tinygo/src/runtime/hashmap.go
Ayke van Laethem 763b9d7d10 runtime: implement growing hashmaps
Add support for growing hashmaps beyond their initial size.
2019-05-14 09:59:00 +02:00

320 строки
11 КиБ
Go

package runtime
// This is a hashmap implementation for the map[T]T type.
// It is very rougly based on the implementation of the Go hashmap:
//
// https://golang.org/src/runtime/map.go
import (
"unsafe"
)
// The underlying hashmap structure for Go.
type hashmap struct {
next *hashmap // hashmap after evacuate (for iterators)
buckets unsafe.Pointer // pointer to array of buckets
count uintptr
keySize uint8 // maybe this can store the key type as well? E.g. keysize == 5 means string?
valueSize uint8
bucketBits uint8
}
// A hashmap bucket. A bucket is a container of 8 key/value pairs: first the
// following two entries, then the 8 keys, then the 8 values. This somewhat odd
// ordering is to make sure the keys and values are well aligned when one of
// them is smaller than the system word size.
type hashmapBucket struct {
tophash [8]uint8
next *hashmapBucket // next bucket (if there are more than 8 in a chain)
// Followed by the actual keys, and then the actual values. These are
// allocated but as they're of variable size they can't be shown here.
}
type hashmapIterator struct {
bucketNumber uintptr
bucket *hashmapBucket
bucketIndex uint8
}
// Get FNV-1a hash of this key.
//
// https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function#FNV-1a_hash
func hashmapHash(ptr unsafe.Pointer, n uintptr) uint32 {
var result uint32 = 2166136261 // FNV offset basis
for i := uintptr(0); i < n; i++ {
c := *(*uint8)(unsafe.Pointer(uintptr(ptr) + i))
result ^= uint32(c) // XOR with byte
result *= 16777619 // FNV prime
}
return result
}
// Get the topmost 8 bits of the hash, without using a special value (like 0).
func hashmapTopHash(hash uint32) uint8 {
tophash := uint8(hash >> 24)
if tophash < 1 {
// 0 means empty slot, so make it bigger.
tophash += 1
}
return tophash
}
// Create a new hashmap with the given keySize and valueSize.
func hashmapMake(keySize, valueSize uint8, sizeHint uintptr) *hashmap {
numBuckets := sizeHint / 8
bucketBits := uint8(0)
for numBuckets != 0 {
numBuckets /= 2
bucketBits++
}
bucketBufSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(keySize)*8 + uintptr(valueSize)*8
buckets := alloc(bucketBufSize * (1 << bucketBits))
return &hashmap{
buckets: buckets,
keySize: keySize,
valueSize: valueSize,
bucketBits: bucketBits,
}
}
// Return the number of entries in this hashmap, called from the len builtin.
// A nil hashmap is defined as having length 0.
func hashmapLen(m *hashmap) int {
if m == nil {
return 0
}
return int(m.count)
}
// Set a specified key to a given value. Grow the map if necessary.
//go:nobounds
func hashmapSet(m *hashmap, key unsafe.Pointer, value unsafe.Pointer, hash uint32, keyEqual func(x, y unsafe.Pointer, n uintptr) bool) {
tophash := hashmapTopHash(hash)
if m.buckets == nil {
// No bucket was allocated yet, do so now.
m.buckets = unsafe.Pointer(hashmapInsertIntoNewBucket(m, key, value, tophash))
return
}
numBuckets := uintptr(1) << m.bucketBits
bucketNumber := (uintptr(hash) & (numBuckets - 1))
bucketSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*8
bucketAddr := uintptr(m.buckets) + bucketSize*bucketNumber
bucket := (*hashmapBucket)(unsafe.Pointer(bucketAddr))
var lastBucket *hashmapBucket
// See whether the key already exists somewhere.
var emptySlotKey unsafe.Pointer
var emptySlotValue unsafe.Pointer
var emptySlotTophash *byte
for bucket != nil {
for i := uintptr(0); i < 8; i++ {
slotKeyOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*uintptr(i)
slotKey := unsafe.Pointer(uintptr(unsafe.Pointer(bucket)) + slotKeyOffset)
slotValueOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*uintptr(i)
slotValue := unsafe.Pointer(uintptr(unsafe.Pointer(bucket)) + slotValueOffset)
if bucket.tophash[i] == 0 && emptySlotKey == nil {
// Found an empty slot, store it for if we couldn't find an
// existing slot.
emptySlotKey = slotKey
emptySlotValue = slotValue
emptySlotTophash = &bucket.tophash[i]
}
if bucket.tophash[i] == tophash {
// Could be an existing key that's the same.
if keyEqual(key, slotKey, uintptr(m.keySize)) {
// found same key, replace it
memcpy(slotValue, value, uintptr(m.valueSize))
return
}
}
}
lastBucket = bucket
bucket = bucket.next
}
if emptySlotKey == nil {
// Add a new bucket to the bucket chain.
// TODO: rebalance if necessary to avoid O(n) insert and lookup time.
lastBucket.next = (*hashmapBucket)(hashmapInsertIntoNewBucket(m, key, value, tophash))
return
}
m.count++
memcpy(emptySlotKey, key, uintptr(m.keySize))
memcpy(emptySlotValue, value, uintptr(m.valueSize))
*emptySlotTophash = tophash
}
// hashmapInsertIntoNewBucket creates a new bucket, inserts the given key and
// value into the bucket, and returns a pointer to this bucket.
func hashmapInsertIntoNewBucket(m *hashmap, key, value unsafe.Pointer, tophash uint8) *hashmapBucket {
bucketBufSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*8
bucketBuf := alloc(bucketBufSize)
// Insert into the first slot, which is empty as it has just been allocated.
slotKeyOffset := unsafe.Sizeof(hashmapBucket{})
slotKey := unsafe.Pointer(uintptr(bucketBuf) + slotKeyOffset)
slotValueOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8
slotValue := unsafe.Pointer(uintptr(bucketBuf) + slotValueOffset)
m.count++
memcpy(slotKey, key, uintptr(m.keySize))
memcpy(slotValue, value, uintptr(m.valueSize))
bucket := (*hashmapBucket)(bucketBuf)
bucket.tophash[0] = tophash
return bucket
}
// Get the value of a specified key, or zero the value if not found.
//go:nobounds
func hashmapGet(m *hashmap, key unsafe.Pointer, value unsafe.Pointer, hash uint32, keyEqual func(x, y unsafe.Pointer, n uintptr) bool) bool {
numBuckets := uintptr(1) << m.bucketBits
bucketNumber := (uintptr(hash) & (numBuckets - 1))
bucketSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*8
bucketAddr := uintptr(m.buckets) + bucketSize*bucketNumber
bucket := (*hashmapBucket)(unsafe.Pointer(bucketAddr))
tophash := uint8(hash >> 24)
if tophash < 1 {
// 0 means empty slot, so make it bigger.
tophash += 1
}
// Try to find the key.
for bucket != nil {
for i := uintptr(0); i < 8; i++ {
slotKeyOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*uintptr(i)
slotKey := unsafe.Pointer(uintptr(unsafe.Pointer(bucket)) + slotKeyOffset)
slotValueOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*uintptr(i)
slotValue := unsafe.Pointer(uintptr(unsafe.Pointer(bucket)) + slotValueOffset)
if bucket.tophash[i] == tophash {
// This could be the key we're looking for.
if keyEqual(key, slotKey, uintptr(m.keySize)) {
// Found the key, copy it.
memcpy(value, slotValue, uintptr(m.valueSize))
return true
}
}
}
bucket = bucket.next
}
// Did not find the key.
memzero(value, uintptr(m.valueSize))
return false
}
// Delete a given key from the map. No-op when the key does not exist in the
// map.
//go:nobounds
func hashmapDelete(m *hashmap, key unsafe.Pointer, hash uint32, keyEqual func(x, y unsafe.Pointer, n uintptr) bool) {
numBuckets := uintptr(1) << m.bucketBits
bucketNumber := (uintptr(hash) & (numBuckets - 1))
bucketSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*8
bucketAddr := uintptr(m.buckets) + bucketSize*bucketNumber
bucket := (*hashmapBucket)(unsafe.Pointer(bucketAddr))
tophash := uint8(hash >> 24)
if tophash < 1 {
// 0 means empty slot, so make it bigger.
tophash += 1
}
// Try to find the key.
for bucket != nil {
for i := uintptr(0); i < 8; i++ {
slotKeyOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*uintptr(i)
slotKey := unsafe.Pointer(uintptr(unsafe.Pointer(bucket)) + slotKeyOffset)
if bucket.tophash[i] == tophash {
// This could be the key we're looking for.
if keyEqual(key, slotKey, uintptr(m.keySize)) {
// Found the key, delete it.
bucket.tophash[i] = 0
m.count--
return
}
}
}
bucket = bucket.next
}
}
// Iterate over a hashmap.
//go:nobounds
func hashmapNext(m *hashmap, it *hashmapIterator, key, value unsafe.Pointer) bool {
numBuckets := uintptr(1) << m.bucketBits
for {
if it.bucketIndex >= 8 {
// end of bucket, move to the next in the chain
it.bucketIndex = 0
it.bucket = it.bucket.next
}
if it.bucket == nil {
if it.bucketNumber >= numBuckets {
// went through all buckets
return false
}
bucketSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*8
bucketAddr := uintptr(m.buckets) + bucketSize*it.bucketNumber
it.bucket = (*hashmapBucket)(unsafe.Pointer(bucketAddr))
it.bucketNumber++ // next bucket
}
if it.bucket.tophash[it.bucketIndex] == 0 {
// slot is empty - move on
it.bucketIndex++
continue
}
bucketAddr := uintptr(unsafe.Pointer(it.bucket))
slotKeyOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*uintptr(it.bucketIndex)
slotKey := unsafe.Pointer(bucketAddr + slotKeyOffset)
slotValueOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*uintptr(it.bucketIndex)
slotValue := unsafe.Pointer(bucketAddr + slotValueOffset)
memcpy(key, slotKey, uintptr(m.keySize))
memcpy(value, slotValue, uintptr(m.valueSize))
it.bucketIndex++
return true
}
}
// Hashmap with plain binary data keys (not containing strings etc.).
func hashmapBinarySet(m *hashmap, key, value unsafe.Pointer) {
hash := hashmapHash(key, uintptr(m.keySize))
hashmapSet(m, key, value, hash, memequal)
}
func hashmapBinaryGet(m *hashmap, key, value unsafe.Pointer) bool {
hash := hashmapHash(key, uintptr(m.keySize))
return hashmapGet(m, key, value, hash, memequal)
}
func hashmapBinaryDelete(m *hashmap, key unsafe.Pointer) {
hash := hashmapHash(key, uintptr(m.keySize))
hashmapDelete(m, key, hash, memequal)
}
// Hashmap with string keys (a common case).
func hashmapStringEqual(x, y unsafe.Pointer, n uintptr) bool {
return *(*string)(x) == *(*string)(y)
}
func hashmapStringHash(s string) uint32 {
_s := (*_string)(unsafe.Pointer(&s))
return hashmapHash(unsafe.Pointer(_s.ptr), uintptr(_s.length))
}
func hashmapStringSet(m *hashmap, key string, value unsafe.Pointer) {
hash := hashmapStringHash(key)
hashmapSet(m, unsafe.Pointer(&key), value, hash, hashmapStringEqual)
}
func hashmapStringGet(m *hashmap, key string, value unsafe.Pointer) bool {
hash := hashmapStringHash(key)
return hashmapGet(m, unsafe.Pointer(&key), value, hash, hashmapStringEqual)
}
func hashmapStringDelete(m *hashmap, key string) {
hash := hashmapStringHash(key)
hashmapDelete(m, unsafe.Pointer(&key), hash, hashmapStringEqual)
}