripherals: TCC0 channel 6, TCC1 channel 2
PA13 Pin = 13 // peripherals: TCC0 channel 7, TCC1 channel 3
PA14 Pin = 14 // peripherals: TCC2 channel 0, TCC1 channel 2
PA15 Pin = 15 // peripherals: TCC2 channel 1, TCC1 channel 3
PA16 Pin = 16 // peripherals: TCC1 channel 0, TCC0 channel 4
PA17 Pin = 17 // peripherals: TCC1 channel 1, TCC0 channel 5
PA18 Pin = 18 // peripherals: TCC1 channel 2, TCC0 channel 6
PA19 Pin = 19 // peripherals: TCC1 channel 3, TCC0 channel 7
PA20 Pin = 20 // peripherals: TCC1 channel 4, TCC0 channel 0
PA21 Pin = 21 // peripherals: TCC1 channel 5, TCC0 channel 1
PA22 Pin = 22 // peripherals: TCC1 channel 6, TCC0 channel 2
PA23 Pin = 23 // peripherals: TCC1 channel 7, TCC0 channel 3
PA24 Pin = 24 // peripherals: TCC2 channel 2
PA25 Pin = 25 // peripherals: TCC2 channel 3
PA26 Pin = 26
PA27 Pin = 27
PA28 Pin = 28
PA29 Pin = 29
PA30 Pin = 30 // peripherals: TCC2 channel 0
PA31 Pin = 31 // peripherals: TCC2 channel 1
PB00 Pin = 32
PB01 Pin = 33
PB02 Pin = 34 // peripherals: TCC2 channel 2
PB03 Pin = 35 // peripherals: TCC2 channel 3
PB04 Pin = 36
PB05 Pin = 37
PB06 Pin = 38
PB07 Pin = 39
PB08 Pin = 40
PB09 Pin = 41
PB10 Pin = 42 // peripherals: TCC0 channel 4, TCC1 channel 0
PB11 Pin = 43 // peripherals: TCC0 channel 5, TCC1 channel 1
PB12 Pin = 44 // peripherals: TCC3 channel 0, TCC0 channel 0
PB13 Pin = 45 // peripherals: TCC3 channel 1, TCC0 channel 1
PB14 Pin = 46 // peripherals: TCC4 channel 0, TCC0 channel 2
PB15 Pin = 47 // peripherals: TCC4 channel 1, TCC0 channel 3
PB16 Pin = 48 // peripherals: TCC3 channel 0, TCC0 channel 4
PB17 Pin = 49 // peripherals: TCC3 channel 1, TCC0 channel 5
PB18 Pin = 50 // peripherals: TCC1 channel 0
PB19 Pin = 51 // peripherals: TCC1 channel 1
PB20 Pin = 52 // peripherals: TCC1 channel 2
PB21 Pin = 53 // peripherals: TCC1 channel 3
PB22 Pin = 54
PB23 Pin = 55
PB24 Pin = 56
PB25 Pin = 57
PB26 Pin = 58 // peripherals: TCC1 channel 2
PB27 Pin = 59 // peripherals: TCC1 channel 3
PB28 Pin = 60 // peripherals: TCC1 channel 4
PB29 Pin = 61 // peripherals: TCC1 channel 5
PB30 Pin = 62 // peripherals: TCC4 channel 0, TCC0 channel 6
PB31 Pin = 63 // peripherals: TCC4 channel 1, TCC0 channel 7
PC00 Pin = 64
PC01 Pin = 65
PC02 Pin = 66
PC03 Pin = 67
PC04 Pin = 68 // peripherals: TCC0 channel 0
PC05 Pin = 69 // peripherals: TCC0 channel 1
PC06 Pin = 70
PC07 Pin = 71
PC08 Pin = 72
PC09 Pin = 73
PC10 Pin = 74 // peripherals: TCC0 channel 0, TCC1 channel 4
PC11 Pin = 75 // peripherals: TCC0 channel 1, TCC1 channel 5
PC12 Pin = 76 // peripherals: TCC0 channel 2, TCC1 channel 6
PC13 Pin = 77 // peripherals: TCC0 channel 3, TCC1 channel 7
PC14 Pin = 78 // peripherals: TCC0 channel 4, TCC1 channel 0
PC15 Pin = 79 // peripherals: TCC0 channel 5, TCC1 channel 1
PC16 Pin = 80 // peripherals: TCC0 channel 0
PC17 Pin = 81 // peripherals: TCC0 channel 1
PC18 Pin = 82 // peripherals: TCC0 channel 2
PC19 Pin = 83 // peripherals: TCC0 channel 3
PC20 Pin = 84 // peripherals: TCC0 channel 4
PC21 Pin = 85 // peripherals: TCC0 channel 5
PC22 Pin = 86 // peripherals: TCC0 channel 6
PC23 Pin = 87 // peripherals: TCC0 channel 7
PC24 Pin = 88
PC25 Pin = 89
PC26 Pin = 90
PC27 Pin = 91
PC28 Pin = 92
PC29 Pin = 93
PC30 Pin = 94
PC31 Pin = 95
PD00 Pin = 96
PD01 Pin = 97
PD02 Pin = 98
PD03 Pin = 99
PD04 Pin = 100
PD05 Pin = 101
PD06 Pin = 102
PD07 Pin = 103
PD08 Pin = 104 // peripherals: TCC0 channel 1
PD09 Pin = 105 // peripherals: TCC0 channel 2
PD10 Pin = 106 // peripherals: TCC0 channel 3
PD11 Pin = 107 // peripherals: TCC0 channel 4
PD12 Pin = 108 // peripherals: TCC0 channel 5
PD13 Pin = 109 // peripherals: TCC0 channel 6
PD14 Pin = 110
PD15 Pin = 111
PD16 Pin = 112
PD17 Pin = 113
PD18 Pin = 114
PD19 Pin = 115
PD20 Pin = 116 // peripherals: TCC1 channel 0
PD21 Pin = 117 // peripherals: TCC1 channel 1
PD22 Pin = 118
PD23 Pin = 119
PD24 Pin = 120
PD25 Pin = 121
PD26 Pin = 122
PD27 Pin = 123
PD28 Pin = 124
PD29 Pin = 125
PD30 Pin = 126
PD31 Pin = 127
)
const (
pinPadMapSERCOM0Pad0 uint16 = 0x1000
pinPadMapSERCOM1Pad0 uint16 = 0x2000
pinPadMapSERCOM2Pad0 uint16 = 0x3000
pinPadMapSERCOM3Pad0 uint16 = 0x4000
pinPadMapSERCOM4Pad0 uint16 = 0x5000
pinPadMapSERCOM5Pad0 uint16 = 0x6000
pinPadMapSERCOM6Pad0 uint16 = 0x7000
pinPadMapSERCOM7Pad0 uint16 = 0x8000
pinPadMapSERCOM0Pad2 uint16 = 0x1200
pinPadMapSERCOM1Pad2 uint16 = 0x2200
pinPadMapSERCOM2Pad2 uint16 = 0x3200
pinPadMapSERCOM3Pad2 uint16 = 0x4200
pinPadMapSERCOM4Pad2 uint16 = 0x5200
pinPadMapSERCOM5Pad2 uint16 = 0x6200
pinPadMapSERCOM6Pad2 uint16 = 0x7200
pinPadMapSERCOM7Pad2 uint16 = 0x8200
pinPadMapSERCOM0AltPad0 uint16 = 0x0010
pinPadMapSERCOM1AltPad0 uint16 = 0x0020
pinPadMapSERCOM2AltPad0 uint16 = 0x0030
pinPadMapSERCOM3AltPad0 uint16 = 0x0040
pinPadMapSERCOM4AltPad0 uint16 = 0x0050
pinPadMapSERCOM5AltPad0 uint16 = 0x0060
pinPadMapSERCOM6AltPad0 uint16 = 0x0070
pinPadMapSERCOM7AltPad0 uint16 = 0x0080
pinPadMapSERCOM0AltPad1 uint16 = 0x0011
pinPadMapSERCOM1AltPad1 uint16 = 0x0021
pinPadMapSERCOM2AltPad1 uint16 = 0x0031
pinPadMapSERCOM3AltPad1 uint16 = 0x0041
pinPadMapSERCOM4AltPad1 uint16 = 0x0051
pinPadMapSERCOM5AltPad1 uint16 = 0x0061
pinPadMapSERCOM6AltPad1 uint16 = 0x0071
pinPadMapSERCOM7AltPad1 uint16 = 0x0081
pinPadMapSERCOM0AltPad2 uint16 = 0x0012
pinPadMapSERCOM1AltPad2 uint16 = 0x0022
pinPadMapSERCOM2AltPad2 uint16 = 0x0032
pinPadMapSERCOM3AltPad2 uint16 = 0x0042
pinPadMapSERCOM4AltPad2 uint16 = 0x0052
pinPadMapSERCOM5AltPad2 uint16 = 0x0062
pinPadMapSERCOM6AltPad2 uint16 = 0x0072
pinPadMapSERCOM7AltPad2 uint16 = 0x0082
)
// pinPadMapping lists which pins have which SERCOMs attached to them.
// The encoding is rather dense, with each uint16 encoding two pins and both
// SERCOM and SERCOM-ALT.
//
// Observations:
// - There are eight SERCOMs. Those SERCOM numbers can be encoded in 4 bits.
// - Even pad numbers are usually on even pins, and odd pad numbers are usually
// on odd pins. The exception is SERCOM-ALT, which sometimes swaps pad 0 and 1.
// With that, there is still an invariant that the pad number for an odd pin is
// the pad number for the corresponding even pin with the low bit toggled.
// - Pin pads come in pairs. If PA00 has pad 0, then PA01 has pad 1.
//
// With this information, we can encode SERCOM pin/pad numbers much more
// efficiently. Due to pads coming in pairs, we can ignore half the pins: the
// information for an odd pin can be calculated easily from the preceding even
// pin.
//
// Each word below is split in two bytes. The 8 high bytes are for SERCOM and
// the 8 low bits are for SERCOM-ALT. Of each byte, the 4 high bits encode the
// SERCOM + 1 while the two low bits encodes the pad number (the pad number for
// the odd pin can be trivially calculated by toggling the low bit of the pad
// number). It encodes SERCOM + 1 instead of just the SERCOM number, to make it
// easy to check whether a nibble is set at all.
//
// Datasheet: http://ww1.microchip.com/downloads/en/DeviceDoc/60001507E.pdf
var pinPadMapping = [64]uint16{
// page 32
PA00 / 2: 0 | pinPadMapSERCOM1AltPad0,
// page 33
PB08 / 2: 0 | pinPadMapSERCOM4AltPad0,
PA04 / 2: 0 | pinPadMapSERCOM0AltPad0,
PA06 / 2: 0 | pinPadMapSERCOM0AltPad2,
PC04 / 2: pinPadMapSERCOM6Pad0 | 0,
PC06 / 2: pinPadMapSERCOM6Pad2 | 0,
PA08 / 2: pinPadMapSERCOM0Pad0 | pinPadMapSERCOM2AltPad1,
PA10 / 2: pinPadMapSERCOM0Pad2 | pinPadMapSERCOM2AltPad2,
PB10 / 2: 0 | pinPadMapSERCOM4AltPad2,
PB12 / 2: pinPadMapSERCOM4Pad0 | 0,
PB14 / 2: pinPadMapSERCOM4Pad2 | 0,
PD08 / 2: pinPadMapSERCOM7Pad0 | pinPadMapSERCOM6AltPad1,
PD10 / 2: pinPadMapSERCOM7Pad2 | pinPadMapSERCOM6AltPad2,
PC10 / 2: pinPadMapSERCOM6Pad2 | pinPadMapSERCOM7AltPad2,
// page 34
PC12 / 2: pinPadMapSERCOM7Pad0 | pinPadMapSERCOM6AltPad1,
PC14 / 2: pinPadMapSERCOM7Pad2 | pinPadMapSERCOM6AltPad2,
PA12 / 2: pinPadMapSERCOM2Pad0 | pinPadMapSERCOM4AltPad1,
PA14 / 2: pinPadMapSERCOM2Pad2 | pinPadMapSERCOM4AltPad2,
PA16 / 2: pinPadMapSERCOM1Pad0 | pinPadMapSERCOM3AltPad1,
PA18 / 2: pinPadMapSERCOM1Pad2 | pinPadMapSERCOM3AltPad2,
PC16 / 2: pinPadMapSERCOM6Pad0 | pinPadMapSERCOM0AltPad1,
PC18 / 2: pinPadMapSERCOM6Pad2 | pinPadMapSERCOM0AltPad2,
PC22 / 2: pinPadMapSERCOM1Pad0 | pinPadMapSERCOM3AltPad1,
PD20 / 2: pinPadMapSERCOM1Pad2 | pinPadMapSERCOM3AltPad2,
PB16 / 2: pinPadMapSERCOM5Pad0 | 0,
PB18 / 2: pinPadMapSERCOM5Pad2 | pinPadMapSERCOM7AltPad2,
// page 35
PB20 / 2: pinPadMapSERCOM3Pad0 | pinPadMapSERCOM7AltPad1,
PA20 / 2: pinPadMapSERCOM5Pad2 | pinPadMapSERCOM3AltPad2,
PA22 / 2: pinPadMapSERCOM3Pad0 | pinPadMapSERCOM5AltPad1,
PA24 / 2: pinPadMapSERCOM3Pad2 | pinPadMapSERCOM5AltPad2,
PB22 / 2: pinPadMapSERCOM1Pad2 | pinPadMapSERCOM5AltPad2,
PB24 / 2: pinPadMapSERCOM0Pad0 | pinPadMapSERCOM2AltPad1,
PB26 / 2: pinPadMapSERCOM2Pad0 | pinPadMapSERCOM4AltPad1,
PB28 / 2: pinPadMapSERCOM2Pad2 | pinPadMapSERCOM4AltPad2,
PC24 / 2: pinPadMapSERCOM0Pad2 | pinPadMapSERCOM2AltPad2,
//PC26 / 2: pinPadMapSERCOM1Pad1 | 0, // note: PC26 doesn't support SERCOM, but PC27 does
//PC28 / 2: pinPadMapSERCOM1Pad1 | 0, // note: PC29 doesn't exist in the datasheet?
PA30 / 2: 0 | pinPadMapSERCOM1AltPad2,
// page 36
PB30 / 2: 0 | pinPadMapSERCOM5AltPad1,
PB00 / 2: 0 | pinPadMapSERCOM5AltPad2,
PB02 / 2: 0 | pinPadMapSERCOM5AltPad0,
}
// findPinPadMapping looks up the pad number and the pinmode for a given pin and
// SERCOM number. The result can either be SERCOM, SERCOM-ALT, or "not found"
// (indicated by returning ok=false). The pad number is returned to calculate
// the DOPO/DIPO bitfields of the various serial peripherals.
func findPinPadMapping(sercom uint8, pin Pin) (pinMode PinMode, pad uint32, ok bool) {
if int(pin)/2 >= len(pinPadMapping) {
// This is probably NoPin, for which no mapping is available.
return
}
bytes := pinPadMapping[pin/2]
upper := byte(bytes >> 8)
lower := byte(bytes & 0xff)
if upper != 0 {
// SERCOM
if (upper>>4)-1 == sercom {
pinMode = PinSERCOM
pad |= uint32(upper % 4)
ok = true
}
}
if lower != 0 {
// SERCOM-ALT
if (lower>>4)-1 == sercom {
pinMode = PinSERCOMAlt
pad |= uint32(lower % 4)
ok = true
}
}
if ok {
// If the pin is uneven, toggle the lowest bit of the pad number.
if pin&1 != 0 {
pad ^= 1
}
}
return
}
// SetInterrupt sets an interrupt to be executed when a particular pin changes
// state. The pin should already be configured as an input, including a pull up
// or down if no external pull is provided.
//
// This call will replace a previously set callback on this pin. You can pass a
// nil func to unset the pin change interrupt. If you do so, the change
// parameter is ignored and can be set to any value (such as 0).
func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error {
// Most pins follow a common pattern where the EXTINT value is the pin
// number modulo 16. However, there are a few exceptions, as you can see
// below.
extint := uint8(0)
switch p {
case PA08:
// Connected to NMI. This is not currently supported.
return ErrInvalidInputPin
case PB26:
extint = 12
case PB27:
extint = 13
case PB28:
extint = 14
case PB29:
extint = 15
case PC07:
extint = 9
case PD08:
extint = 3
case PD09:
extint = 4
case PD10:
extint = 5
case PD11:
extint = 6
case PD12:
extint = 7
case PD20:
extint = 10
case PD21:
extint = 11
default:
// All other pins follow a normal pattern.
extint = uint8(p) % 16
}
if callback == nil {
// Disable this pin interrupt (if it was enabled).
sam.EIC.INTENCLR.Set(1 << extint)
if pinCallbacks[extint] != nil {
pinCallbacks[extint] = nil
}
return nil
}
if pinCallbacks[extint] != nil {
// The pin was already configured.
// To properly re-configure a pin, unset it first and set a new
// configuration.
return ErrNoPinChangeChannel
}
pinCallbacks[extint] = callback
interruptPins[extint] = p
if !sam.EIC.CTRLA.HasBits(sam.EIC_CTRLA_ENABLE) {
// EIC peripheral has not yet been initialized. Initialize it now.
// The EIC needs two clocks: CLK_EIC_APB and GCLK_EIC. CLK_EIC_APB is
// enabled by default, so doesn't have to be re-enabled. The other is
// required for detecting edges and must be enabled manually.
sam.GCLK.PCHCTRL[4].Set((sam.GCLK_PCHCTRL_GEN_GCLK0 << sam.GCLK_PCHCTRL_GEN_Pos) | sam.GCLK_PCHCTRL_CHEN)
// should not be necessary (CLKCTRL is not synchronized)
for sam.GCLK.SYNCBUSY.HasBits(sam.GCLK_SYNCBUSY_GENCTRL_GCLK0 << sam.GCLK_SYNCBUSY_GENCTRL_Pos) {
}
}
// CONFIG register is enable-protected, so disable EIC.
sam.EIC.CTRLA.ClearBits(sam.EIC_CTRLA_ENABLE)
// Configure this pin. Set the 4 bits of the EIC.CONFIGx register to the
// sense value (filter bit set to 0, sense bits set to the change value).
addr := &sam.EIC.CONFIG[0]
if extint >= 8 {
addr = &sam.EIC.CONFIG[1]
}
pos := (extint % 8) * 4 // bit position in register
addr.ReplaceBits(uint32(change), 0xf, pos)
// Enable external interrupt for this pin.
sam.EIC.INTENSET.Set(1 << extint)
sam.EIC.CTRLA.Set(sam.EIC_CTRLA_ENABLE)
for sam.EIC.SYNCBUSY.HasBits(sam.EIC_SYNCBUSY_ENABLE) {
}
// Set the PMUXEN flag, while keeping the INEN and PULLEN flags (if they
// were set before). This avoids clearing the pin pull mode while
// configuring the pin interrupt.
p.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN | (p.getPinCfg() & (sam.PORT_GROUP_PINCFG_INEN | sam.PORT_GROUP_PINCFG_PULLEN)))
if p&1 > 0 {
// odd pin, so save the even pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
p.setPMux(val | (0 << sam.PORT_GROUP_PMUX_PMUXO_Pos))
} else {
// even pin, so save the odd pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
p.setPMux(val | (0 << sam.PORT_GROUP_PMUX_PMUXE_Pos))
}
handleEICInterrupt := func(interrupt.Interrupt) {
flags := sam.EIC.INTFLAG.Get()
sam.EIC.INTFLAG.Set(flags) // clear interrupt
for i := uint(0); i < 16; i++ { // there are 16 channels
if flags&(1<<i) != 0 {
pinCallbacks[i](interruptPins[i])
}
}
}
switch extint {
case 0:
interrupt.New(sam.IRQ_EIC_EXTINT_0, handleEICInterrupt).Enable()
case 1:
interrupt.New(sam.IRQ_EIC_EXTINT_1, handleEICInterrupt).Enable()
case 2:
interrupt.New(sam.IRQ_EIC_EXTINT_2, handleEICInterrupt).Enable()
case 3:
interrupt.New(sam.IRQ_EIC_EXTINT_3, handleEICInterrupt).Enable()
case 4:
interrupt.New(sam.IRQ_EIC_EXTINT_4, handleEICInterrupt).Enable()
case 5:
interrupt.New(sam.IRQ_EIC_EXTINT_5, handleEICInterrupt).Enable()
case 6:
interrupt.New(sam.IRQ_EIC_EXTINT_6, handleEICInterrupt).Enable()
case 7:
interrupt.New(sam.IRQ_EIC_EXTINT_7, handleEICInterrupt).Enable()
case 8:
interrupt.New(sam.IRQ_EIC_EXTINT_8, handleEICInterrupt).Enable()
case 9:
interrupt.New(sam.IRQ_EIC_EXTINT_9, handleEICInterrupt).Enable()
case 10:
interrupt.New(sam.IRQ_EIC_EXTINT_10, handleEICInterrupt).Enable()
case 11:
interrupt.New(sam.IRQ_EIC_EXTINT_11, handleEICInterrupt).Enable()
case 12:
interrupt.New(sam.IRQ_EIC_EXTINT_12, handleEICInterrupt).Enable()
case 13:
interrupt.New(sam.IRQ_EIC_EXTINT_13, handleEICInterrupt).Enable()
case 14:
interrupt.New(sam.IRQ_EIC_EXTINT_14, handleEICInterrupt).Enable()
case 15:
interrupt.New(sam.IRQ_EIC_EXTINT_15, handleEICInterrupt).Enable()
}
return nil
}
// Return the register and mask to enable a given GPIO pin. This can be used to
// implement bit-banged drivers.
func (p Pin) PortMaskSet() (*uint32, uint32) {
group, pin_in_group := p.getPinGrouping()
return &sam.PORT.GROUP[group].OUTSET.Reg, 1 << pin_in_group
}
// Return the register and mask to disable a given port. This can be used to
// implement bit-banged drivers.
func (p Pin) PortMaskClear() (*uint32, uint32) {
group, pin_in_group := p.getPinGrouping()
return &sam.PORT.GROUP[group].OUTCLR.Reg, 1 << pin_in_group
}
// Set the pin to high or low.
// Warning: only use this on an output pin!
func (p Pin) Set(high bool) {
group, pin_in_group := p.getPinGrouping()
if high {
sam.PORT.GROUP[group].OUTSET.Set(1 << pin_in_group)
} else {
sam.PORT.GROUP[group].OUTCLR.Set(1 << pin_in_group)
}
}
// Get returns the current value of a GPIO pin when configured as an input or as
// an output.
func (p Pin) Get() bool {
group, pin_in_group := p.getPinGrouping()
return (sam.PORT.GROUP[group].IN.Get()>>pin_in_group)&1 > 0
}
// Toggle switches an output pin from low to high or from high to low.
// Warning: only use this on an output pin!
func (p Pin) Toggle() {
group, pin_in_group := p.getPinGrouping()
sam.PORT.GROUP[group].OUTTGL.Set(1 << pin_in_group)
}
// Configure this pin with the given configuration.
func (p Pin) Configure(config PinConfig) {
group, pin_in_group := p.getPinGrouping()
switch config.Mode {
case PinOutput:
sam.PORT.GROUP[group].DIRSET.Set(1 << pin_in_group)
// output is also set to input enable so pin can read back its own value
p.setPinCfg(sam.PORT_GROUP_PINCFG_INEN)
case PinInput:
sam.PORT.GROUP[group].DIRCLR.Set(1 << pin_in_group)
p.setPinCfg(sam.PORT_GROUP_PINCFG_INEN)
case PinInputPulldown:
sam.PORT.GROUP[group].DIRCLR.Set(1 << pin_in_group)
sam.PORT.GROUP[group].OUTCLR.Set(1 << pin_in_group)
p.setPinCfg(sam.PORT_GROUP_PINCFG_INEN | sam.PORT_GROUP_PINCFG_PULLEN)
case PinInputPullup:
sam.PORT.GROUP[group].DIRCLR.Set(1 << pin_in_group)
sam.PORT.GROUP[group].OUTSET.Set(1 << pin_in_group)
p.setPinCfg(sam.PORT_GROUP_PINCFG_INEN | sam.PORT_GROUP_PINCFG_PULLEN)
case PinSERCOM:
if p&1 > 0 {
// odd pin, so save the even pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
p.setPMux(val | (uint8(PinSERCOM) << sam.PORT_GROUP_PMUX_PMUXO_Pos))
} else {
// even pin, so save the odd pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
p.setPMux(val | (uint8(PinSERCOM) << sam.PORT_GROUP_PMUX_PMUXE_Pos))
}
// enable port config
p.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN | sam.PORT_GROUP_PINCFG_DRVSTR | sam.PORT_GROUP_PINCFG_INEN)
case PinSERCOMAlt:
if p&1 > 0 {
// odd pin, so save the even pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
p.setPMux(val | (uint8(PinSERCOMAlt) << sam.PORT_GROUP_PMUX_PMUXO_Pos))
} else {
// even pin, so save the odd pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
p.setPMux(val | (uint8(PinSERCOMAlt) << sam.PORT_GROUP_PMUX_PMUXE_Pos))
}
// enable port config
p.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN | sam.PORT_GROUP_PINCFG_DRVSTR)
case PinCom:
if p&1 > 0 {
// odd pin, so save the even pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
p.setPMux(val | (uint8(PinCom) << sam.PORT_GROUP_PMUX_PMUXO_Pos))
} else {
// even pin, so save the odd pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
p.setPMux(val | (uint8(PinCom) << sam.PORT_GROUP_PMUX_PMUXE_Pos))
}
// enable port config
p.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN)
case PinAnalog:
if p&1 > 0 {
// odd pin, so save the even pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
p.setPMux(val | (uint8(PinAnalog) << sam.PORT_GROUP_PMUX_PMUXO_Pos))
} else {
// even pin, so save the odd pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
p.setPMux(val | (uint8(PinAnalog) << sam.PORT_GROUP_PMUX_PMUXE_Pos))
}
// enable port config
p.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN | sam.PORT_GROUP_PINCFG_DRVSTR)
case PinSDHC:
if p&1 > 0 {
// odd pin, so save the even pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
p.setPMux(val | (uint8(PinSDHC) << sam.PORT_GROUP_PMUX_PMUXO_Pos))
} else {
// even pin, so save the odd pins
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
p.setPMux(val | (uint8(PinSDHC) << sam.PORT_GROUP_PMUX_PMUXE_Pos))
}
// enable port config
p.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN)
}
}
// getPMux returns the value for the correct PMUX register for this pin.
func (p Pin) getPMux() uint8 {
group, pin_in_group := p.getPinGrouping()
return sam.PORT.GROUP[group].PMUX[pin_in_group>>1].Get()
}
// setPMux sets the value for the correct PMUX register for this pin.
func (p Pin) setPMux(val uint8) {
group, pin_in_group := p.getPinGrouping()
sam.PORT.GROUP[group].PMUX[pin_in_group>>1].Set(val)
}
// getPinCfg returns the value for the correct PINCFG register for this pin.
func (p Pin) getPinCfg() uint8 {
group, pin_in_group := p.getPinGrouping()
return sam.PORT.GROUP[group].PINCFG[pin_in_group].Get()
}
// setPinCfg sets the value for the correct PINCFG register for this pin.
func (p Pin) setPinCfg(val uint8) {
group, pin_in_group := p.getPinGrouping()
sam.PORT.GROUP[group].PINCFG[pin_in_group].Set(val)
}
// getPinGrouping calculates the gpio group and pin id from the pin number.
// Pins are split into groups of 32, and each group has its own set of
// control registers.
func (p Pin) getPinGrouping() (uint8, uint8) {
group := uint8(p) >> 5
pin_in_group := uint8(p) & 0x1f
return group, pin_in_group
}
// InitADC initializes the ADC.
func InitADC() {
// ADC Bias Calibration
// NVMCTRL_SW0 0x00800080
// #define ADC0_FUSES_BIASCOMP_ADDR NVMCTRL_SW0
// #define ADC0_FUSES_BIASCOMP_Pos 2 /**< \brief (NVMCTRL_SW0) ADC Comparator Scaling */
// #define ADC0_FUSES_BIASCOMP_Msk (_Ul(0x7) << ADC0_FUSES_BIASCOMP_Pos)
// #define ADC0_FUSES_BIASCOMP(value) (ADC0_FUSES_BIASCOMP_Msk & ((value) << ADC0_FUSES_BIASCOMP_Pos))
// #define ADC0_FUSES_BIASR2R_ADDR NVMCTRL_SW0
// #define ADC0_FUSES_BIASR2R_Pos 8 /**< \brief (NVMCTRL_SW0) ADC Bias R2R ampli scaling */
// #define ADC0_FUSES_BIASR2R_Msk (_Ul(0x7) << ADC0_FUSES_BIASR2R_Pos)
// #define ADC0_FUSES_BIASR2R(value) (ADC0_FUSES_BIASR2R_Msk & ((value) << ADC0_FUSES_BIASR2R_Pos))
// #define ADC0_FUSES_BIASREFBUF_ADDR NVMCTRL_SW0
// #define ADC0_FUSES_BIASREFBUF_Pos 5 /**< \brief (NVMCTRL_SW0) ADC Bias Reference Buffer Scaling */
// #define ADC0_FUSES_BIASREFBUF_Msk (_Ul(0x7) << ADC0_FUSES_BIASREFBUF_Pos)
// #define ADC0_FUSES_BIASREFBUF(value) (ADC0_FUSES_BIASREFBUF_Msk & ((value) << ADC0_FUSES_BIASREFBUF_Pos))
// #define ADC1_FUSES_BIASCOMP_ADDR NVMCTRL_SW0
// #define ADC1_FUSES_BIASCOMP_Pos 16 /**< \brief (NVMCTRL_SW0) ADC Comparator Scaling */
// #define ADC1_FUSES_BIASCOMP_Msk (_Ul(0x7) << ADC1_FUSES_BIASCOMP_Pos)
// #define ADC1_FUSES_BIASCOMP(value) (ADC1_FUSES_BIASCOMP_Msk & ((value) << ADC1_FUSES_BIASCOMP_Pos))
// #define ADC1_FUSES_BIASR2R_ADDR NVMCTRL_SW0
// #define ADC1_FUSES_BIASR2R_Pos 22 /**< \brief (NVMCTRL_SW0) ADC Bias R2R ampli scaling */
// #define ADC1_FUSES_BIASR2R_Msk (_Ul(0x7) << ADC1_FUSES_BIASR2R_Pos)
// #define ADC1_FUSES_BIASR2R(value) (ADC1_FUSES_BIASR2R_Msk & ((value) << ADC1_FUSES_BIASR2R_Pos))
// #define ADC1_FUSES_BIASREFBUF_ADDR NVMCTRL_SW0
// #define ADC1_FUSES_BIASREFBUF_Pos 19 /**< \brief (NVMCTRL_SW0) ADC Bias Reference Buffer Scaling */
// #define ADC1_FUSES_BIASREFBUF_Msk (_Ul(0x7) << ADC1_FUSES_BIASREFBUF_Pos)
// #define ADC1_FUSES_BIASREFBUF(value) (ADC1_FUSES_BIASREFBUF_Msk & ((value) << ADC1_FUSES_BIASREFBUF_Pos))
adcFuse := *(*uint32)(unsafe.Pointer(uintptr(0x00800080)))
// uint32_t biascomp = (*((uint32_t *)ADC0_FUSES_BIASCOMP_ADDR) & ADC0_FUSES_BIASCOMP_Msk) >> ADC0_FUSES_BIASCOMP_Pos;
biascomp := (adcFuse & uint32(0x7<<2)) //>> 2
// uint32_t biasr2r = (*((uint32_t *)ADC0_FUSES_BIASR2R_ADDR) & ADC0_FUSES_BIASR2R_Msk) >> ADC0_FUSES_BIASR2R_Pos;
biasr2r := (adcFuse & uint32(0x7<<8)) //>> 8
// uint32_t biasref = (*((uint32_t *)ADC0_FUSES_BIASREFBUF_ADDR) & ADC0_FUSES_BIASREFBUF_Msk) >> ADC0_FUSES_BIASREFBUF_Pos;
biasref := (adcFuse & uint32(0x7<<5)) //>> 5
// calibrate ADC0
sam.ADC0.CALIB.Set(uint16(biascomp | biasr2r | biasref))
// biascomp = (*((uint32_t *)ADC1_FUSES_BIASCOMP_ADDR) & ADC1_FUSES_BIASCOMP_Msk) >> ADC1_FUSES_BIASCOMP_Pos;
biascomp = (adcFuse & uint32(0x7<<16)) //>> 16
// biasr2r = (*((uint32_t *)ADC1_FUSES_BIASR2R_ADDR) & ADC1_FUSES_BIASR2R_Msk) >> ADC1_FUSES_BIASR2R_Pos;
biasr2r = (adcFuse & uint32(0x7<<22)) //>> 22
// biasref = (*((uint32_t *)ADC1_FUSES_BIASREFBUF_ADDR) & ADC1_FUSES_BIASREFBUF_Msk) >> ADC1_FUSES_BIASREFBUF_Pos;
biasref = (adcFuse & uint32(0x7<<19)) //>> 19
// calibrate ADC1
sam.ADC1.CALIB.Set(uint16((biascomp | biasr2r | biasref) >> 16))
}
// Configure configures a ADCPin to be able to be used to read data.
func (a ADC) Configure(config ADCConfig) {
for _, adc := range []*sam.ADC_Type{sam.ADC0, sam.ADC1} {
for adc.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_CTRLB) {
} // wait for sync
adc.CTRLA.SetBits(sam.ADC_CTRLA_PRESCALER_DIV32 << sam.ADC_CTRLA_PRESCALER_Pos)
var resolution uint32
switch config.Resolution {
case 8:
resolution = sam.ADC_CTRLB_RESSEL_8BIT
case 10:
resolution = sam.ADC_CTRLB_RESSEL_10BIT
case 12:
resolution = sam.ADC_CTRLB_RESSEL_12BIT
case 16:
resolution = sam.ADC_CTRLB_RESSEL_16BIT
default:
resolution = sam.ADC_CTRLB_RESSEL_12BIT
}
adc.CTRLB.SetBits(uint16(resolution << sam.ADC_CTRLB_RESSEL_Pos))
adc.SAMPCTRL.Set(5) // sampling Time Length
for adc.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_SAMPCTRL) {
} // wait for sync
// No Negative input (Internal Ground)
adc.INPUTCTRL.Set(sam.ADC_INPUTCTRL_MUXNEG_GND << sam.ADC_INPUTCTRL_MUXNEG_Pos)
for adc.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_INPUTCTRL) {
} // wait for sync
// Averaging (see datasheet table in AVGCTRL register description)
var samples uint32
switch config.Samples {
case 1:
samples = sam.ADC_AVGCTRL_SAMPLENUM_1
case 2:
samples = sam.ADC_AVGCTRL_SAMPLENUM_2
case 4:
samples = sam.ADC_AVGCTRL_SAMPLENUM_4
case 8:
samples = sam.ADC_AVGCTRL_SAMPLENUM_8
case 16:
samples = sam.ADC_AVGCTRL_SAMPLENUM_16
case 32:
samples = sam.ADC_AVGCTRL_SAMPLENUM_32
case 64:
samples = sam.ADC_AVGCTRL_SAMPLENUM_64
case 128:
samples = sam.ADC_AVGCTRL_SAMPLENUM_128
case 256:
samples = sam.ADC_AVGCTRL_SAMPLENUM_256
case 512:
samples = sam.ADC_AVGCTRL_SAMPLENUM_512
case 1024:
samples = sam.ADC_AVGCTRL_SAMPLENUM_1024
default: // 1 sample only (no oversampling nor averaging), adjusting result by 0
samples = sam.ADC_AVGCTRL_SAMPLENUM_1
}
adc.AVGCTRL.Set(uint8(samples<<sam.ADC_AVGCTRL_SAMPLENUM_Pos) |
(0 << sam.ADC_AVGCTRL_ADJRES_Pos))
for adc.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_AVGCTRL) {
} // wait for sync
for adc.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_REFCTRL) {
} // wait for sync
// TODO: use config.Reference to set AREF level
// default is 3V3 reference voltage
adc.REFCTRL.SetBits(sam.ADC_REFCTRL_REFSEL_INTVCC1)
}
a.Pin.Configure(PinConfig{Mode: PinAnalog})
}
// Get returns the current value of a ADC pin, in the range 0..0xffff.
func (a ADC) Get() uint16 {
bus := a.getADCBus()
ch := a.getADCChannel()
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_INPUTCTRL) {
}
// Selection for the positive ADC input channel
bus.INPUTCTRL.ClearBits(sam.ADC_INPUTCTRL_MUXPOS_Msk)
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
}
bus.INPUTCTRL.SetBits((uint16(ch) & sam.ADC_INPUTCTRL_MUXPOS_Msk) << sam.ADC_INPUTCTRL_MUXPOS_Pos)
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
}
// Enable ADC
bus.CTRLA.SetBits(sam.ADC_CTRLA_ENABLE)
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
}
// Start conversion
bus.SWTRIG.SetBits(sam.ADC_SWTRIG_START)
for !bus.INTFLAG.HasBits(sam.ADC_INTFLAG_RESRDY) {
}
// Clear the Data Ready flag
bus.INTFLAG.ClearBits(sam.ADC_INTFLAG_RESRDY)
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
}
// Start conversion again, since first conversion after reference voltage changed is invalid.
bus.SWTRIG.SetBits(sam.ADC_SWTRIG_START)
// Waiting for conversion to complete
for !bus.INTFLAG.HasBits(sam.ADC_INTFLAG_RESRDY) {
}
val := bus.RESULT.Get()
// Disable ADC
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
}
bus.CTRLA.ClearBits(sam.ADC_CTRLA_ENABLE)
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
}
// scales to 16-bit result
switch (bus.CTRLB.Get() & sam.ADC_CTRLB_RESSEL_Msk) >> sam.ADC_CTRLB_RESSEL_Pos {
case sam.ADC_CTRLB_RESSEL_8BIT:
val = val << 8
case sam.ADC_CTRLB_RESSEL_10BIT:
val = val << 6
case sam.ADC_CTRLB_RESSEL_16BIT:
val = val << 4
case sam.ADC_CTRLB_RESSEL_12BIT:
val = val << 4
}
return val
}
func (a ADC) getADCBus() *sam.ADC_Type {
if (a.Pin >= PB04 && a.Pin <= PB07) || (a.Pin >= PC00) {
return sam.ADC1
}
return sam.ADC0
}
func (a ADC) getADCChannel() uint8 {
switch a.Pin {
case PA02:
return 0
case PB08:
return 2
case PB09:
return 3
case PA04:
return 4
case PA05:
return 5
case PA06:
return 6
case PA07:
return 7
case PB00:
return 12
case PB01:
return 13
case PB02:
return 14
case PB03:
return 15
case PA09:
return 17
case PA11:
return 19
case PB04:
return 6
case PB05:
return 7
case PB06:
return 8
case PB07:
return 9
case PC00:
return 10
case PC01:
return 11
case PC02:
return 4
case PC03:
return 5
case PC30:
return 12
case PC31:
return 13
case PD00:
return 14
case PD01:
return 15
default:
panic("Invalid ADC pin")
}
}
// UART on the SAMD51.
type UART struct {
Buffer *RingBuffer
Bus *sam.SERCOM_USART_INT_Type
SERCOM uint8
Interrupt interrupt.Interrupt // RXC interrupt
}
var (
sercomUSART0 = UART{Buffer: NewRingBuffer(), Bus: sam.SERCOM0_USART_INT, SERCOM: 0}
sercomUSART1 = UART{Buffer: NewRingBuffer(), Bus: sam.SERCOM1_USART_INT, SERCOM: 1}
sercomUSART2 = UART{Buffer: NewRingBuffer(), Bus: sam.SERCOM2_USART_INT, SERCOM: 2}
sercomUSART3 = UART{Buffer: NewRingBuffer(), Bus: sam.SERCOM3_USART_INT, SERCOM: 3}
sercomUSART4 = UART{Buffer: NewRingBuffer(), Bus: sam.SERCOM4_USART_INT, SERCOM: 4}
sercomUSART5 = UART{Buffer: NewRingBuffer(), Bus: sam.SERCOM5_USART_INT, SERCOM: 5}
)
func init() {
sercomUSART0.Interrupt = interrupt.New(sam.IRQ_SERCOM0_2, sercomUSART0.handleInterrupt)
sercomUSART1.Interrupt = interrupt.New(sam.IRQ_SERCOM1_2, sercomUSART1.handleInterrupt)
sercomUSART2.Interrupt = interrupt.New(sam.IRQ_SERCOM2_2, sercomUSART2.handleInterrupt)
sercomUSART3.Interrupt = interrupt.New(sam.IRQ_SERCOM3_2, sercomUSART3.handleInterrupt)
sercomUSART4.Interrupt = interrupt.New(sam.IRQ_SERCOM4_2, sercomUSART4.handleInterrupt)
sercomUSART5.Interrupt = interrupt.New(sam.IRQ_SERCOM5_2, sercomUSART5.handleInterrupt)
}
const (
sampleRate16X = 16
lsbFirst = 1
)
// Configure the UART.
func (uart *UART) Configure(config UARTConfig) error {
// Default baud rate to 115200.
if config.BaudRate == 0 {
config.BaudRate = 115200
}
// determine pins
if config.TX == 0 && config.RX == 0 {
// use default pins
config.TX = UART_TX_PIN
config.RX = UART_RX_PIN
}
// Determine transmit pinout.
txPinMode, txPad, ok := findPinPadMapping(uart.SERCOM, config.TX)
if !ok {
return ErrInvalidOutputPin
}
var txPinOut uint32
// See CTRLA.RXPO bits of the SERCOM USART peripheral (page 945-946) for how
// pads are mapped to pinout values.
switch txPad {
case 0:
txPinOut = 0
default:
// TODO: flow control (RTS/CTS)
return ErrInvalidOutputPin
}
// Determine receive pinout.
rxPinMode, rxPad, ok := findPinPadMapping(uart.SERCOM, config.RX)
if !ok {
return ErrInvalidInputPin
}
// As you can see in the CTRLA.RXPO bits of the SERCOM USART peripheral
// (page 945), input pins are mapped directly.
rxPinOut := rxPad
// configure pins
config.TX.Configure(PinConfig{Mode: txPinMode})
config.RX.Configure(PinConfig{Mode: rxPinMode})
// reset SERCOM
uart.Bus.CTRLA.SetBits(sam.SERCOM_USART_INT_CTRLA_SWRST)
for uart.Bus.CTRLA.HasBits(sam.SERCOM_USART_INT_CTRLA_SWRST) ||
uart.Bus.SYNCBUSY.HasBits(sam.SERCOM_USART_INT_SYNCBUSY_SWRST) {
}
// set UART mode/sample rate
// SERCOM_USART_CTRLA_MODE(mode) |
// SERCOM_USART_CTRLA_SAMPR(sampleRate);
// sam.SERCOM_USART_CTRLA_MODE_USART_INT_CLK = 1?
uart.Bus.CTRLA.Set((1 << sam.SERCOM_USART_INT_CTRLA_MODE_Pos) |
(1 << sam.SERCOM_USART_INT_CTRLA_SAMPR_Pos)) // sample rate of 16x
// set clock
setSERCOMClockGenerator(uart.SERCOM, sam.GCLK_PCHCTRL_GEN_GCLK1)
// Set baud rate
uart.SetBaudRate(config.BaudRate)
// setup UART frame
// SERCOM_USART_CTRLA_FORM( (parityMode == SERCOM_NO_PARITY ? 0 : 1) ) |
// dataOrder << SERCOM_USART_CTRLA_DORD_Pos;
uart.Bus.CTRLA.SetBits((0 << sam.SERCOM_USART_INT_CTRLA_FORM_Pos) | // no parity
(lsbFirst << sam.SERCOM_USART_INT_CTRLA_DORD_Pos)) // data order
// set UART stop bits/parity
// SERCOM_USART_CTRLB_CHSIZE(charSize) |
// nbStopBits << SERCOM_USART_CTRLB_SBMODE_Pos |
// (parityMode == SERCOM_NO_PARITY ? 0 : parityMode) << SERCOM_USART_CTRLB_PMODE_Pos; //If no parity use default value
uart.Bus.CTRLB.SetBits((0 << sam.SERCOM_USART_INT_CTRLB_CHSIZE_Pos) | // 8 bits is 0
(0 << sam.SERCOM_USART_INT_CTRLB_SBMODE_Pos) | // 1 stop bit is zero
(0 << sam.SERCOM_USART_INT_CTRLB_PMODE_Pos)) // no parity
// set UART pads. This is not same as pins...
// SERCOM_USART_CTRLA_TXPO(txPad) |
// SERCOM_USART_CTRLA_RXPO(rxPad);
uart.Bus.CTRLA.SetBits((txPinOut << sam.SERCOM_USART_INT_CTRLA_TXPO_Pos) |
(rxPinOut << sam.SERCOM_USART_INT_CTRLA_RXPO_Pos))
// Enable Transceiver and Receiver
//sercom->USART.CTRLB.reg |= SERCOM_USART_CTRLB_TXEN | SERCOM_USART_CTRLB_RXEN ;
uart.Bus.CTRLB.SetBits(sam.SERCOM_USART_INT_CTRLB_TXEN | sam.SERCOM_USART_INT_CTRLB_RXEN)
// Enable USART1 port.
// sercom->USART.CTRLA.bit.ENABLE = 0x1u;
uart.Bus.CTRLA.SetBits(sam.SERCOM_USART_INT_CTRLA_ENABLE)
for uart.Bus.SYNCBUSY.HasBits(sam.SERCOM_USART_INT_SYNCBUSY_ENABLE) {
}
// setup interrupt on receive
uart.Bus.INTENSET.Set(sam.SERCOM_USART_INT_INTENSET_RXC)
// Enable RX IRQ.
// This is a small note at the bottom of the NVIC section of the datasheet:
// > The integer number specified in the source refers to the respective bit
// > position in the INTFLAG register of respective peripheral.
// Therefore, if we only need to listen to the RXC interrupt source (in bit
// position 2), we only need interrupt source 2 for this SERCOM device.
uart.Interrupt.Enable()
return nil
}
// SetBaudRate sets the communication speed for the UART.
func (uart *UART) SetBaudRate(br uint32) {
// Asynchronous fractional mode (Table 24-2 in datasheet)
// BAUD = fref / (sampleRateValue * fbaud)
// (multiply by 8, to calculate fractional piece)
// uint32_t baudTimes8 = (SystemCoreClock * 8) / (16 * baudrate);
baud := (SERCOM_FREQ_REF * 8) / (sampleRate16X * br)
// sercom->USART.BAUD.FRAC.FP = (baudTimes8 % 8);
// sercom->USART.BAUD.FRAC.BAUD = (baudTimes8 / 8);
uart.Bus.BAUD.Set(uint16(((baud % 8) << sam.SERCOM_USART_INT_BAUD_FRAC_MODE_FP_Pos) |
((baud / 8) << sam.SERCOM_USART_INT_BAUD_FRAC_MODE_BAUD_Pos)))
}
// WriteByte writes a byte of data to the UART.
func (uart *UART) WriteByte(c byte) error {
// wait until ready to receive
for !uart.Bus.INTFLAG.HasBits(sam.SERCOM_USART_INT_INTFLAG_DRE) {
}
uart.Bus.DATA.Set(uint32(c))
return nil
}
func (uart *UART) handleInterrupt(interrupt.Interrupt) {
// should reset IRQ
uart.Receive(byte((uart.Bus.DATA.Get() & 0xFF)))
uart.Bus.INTFLAG.SetBits(sam.SERCOM_USART_INT_INTFLAG_RXC)
}
// I2C on the SAMD51.
type I2C struct {
Bus *sam.SERCOM_I2CM_Type
SERCOM uint8
}
// I2CConfig is used to store config info for I2C.
type I2CConfig struct {
Frequency uint32
SCL Pin
SDA Pin
}
const (
// SERCOM_FREQ_REF is always reference frequency on SAMD51 regardless of CPU speed.
SERCOM_FREQ_REF = 48000000
SERCOM_FREQ_REF_GCLK0 = 120000000
// Default rise time in nanoseconds, based on 4.7K ohm pull up resistors
riseTimeNanoseconds = 125
// wire bus states
wireUnknownState = 0
wireIdleState = 1
wireOwnerState = 2
wireBusyState = 3
// wire commands
wireCmdNoAction = 0
wireCmdRepeatStart = 1
wireCmdRead = 2
wireCmdStop = 3
)
const i2cTimeout = 1000
// Configure is intended to setup the I2C interface.
func (i2c *I2C) Configure(config I2CConfig) error {
// Default I2C bus speed is 100 kHz.
if config.Frequency == 0 {
config.Frequency = 100 * KHz
}
// Use default I2C pins if not set.
if config.SDA == 0 && config.SCL == 0 {
config.SDA = SDA_PIN
config.SCL = SCL_PIN
}
sclPinMode, sclPad, ok := findPinPadMapping(i2c.SERCOM, config.SCL)
if !ok || sclPad != 1 {
// SCL must be on pad 1, according to section 36.4 of the datasheet.
// Note: this is not an exhaustive test for I2C support on the pin: not
// all pins support I2C.
return ErrInvalidClockPin
}
sdaPinMode, sdaPad, ok := findPinPadMapping(i2c.SERCOM, config.SDA)
if !ok || sdaPad != 0 {
// SDA must be on pad 0, according to section 36.4 of the datasheet.
// Note: this is not an exhaustive test for I2C support on the pin: not
// all pins support I2C.
return ErrInvalidDataPin
}
// reset SERCOM
i2c.Bus.CTRLA.SetBits(sam.SERCOM_I2CM_CTRLA_SWRST)
for i2c.Bus.CTRLA.HasBits(sam.SERCOM_I2CM_CTRLA_SWRST) ||
i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SWRST) {
}
// set clock
setSERCOMClockGenerator(i2c.SERCOM, sam.GCLK_PCHCTRL_GEN_GCLK1)
// Set i2c controller mode
//SERCOM_I2CM_CTRLA_MODE( I2C_MASTER_OPERATION )
// sam.SERCOM_I2CM_CTRLA_MODE_I2C_MASTER = 5?
i2c.Bus.CTRLA.Set(5 << sam.SERCOM_I2CM_CTRLA_MODE_Pos) // |
i2c.SetBaudRate(config.Frequency)
// Enable I2CM port.
// sercom->USART.CTRLA.bit.ENABLE = 0x1u;
i2c.Bus.CTRLA.SetBits(sam.SERCOM_I2CM_CTRLA_ENABLE)
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_ENABLE) {
}
// set bus idle mode
i2c.Bus.STATUS.SetBits(wireIdleState << sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos)
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
}
// enable pins
config.SDA.Configure(PinConfig{Mode: sdaPinMode})
config.SCL.Configure(PinConfig{Mode: sclPinMode})
return nil
}
// SetBaudRate sets the communication speed for the I2C.
func (i2c *I2C) SetBaudRate(br uint32) {
// Synchronous arithmetic baudrate, via Adafruit SAMD51 implementation:
// sercom->I2CM.BAUD.bit.BAUD = SERCOM_FREQ_REF / ( 2 * baudrate) - 1 ;
baud := SERCOM_FREQ_REF/(2*br) - 1
i2c.Bus.BAUD.Set(baud)
}
// Tx does a single I2C transaction at the specified address.
// It clocks out the given address, writes the bytes in w, reads back len(r)
// bytes and stores them in r, and generates a stop condition on the bus.
func (i2c *I2C) Tx(addr uint16, w, r []byte) error {
var err error
if len(w) != 0 {
// send start/address for write
i2c.sendAddress(addr, true)
// wait until transmission complete
timeout := i2cTimeout
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
// ACK received (0: ACK, 1: NACK)
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
return errI2CAckExpected
}
// write data
for _, b := range w {
err = i2c.WriteByte(b)
if err != nil {
return err
}
}
err = i2c.signalStop()
if err != nil {
return err
}
}
if len(r) != 0 {
// send start/address for read
i2c.sendAddress(addr, false)
// wait transmission complete
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_SB) {
// If the peripheral NACKS the address, the MB bit will be set.
// In that case, send a stop condition and return error.
if i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
i2c.Bus.CTRLB.SetBits(wireCmdStop << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Stop condition
return errI2CAckExpected
}
}
// ACK received (0: ACK, 1: NACK)
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
return errI2CAckExpected
}
// read first byte
r[0] = i2c.readByte()
for i := 1; i < len(r); i++ {
// Send an ACK
i2c.Bus.CTRLB.ClearBits(sam.SERCOM_I2CM_CTRLB_ACKACT)
i2c.signalRead()
// Read data and send the ACK
r[i] = i2c.readByte()
}
// Send NACK to end transmission
i2c.Bus.CTRLB.SetBits(sam.SERCOM_I2CM_CTRLB_ACKACT)
err = i2c.signalStop()
if err != nil {
return err
}
}
return nil
}
// WriteByte writes a single byte to the I2C bus.
func (i2c *I2C) WriteByte(data byte) error {
// Send data byte
i2c.Bus.DATA.Set(data)
// wait until transmission successful
timeout := i2cTimeout
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
// check for bus error
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_BUSERR) {
return errI2CBusError
}
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
return errI2CAckExpected
}
return nil
}
// sendAddress sends the address and start signal
func (i2c *I2C) sendAddress(address uint16, write bool) error {
data := (address << 1)
if !write {
data |= 1 // set read flag
}
// wait until bus ready
timeout := i2cTimeout
for !i2c.Bus.STATUS.HasBits(wireIdleState<<sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos) &&
!i2c.Bus.STATUS.HasBits(wireOwnerState<<sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos) {
timeout--
if timeout == 0 {
return errI2CBusReadyTimeout
}
}
i2c.Bus.ADDR.Set(uint32(data))
return nil
}
func (i2c *I2C) signalStop() error {
i2c.Bus.CTRLB.SetBits(wireCmdStop << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Stop command
timeout := i2cTimeout
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
timeout--
if timeout == 0 {
return errI2CSignalStopTimeout
}
}
return nil
}
func (i2c *I2C) signalRead() error {
i2c.Bus.CTRLB.SetBits(wireCmdRead << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Read command
timeout := i2cTimeout
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
timeout--
if timeout == 0 {
return errI2CSignalReadTimeout
}
}
return nil
}
func (i2c *I2C) readByte() byte {
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_SB) {
}
return byte(i2c.Bus.DATA.Get())
}
// SPI
type SPI struct {
Bus *sam.SERCOM_SPIM_Type
SERCOM uint8
}
// SPIConfig is used to store config info for SPI.
type SPIConfig struct {
Frequency uint32
SCK Pin
SDO Pin
SDI Pin
LSBFirst bool
Mode uint8
}
// Configure is intended to setup the SPI interface.
func (spi SPI) Configure(config SPIConfig) error {
// Use default pins if not set.
if config.SCK == 0 && config.SDO == 0 && config.SDI == 0 {
config.SCK = SPI0_SCK_PIN
config.SDO = SPI0_SDO_PIN
config.SDI = SPI0_SDI_PIN
}
// set default frequency
if config.Frequency == 0 {
config.Frequency = 4000000
}
// Determine the input pinout (for SDI).
var dataInPinout uint32
var SDIPinMode PinMode
if config.SDI != NoPin {
var ok bool
SDIPinMode, dataInPinout, ok = findPinPadMapping(spi.SERCOM, config.SDI)
if !ok {
return ErrInvalidInputPin
}
}
// Determine the output pinout (for SDO/SCK).
// See DOPO field in the CTRLA register on page 986 of the datasheet.
var dataOutPinout uint32
sckPinMode, sckPad, ok := findPinPadMapping(spi.SERCOM, config.SCK)
if !ok || sckPad != 1 {
// SCK pad must always be 1
return ErrInvalidOutputPin
}
SDOPinMode, SDOPad, ok := findPinPadMapping(spi.SERCOM, config.SDO)
if !ok {
return ErrInvalidOutputPin
}
switch SDOPad {
case 0:
dataOutPinout = 0x0
case 3:
dataOutPinout = 0x2
default:
return ErrInvalidOutputPin
}
// Disable SPI port.
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_ENABLE)
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPIM_SYNCBUSY_ENABLE) {
}
// enable pins
config.SCK.Configure(PinConfig{Mode: sckPinMode})
config.SDO.Configure(PinConfig{Mode: SDOPinMode})
if config.SDI != NoPin {
config.SDI.Configure(PinConfig{Mode: SDIPinMode})
}
// reset SERCOM
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPIM_CTRLA_SWRST)
for spi.Bus.CTRLA.HasBits(sam.SERCOM_SPIM_CTRLA_SWRST) ||
spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPIM_SYNCBUSY_SWRST) {
}
// set bit transfer order
dataOrder := uint32(0)
if config.LSBFirst {
dataOrder = 1
}
// Set SPI controller
// SERCOM_SPIM_CTRLA_MODE_SPI_MASTER = 3
spi.Bus.CTRLA.Set((3 << sam.SERCOM_SPIM_CTRLA_MODE_Pos) |
(dataOutPinout << sam.SERCOM_SPIM_CTRLA_DOPO_Pos) |
(dataInPinout << sam.SERCOM_SPIM_CTRLA_DIPO_Pos) |
(dataOrder << sam.SERCOM_SPIM_CTRLA_DORD_Pos))
spi.Bus.CTRLB.SetBits((0 << sam.SERCOM_SPIM_CTRLB_CHSIZE_Pos) | // 8bit char size
sam.SERCOM_SPIM_CTRLB_RXEN) // receive enable
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPIM_SYNCBUSY_CTRLB) {
}
// set mode
switch config.Mode {
case 0:
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPHA)
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPOL)
case 1:
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPIM_CTRLA_CPHA)
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPOL)
case 2:
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPHA)
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPIM_CTRLA_CPOL)
case 3:
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPIM_CTRLA_CPHA | sam.SERCOM_SPIM_CTRLA_CPOL)
default: // to mode 0
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPHA)
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPOL)
}
// set clock
freqRef := uint32(0)
if config.Frequency > SERCOM_FREQ_REF/2 {
setSERCOMClockGenerator(spi.SERCOM, sam.GCLK_PCHCTRL_GEN_GCLK0)
freqRef = uint32(SERCOM_FREQ_REF_GCLK0)
} else {
setSERCOMClockGenerator(spi.SERCOM, sam.GCLK_PCHCTRL_GEN_GCLK1)
freqRef = uint32(SERCOM_FREQ_REF)
}
// Set synch speed for SPI
baudRate := freqRef / (2 * config.Frequency)
if baudRate > 0 {
baudRate--
}
spi.Bus.BAUD.Set(uint8(baudRate))
// Enable SPI port.
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPIM_CTRLA_ENABLE)
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPIM_SYNCBUSY_ENABLE) {
}
return nil
}
// Transfer writes/reads a single byte using the SPI interface.
func (spi SPI) Transfer(w byte) (byte, error) {
// write data
spi.Bus.DATA.Set(uint32(w))
// wait for receive
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPIM_INTFLAG_RXC) {
}
// return data
return byte(spi.Bus.DATA.Get()), nil
}
var (
ErrTxInvalidSliceSize = errors.New("SPI write and read slices must be same size")
)
// Tx handles read/write operation for SPI interface. Since SPI is a syncronous write/read
// interface, there must always be the same number of bytes written as bytes read.
// The Tx method knows about this, and offers a few different ways of calling it.
//
// This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer.
// Note that the tx and rx buffers must be the same size:
//
// spi.Tx(tx, rx)
//
// This form sends the tx buffer, ignoring the result. Useful for sending "commands" that return zeros
// until all the bytes in the command packet have been received:
//
// spi.Tx(tx, nil)
//
// This form sends zeros, putting the result into the rx buffer. Good for reading a "result packet":
//
// spi.Tx(nil, rx)
func (spi SPI) Tx(w, r []byte) error {
switch {
case w == nil:
// read only, so write zero and read a result.
spi.rx(r)
case r == nil:
// write only
spi.tx(w)
default:
// write/read
if len(w) != len(r) {
return ErrTxInvalidSliceSize
}
spi.txrx(w, r)
}
return nil
}
func (spi SPI) tx(tx []byte) {
for i := 0; i < len(tx); i++ {
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPIM_INTFLAG_DRE) {
}
spi.Bus.DATA.Set(uint32(tx[i]))
}
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPIM_INTFLAG_TXC) {
}
// read to clear RXC register
for spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPIM_INTFLAG_RXC) {
spi.Bus.DATA.Get()
}
}
func (spi SPI) rx(rx []byte) {
spi.Bus.DATA.Set(0)
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPIM_INTFLAG_DRE) {
}
for i := 1; i < len(rx); i++ {
spi.Bus.DATA.Set(0)
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPIM_INTFLAG_RXC) {
}
rx[i-1] = byte(spi.Bus.DATA.Get())
}
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPIM_INTFLAG_RXC) {
}
rx[len(rx)-1] = byte(spi.Bus.DATA.Get())
}
func (spi SPI) txrx(tx, rx []byte) {
spi.Bus.DATA.Set(uint32(tx[0]))
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPIM_INTFLAG_DRE) {
}
for i := 1; i < len(rx); i++ {
spi.Bus.DATA.Set(uint32(tx[i]))
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPIM_INTFLAG_RXC) {
}
rx[i-1] = byte(spi.Bus.DATA.Get())
}
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPIM_INTFLAG_RXC) {
}
rx[len(rx)-1] = byte(spi.Bus.DATA.Get())
}
// The QSPI peripheral on ATSAMD51 is only available on the following pins
const (
QSPI_SCK = PB10
QSPI_CS = PB11
QSPI_DATA0 = PA08
QSPI_DATA1 = PA09
QSPI_DATA2 = PA10
QSPI_DATA3 = PA11
)
// TCC is one timer peripheral, which consists of a counter and multiple output
// channels (that can be connected to actual pins). You can set the frequency
// using SetPeriod, but only for all the channels in this timer peripheral at
// once.
type TCC sam.TCC_Type
//go:inline
func (tcc *TCC) timer() *sam.TCC_Type {
return (*sam.TCC_Type)(tcc)
}
// Configure enables and configures this TCC.
func (tcc *TCC) Configure(config PWMConfig) error {
// Enable the TCC clock to be able to use the TCC.
tcc.configureClock()
// Disable timer (if it was enabled). This is necessary because
// tcc.setPeriod may want to change the prescaler bits in CTRLA, which is
// only allowed when the TCC is disabled.
tcc.timer().CTRLA.ClearBits(sam.TCC_CTRLA_ENABLE)
// Use "Normal PWM" (single-slope PWM)
tcc.timer().WAVE.Set(sam.TCC_WAVE_WAVEGEN_NPWM)
// Wait for synchronization of all changed registers.
for tcc.timer().SYNCBUSY.Get() != 0 {
}
// Set the period and prescaler.
err := tcc.setPeriod(config.Period, true)
// Enable the timer.
tcc.timer().CTRLA.SetBits(sam.TCC_CTRLA_ENABLE)
// Wait for synchronization of all changed registers.
for tcc.timer().SYNCBUSY.Get() != 0 {
}
// Return any error that might have occured in the tcc.setPeriod call.
return err
}
// SetPeriod updates the period of this TCC peripheral.
// To set a particular frequency, use the following formula:
//
// period = 1e9 / frequency
//
// If you use a period of 0, a period that works well for LEDs will be picked.
//
// SetPeriod will not change the prescaler, but also won't change the current
// value in any of the channels. This means that you may need to update the
// value for the particular channel.
//
// Note that you cannot pick any arbitrary period after the TCC peripheral has
// been configured. If you want to switch between frequencies, pick the lowest
// frequency (longest period) once when calling Configure and adjust the
// frequency here as needed.
func (tcc *TCC) SetPeriod(period uint64) error {
return tcc.setPeriod(period, false)
}
// setPeriod sets the period of this TCC, possibly updating the prescaler as
// well. The prescaler can only modified when the TCC is disabled, that is, in
// the Configure function.
func (tcc *TCC) setPeriod(period uint64, updatePrescaler bool) error {
var top uint64
if period == 0 {
// Make sure the TOP value is at 0xffff (enough for a 16-bit timer).
top = 0xffff
} else {
// The formula below calculates the following formula, optimized:
// period * (120e6 / 1e9)
// This assumes that the chip is running from generic clock generator 0
// at 120MHz.
top = period * 3 / 25
}
maxTop := uint64(0xffff)
if tcc.timer() == sam.TCC0 || tcc.timer() == sam.TCC1 {
// Only TCC0 and TCC1 are 24-bit timers, the rest are 16-bit.
maxTop = 0xffffff
}
if updatePrescaler {
// This function was called during Configure(), with the timer disabled.
// Note that updating the prescaler can only happen while the peripheral
// is disabled.
var prescaler uint32
switch {
case top <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV1
case top/2 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV2
top = top / 2
case top/4 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV4
top = top / 4
case top/8 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV8
top = top / 8
case top/16 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV16
top = top / 16
case top/64 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV64
top = top / 64
case top/256 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV256
top = top / 256
case top/1024 <= maxTop:
prescaler = sam.TCC_CTRLA_PRESCALER_DIV1024
top = top / 1024
default:
return ErrPWMPeriodTooLong
}
tcc.timer().CTRLA.Set((tcc.timer().CTRLA.Get() &^ sam.TCC_CTRLA_PRESCALER_Msk) | (prescaler << sam.TCC_CTRLA_PRESCALER_Pos))
} else {
// Do not update the prescaler, but use the already-configured
// prescaler. This is the normal SetPeriod case, where the prescaler
// must not be changed.
prescaler := (tcc.timer().CTRLA.Get() & sam.TCC_CTRLA_PRESCALER_Msk) >> sam.TCC_CTRLA_PRESCALER_Pos
switch prescaler {
case sam.TCC_CTRLA_PRESCALER_DIV1:
top /= 1 // no-op
case sam.TCC_CTRLA_PRESCALER_DIV2:
top /= 2
case sam.TCC_CTRLA_PRESCALER_DIV4:
top /= 4
case sam.TCC_CTRLA_PRESCALER_DIV8:
top /= 8
case sam.TCC_CTRLA_PRESCALER_DIV16:
top /= 16
case sam.TCC_CTRLA_PRESCALER_DIV64:
top /= 64
case sam.TCC_CTRLA_PRESCALER_DIV256:
top /= 256
case sam.TCC_CTRLA_PRESCALER_DIV1024:
top /= 1024
default:
// unreachable
}
if top > maxTop {
return ErrPWMPeriodTooLong
}
}
// Set the period (the counter top).
tcc.timer().PER.Set(uint32(top) - 1)
// Wait for synchronization of CTRLA.PRESCALER and PER registers.
for tcc.timer().SYNCBUSY.Get() != 0 {
}
return nil
}
// Top returns the current counter top, for use in duty cycle calculation. It
// will only change with a call to Configure or SetPeriod, otherwise it is
// constant.
//
// The value returned here is hardware dependent. In general, it's best to treat
// it as an opaque value that can be divided by some number and passed to
// tcc.Set (see tcc.Set for more information).
func (tcc *TCC) Top() uint32 {
return tcc.timer().PER.Get() + 1
}
// Counter returns the current counter value of the timer in this TCC
// peripheral. It may be useful for debugging.
func (tcc *TCC) Counter() uint32 {
tcc.timer().CTRLBSET.Set(sam.TCC_CTRLBSET_CMD_READSYNC << sam.TCC_CTRLBSET_CMD_Pos)
for tcc.timer().SYNCBUSY.Get() != 0 {
}
return tcc.timer().COUNT.Get()
}
// Constants that encode a TCC number and WO number together in a single byte.
const (
pinTCC0 = 1 << 4 // keep the value 0 usable as "no value"
pinTCC1 = 2 << 4
pinTCC2 = 3 << 4
pinTCC3 = 4 << 4
pinTCC4 = 5 << 4
pinTCC0_0 = pinTCC0 | 0
pinTCC0_1 = pinTCC0 | 1
pinTCC0_2 = pinTCC0 | 2
pinTCC0_3 = pinTCC0 | 3
pinTCC0_4 = pinTCC0 | 4
pinTCC0_5 = pinTCC0 | 5
pinTCC0_6 = pinTCC0 | 6
pinTCC1_0 = pinTCC1 | 0
pinTCC1_2 = pinTCC1 | 2
pinTCC1_4 = pinTCC1 | 4
pinTCC1_6 = pinTCC1 | 6
pinTCC2_0 = pinTCC2 | 0
pinTCC2_2 = pinTCC2 | 2
pinTCC3_0 = pinTCC3 | 0
pinTCC4_0 = pinTCC4 | 0
)
// This is a copy of columns F and G (the TCC columns) of table 6-1 in the
// datasheet:
// http://ww1.microchip.com/downloads/en/DeviceDoc/60001507E.pdf
// For example, "TCC0/WO[2]" is converted to pinTCC0_2.
// Only the even pin numbers are stored here. The odd pin numbers are left out,
// because their PWM output can be determined from the even number: just add one
// to the wave output (WO) number.
var pinTimerMapping = [...]struct{ F, G uint8 }{
// page 33
PC04 / 2: {pinTCC0_0, 0},
PA08 / 2: {pinTCC0_0, pinTCC1_4},
PA10 / 2: {pinTCC0_2, pinTCC1_6},
PB10 / 2: {pinTCC0_4, pinTCC1_0},
PB12 / 2: {pinTCC3_0, pinTCC0_0},
PB14 / 2: {pinTCC4_0, pinTCC0_2},
PD08 / 2: {pinTCC0_1, 0},
PD10 / 2: {pinTCC0_3, 0},
PD12 / 2: {pinTCC0_5, 0},
PC10 / 2: {pinTCC0_0, pinTCC1_4},
// page 34
PC12 / 2: {pinTCC0_2, pinTCC1_6},
PC14 / 2: {pinTCC0_4, pinTCC1_0},
PA12 / 2: {pinTCC0_6, pinTCC1_2},
PA14 / 2: {pinTCC2_0, pinTCC1_2},
PA16 / 2: {pinTCC1_0, pinTCC0_4},
PA18 / 2: {pinTCC1_2, pinTCC0_6},
PC16 / 2: {pinTCC0_0, 0},
PC18 / 2: {pinTCC0_2, 0},
PC20 / 2: {pinTCC0_4, 0},
PC22 / 2: {pinTCC0_6, 0},
PD20 / 2: {pinTCC1_0, 0},
PB16 / 2: {pinTCC3_0, pinTCC0_4},
PB18 / 2: {pinTCC1_0, 0},
// page 35
PB20 / 2: {pinTCC1_2, 0},
PA20 / 2: {pinTCC1_4, pinTCC0_0},
PA22 / 2: {pinTCC1_6, pinTCC0_2},
PA24 / 2: {pinTCC2_2, 0},
PB26 / 2: {pinTCC1_2, 0},
PB28 / 2: {pinTCC1_4, 0},
PA30 / 2: {pinTCC2_0, 0},
// page 36
PB30 / 2: {pinTCC4_0, pinTCC0_6},
PB02 / 2: {pinTCC2_2, 0},
}
// findPinPadMapping returns the pin mode (PinTCCF or PinTCCG) and the channel
// number for a given timer and pin. A zero PinMode is returned if no mapping
// could be found.
func findPinTimerMapping(timer uint8, pin Pin) (PinMode, uint8) {
if int(pin/2) >= len(pinTimerMapping) {
return 0, 0 // invalid pin number
}
mapping := pinTimerMapping[pin/2]
// Check for column F in the datasheet.
if mapping.F>>4-1 == timer {
return PinTCCF, mapping.F&0x0f + uint8(pin)&1
}
// Check for column G in the datasheet.
if mapping.G>>4-1 == timer {
return PinTCCG, mapping.G&0x0f + uint8(pin)&1
}
// Nothing found.
return 0, 0
}
// Channel returns a PWM channel for the given pin. Note that one channel may be
// shared between multiple pins, and so will have the same duty cycle. If this
// is not desirable, look for a different TCC or consider using a different pin.
func (tcc *TCC) Channel(pin Pin) (uint8, error) {
pinMode, woOutput := findPinTimerMapping(tcc.timerNum(), pin)
if pinMode == 0 {
// No pin could be found.
return 0, ErrInvalidOutputPin
}
// Convert from waveform output to channel, assuming WEXCTRL.OTMX equals 0.
// See table 49-4 "Output Matrix Channel Pin Routing Configuration" on page
// 1829 of the datasheet.
// The number of channels varies by TCC instance, hence the need to switch
// over them. For TCC2-4 the number of channels is equal to the number of
// waveform outputs, so the WO number maps directly to the channel number.
// For TCC0 and TCC1 this is not the case so they will need some special
// handling.
channel := woOutput
switch tcc.timer() {
case sam.TCC0:
channel = woOutput % 6
case sam.TCC1:
channel = woOutput % 4
}
// Enable the port multiplexer for pin
pin.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN)
// Connect timer/mux to pin.
if pin&1 > 0 {
// odd pin, so save the even pins
val := pin.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
pin.setPMux(val | uint8(pinMode<<sam.PORT_GROUP_PMUX_PMUXO_Pos))
} else {
// even pin, so save the odd pins
val := pin.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
pin.setPMux(val | uint8(pinMode<<sam.PORT_GROUP_PMUX_PMUXE_Pos))
}
return channel, nil
}
// SetInverting sets whether to invert the output of this channel.
// Without inverting, a 25% duty cycle would mean the output is high for 25% of
// the time and low for the rest. Inverting flips the output as if a NOT gate
// was placed at the output, meaning that the output would be 25% low and 75%
// high with a duty cycle of 25%.
func (tcc *TCC) SetInverting(channel uint8, inverting bool) {
if inverting {
tcc.timer().WAVE.SetBits(1 << (sam.TCC_WAVE_POL0_Pos + channel))
} else {
tcc.timer().WAVE.ClearBits(1 << (sam.TCC_WAVE_POL0_Pos + channel))
}
// Wait for synchronization of the WAVE register.
for tcc.timer().SYNCBUSY.Get() != 0 {
}
}
// Set updates the channel value. This is used to control the channel duty
// cycle, in other words the fraction of time the channel output is high (or low
// when inverted). For example, to set it to a 25% duty cycle, use:
//
// tcc.Set(channel, tcc.Top() / 4)
//
// tcc.Set(channel, 0) will set the output to low and tcc.Set(channel,
// tcc.Top()) will set the output to high, assuming the output isn't inverted.
func (tcc *TCC) Set(channel uint8, value uint32) {
// Update CCBUF, which provides double buffering. The update is applied on
// the next cycle.
tcc.timer().CCBUF[channel].Set(value)
for tcc.timer().SYNCBUSY.Get() != 0 {
}
}
// EnterBootloader should perform a system reset in preparation
// to switch to the bootloader to flash new firmware.
func EnterBootloader() {
arm.DisableInterrupts()
// Perform magic reset into bootloader, as mentioned in
// https://github.com/arduino/ArduinoCore-samd/issues/197
*(*uint32)(unsafe.Pointer(uintptr(0x20000000 + HSRAM_SIZE - 4))) = RESET_MAGIC_VALUE
arm.SystemReset()
}
// DAC on the SAMD51.
type DAC struct {
Channel uint8
}
var (
DAC0 = DAC{Channel: 0}
DAC1 = DAC{Channel: 1}
)
// DACConfig placeholder for future expansion.
type DACConfig struct {
}
// Configure the DAC.
// output pin must already be configured.
func (dac DAC) Configure(config DACConfig) {
// Turn on clock for DAC
sam.MCLK.APBDMASK.SetBits(sam.MCLK_APBDMASK_DAC_)
if !sam.GCLK.PCHCTRL[42].HasBits(sam.GCLK_PCHCTRL_CHEN) {
// Use Generic Clock Generator 4 as source for DAC.
sam.GCLK.PCHCTRL[42].Set((sam.GCLK_PCHCTRL_GEN_GCLK4 << sam.GCLK_PCHCTRL_GEN_Pos) | sam.GCLK_PCHCTRL_CHEN)
for sam.GCLK.SYNCBUSY.HasBits(sam.GCLK_SYNCBUSY_GENCTRL_GCLK4 << sam.GCLK_SYNCBUSY_GENCTRL_Pos) {
}
// reset DAC
sam.DAC.CTRLA.Set(sam.DAC_CTRLA_SWRST)
// wait for reset complete
for sam.DAC.CTRLA.HasBits(sam.DAC_CTRLA_SWRST) {
}
for sam.DAC.SYNCBUSY.HasBits(sam.DAC_SYNCBUSY_SWRST) {
}
}
sam.DAC.CTRLA.ClearBits(sam.DAC_CTRLA_ENABLE)
for sam.DAC.SYNCBUSY.HasBits(sam.DAC_SYNCBUSY_ENABLE) {
}
// enable
sam.DAC.CTRLB.Set(sam.DAC_CTRLB_REFSEL_VREFPU << sam.DAC_CTRLB_REFSEL_Pos)
sam.DAC.DACCTRL[dac.Channel].SetBits((sam.DAC_DACCTRL_CCTRL_CC12M << sam.DAC_DACCTRL_CCTRL_Pos) | sam.DAC_DACCTRL_ENABLE)
sam.DAC.CTRLA.Set(sam.DAC_CTRLA_ENABLE)
for sam.DAC.SYNCBUSY.HasBits(sam.DAC_SYNCBUSY_ENABLE) {
}
switch dac.Channel {
case 0:
for !sam.DAC.STATUS.HasBits(sam.DAC_STATUS_READY0) {
}
default:
for !sam.DAC.STATUS.HasBits(sam.DAC_STATUS_READY1) {
}
}
}
// Set writes a single 16-bit value to the DAC.
// Since the ATSAMD51 only has a 12-bit DAC, the passed-in value will be scaled down.
func (dac DAC) Set(value uint16) error {
sam.DAC.DATA[dac.Channel].Set(value >> 4)
dac.syncDAC()
return nil
}
func (dac DAC) syncDAC() {
switch dac.Channel {
case 0:
for !sam.DAC.STATUS.HasBits(sam.DAC_STATUS_EOC0) {
}
for sam.DAC.SYNCBUSY.HasBits(sam.DAC_SYNCBUSY_DATA0) {
}
default:
for !sam.DAC.STATUS.HasBits(sam.DAC_STATUS_EOC1) {
}
for sam.DAC.SYNCBUSY.HasBits(sam.DAC_SYNCBUSY_DATA1) {
}
}
}
// GetRNG returns 32 bits of cryptographically secure random data
func GetRNG() (uint32, error) {
if !sam.MCLK.APBCMASK.HasBits(sam.MCLK_APBCMASK_TRNG_) {
// Turn on clock for TRNG
sam.MCLK.APBCMASK.SetBits(sam.MCLK_APBCMASK_TRNG_)
// enable
sam.TRNG.CTRLA.Set(sam.TRNG_CTRLA_ENABLE)
}
for !sam.TRNG.INTFLAG.HasBits(sam.TRNG_INTFLAG_DATARDY) {
}
ret := sam.TRNG.DATA.Get()
return ret, nil
}