tinygo/tools/gen-device-svd/gen-device-svd.go
deadprogram 7755f2385c tools/gen-device-svd: small changes needed for Renesas MCUs
Signed-off-by: deadprogram <ron@hybridgroup.com>
2023-07-05 13:30:21 +02:00

1498 строки
44 КиБ
Go
Исполняемый файл

package main
import (
"bufio"
"encoding/xml"
"errors"
"flag"
"fmt"
"io/fs"
"os"
"path/filepath"
"regexp"
"sort"
"strconv"
"strings"
"text/template"
"unicode"
)
var validName = regexp.MustCompile("^[a-zA-Z0-9_]+$")
var enumBitSpecifier = regexp.MustCompile("^#x*[01]+[01x]*$")
type SVDFile struct {
XMLName xml.Name `xml:"device"`
Name string `xml:"name"`
Description string `xml:"description"`
LicenseText string `xml:"licenseText"`
CPU *struct {
Name string `xml:"name"`
FPUPresent bool `xml:"fpuPresent"`
NVICPrioBits int `xml:"nvicPrioBits"`
} `xml:"cpu"`
Peripherals []SVDPeripheral `xml:"peripherals>peripheral"`
}
type SVDPeripheral struct {
Name string `xml:"name"`
Description string `xml:"description"`
BaseAddress string `xml:"baseAddress"`
GroupName string `xml:"groupName"`
DerivedFrom string `xml:"derivedFrom,attr"`
Interrupts []struct {
Name string `xml:"name"`
Index int `xml:"value"`
} `xml:"interrupt"`
Registers []*SVDRegister `xml:"registers>register"`
Clusters []*SVDCluster `xml:"registers>cluster"`
}
type SVDRegister struct {
Name string `xml:"name"`
Description string `xml:"description"`
Dim *string `xml:"dim"`
DimIndex *string `xml:"dimIndex"`
DimIncrement string `xml:"dimIncrement"`
Size *string `xml:"size"`
Fields []*SVDField `xml:"fields>field"`
Offset *string `xml:"offset"`
AddressOffset *string `xml:"addressOffset"`
}
type SVDField struct {
Name string `xml:"name"`
Description string `xml:"description"`
Lsb *uint32 `xml:"lsb"`
Msb *uint32 `xml:"msb"`
BitOffset *uint32 `xml:"bitOffset"`
BitWidth *uint32 `xml:"bitWidth"`
BitRange *string `xml:"bitRange"`
EnumeratedValues struct {
DerivedFrom string `xml:"derivedFrom,attr"`
Name string `xml:"name"`
EnumeratedValue []struct {
Name string `xml:"name"`
Description string `xml:"description"`
Value string `xml:"value"`
} `xml:"enumeratedValue"`
} `xml:"enumeratedValues"`
}
type SVDCluster struct {
Dim *int `xml:"dim"`
DimIncrement string `xml:"dimIncrement"`
DimIndex *string `xml:"dimIndex"`
Name string `xml:"name"`
Description string `xml:"description"`
Registers []*SVDRegister `xml:"register"`
Clusters []*SVDCluster `xml:"cluster"`
AddressOffset string `xml:"addressOffset"`
}
type Device struct {
Metadata *Metadata
Interrupts []*Interrupt
Peripherals []*Peripheral
PeripheralDict map[string]*Peripheral
}
type Metadata struct {
File string
DescriptorSource string
Name string
NameLower string
Description string
LicenseBlock string
HasCPUInfo bool // set if the following fields are populated
CPUName string
FPUPresent bool
NVICPrioBits int
}
type Interrupt struct {
Name string
HandlerName string
PeripheralIndex int
Value int // interrupt number
Description string
}
type Peripheral struct {
Name string
GroupName string
BaseAddress uint64
Description string
ClusterName string
Registers []*PeripheralField
Subtypes []*Peripheral
}
// A PeripheralField is a single field in a peripheral type. It may be a full
// peripheral or a cluster within a peripheral.
type PeripheralField struct {
Name string
Address uint64
Description string
Registers []*PeripheralField // contains fields if this is a cluster
Array int
ElementSize int
Constants []Constant
ShortName string // name stripped of "spaced array" suffix
Bitfields []Bitfield // set of bit-fields provided by this
HasBitfields bool // set true when Bitfields was set for a first PeripheralField of "spaced array".
}
type Constant struct {
Name string
Description string
Value uint64
}
type Bitfield struct {
Name string
Offset uint32
Mask uint32
}
func formatText(text string) string {
text = regexp.MustCompile(`[ \t\n]+`).ReplaceAllString(text, " ") // Collapse whitespace (like in HTML)
text = strings.ReplaceAll(text, "\\n ", "\n")
text = strings.TrimSpace(text)
return text
}
func isMultiline(s string) bool {
return strings.Index(s, "\n") >= 0
}
func splitLine(s string) []string {
return strings.Split(s, "\n")
}
// Replace characters that are not allowed in a symbol name with a '_'. This is
// useful to be able to process SVD files with errors.
func cleanName(text string) string {
if !validName.MatchString(text) {
result := make([]rune, 0, len(text))
for _, c := range text {
if validName.MatchString(string(c)) {
result = append(result, c)
} else {
result = append(result, '_')
}
}
text = string(result)
}
if len(text) != 0 && (text[0] >= '0' && text[0] <= '9') {
// Identifiers may not start with a number.
// Add an underscore instead.
text = "_" + text
}
return text
}
func processSubCluster(p *Peripheral, cluster *SVDCluster, clusterOffset uint64, clusterName string, peripheralDict map[string]*Peripheral) []*Peripheral {
var peripheralsList []*Peripheral
clusterPrefix := clusterName + "_"
cpRegisters := []*PeripheralField{}
for _, regEl := range cluster.Registers {
cpRegisters = append(cpRegisters, parseRegister(p.GroupName, regEl, p.BaseAddress+clusterOffset, clusterPrefix)...)
}
// handle sub-clusters of registers
for _, subClusterEl := range cluster.Clusters {
subclusterName := strings.ReplaceAll(subClusterEl.Name, "[%s]", "")
subclusterPrefix := subclusterName + "_"
subclusterOffset, err := strconv.ParseUint(subClusterEl.AddressOffset, 0, 32)
if err != nil {
panic(err)
}
subdim := *subClusterEl.Dim
subdimIncrement, err := strconv.ParseInt(subClusterEl.DimIncrement, 0, 32)
if err != nil {
panic(err)
}
if subdim > 1 {
subcpRegisters := []*PeripheralField{}
for _, regEl := range subClusterEl.Registers {
subcpRegisters = append(subcpRegisters, parseRegister(p.GroupName, regEl, p.BaseAddress+clusterOffset+subclusterOffset, subclusterPrefix)...)
}
cpRegisters = append(cpRegisters, &PeripheralField{
Name: subclusterName,
Address: p.BaseAddress + clusterOffset + subclusterOffset,
Description: subClusterEl.Description,
Registers: subcpRegisters,
Array: subdim,
ElementSize: int(subdimIncrement),
ShortName: clusterPrefix + subclusterName,
})
} else {
for _, regEl := range subClusterEl.Registers {
cpRegisters = append(cpRegisters, parseRegister(regEl.Name, regEl, p.BaseAddress+clusterOffset+subclusterOffset, subclusterPrefix)...)
}
}
}
sort.SliceStable(cpRegisters, func(i, j int) bool {
return cpRegisters[i].Address < cpRegisters[j].Address
})
clusterPeripheral := &Peripheral{
Name: p.Name + "_" + clusterName,
GroupName: p.GroupName + "_" + clusterName,
Description: p.Description + " - " + clusterName,
ClusterName: clusterName,
BaseAddress: p.BaseAddress + clusterOffset,
Registers: cpRegisters,
}
peripheralsList = append(peripheralsList, clusterPeripheral)
peripheralDict[clusterPeripheral.Name] = clusterPeripheral
p.Subtypes = append(p.Subtypes, clusterPeripheral)
return peripheralsList
}
func processCluster(p *Peripheral, clusters []*SVDCluster, peripheralDict map[string]*Peripheral) []*Peripheral {
var peripheralsList []*Peripheral
for _, cluster := range clusters {
clusterName := strings.ReplaceAll(cluster.Name, "[%s]", "")
if cluster.DimIndex != nil {
clusterName = strings.ReplaceAll(clusterName, "%s", "")
}
clusterPrefix := clusterName + "_"
clusterOffset, err := strconv.ParseUint(cluster.AddressOffset, 0, 32)
if err != nil {
panic(err)
}
var dim, dimIncrement int
if cluster.Dim == nil {
// Nordic SVD have sub-clusters with another sub-clusters.
if clusterOffset == 0 || len(cluster.Clusters) > 0 {
peripheralsList = append(peripheralsList, processSubCluster(p, cluster, clusterOffset, clusterName, peripheralDict)...)
continue
}
dim = -1
dimIncrement = -1
} else {
dim = *cluster.Dim
if dim == 1 {
dimIncrement = -1
} else {
inc, err := strconv.ParseUint(cluster.DimIncrement, 0, 32)
if err != nil {
panic(err)
}
dimIncrement = int(inc)
}
}
clusterRegisters := []*PeripheralField{}
for _, regEl := range cluster.Registers {
regName := p.GroupName
if regName == "" {
regName = p.Name
}
clusterRegisters = append(clusterRegisters, parseRegister(regName, regEl, p.BaseAddress+clusterOffset, clusterPrefix)...)
}
sort.SliceStable(clusterRegisters, func(i, j int) bool {
return clusterRegisters[i].Address < clusterRegisters[j].Address
})
if dimIncrement == -1 && len(clusterRegisters) > 0 {
lastReg := clusterRegisters[len(clusterRegisters)-1]
lastAddress := lastReg.Address
if lastReg.Array != -1 {
lastAddress = lastReg.Address + uint64(lastReg.Array*lastReg.ElementSize)
}
firstAddress := clusterRegisters[0].Address
dimIncrement = int(lastAddress - firstAddress)
}
if !unicode.IsUpper(rune(clusterName[0])) && !unicode.IsDigit(rune(clusterName[0])) {
clusterName = strings.ToUpper(clusterName)
}
p.Registers = append(p.Registers, &PeripheralField{
Name: clusterName,
Address: p.BaseAddress + clusterOffset,
Description: cluster.Description,
Registers: clusterRegisters,
Array: dim,
ElementSize: dimIncrement,
ShortName: clusterName,
})
}
sort.SliceStable(p.Registers, func(i, j int) bool {
return p.Registers[i].Address < p.Registers[j].Address
})
return peripheralsList
}
// Read ARM SVD files.
func readSVD(path, sourceURL string) (*Device, error) {
// Open the XML file.
f, err := os.Open(path)
if err != nil {
return nil, err
}
defer f.Close()
decoder := xml.NewDecoder(f)
device := &SVDFile{}
err = decoder.Decode(device)
if err != nil {
return nil, err
}
peripheralDict := map[string]*Peripheral{}
groups := map[string]*Peripheral{}
interrupts := make(map[string]*Interrupt)
var peripheralsList []*Peripheral
// Some SVD files have peripheral elements derived from a peripheral that
// comes later in the file. To make sure this works, sort the peripherals if
// needed.
orderedPeripherals := orderPeripherals(device.Peripherals)
for _, periphEl := range orderedPeripherals {
description := formatText(periphEl.Description)
baseAddress, err := strconv.ParseUint(periphEl.BaseAddress, 0, 64)
if err != nil {
return nil, fmt.Errorf("invalid base address: %w", err)
}
// Some group names (for example the STM32H7A3x) have an invalid
// group name. Replace invalid characters with "_".
groupName := cleanName(periphEl.GroupName)
if groupName == "" {
groupName = cleanName(periphEl.Name)
}
for _, interrupt := range periphEl.Interrupts {
addInterrupt(interrupts, interrupt.Name, interrupt.Name, interrupt.Index, description)
// As a convenience, also use the peripheral name as the interrupt
// name. Only do that for the nrf for now, as the stm32 .svd files
// don't always put interrupts in the correct peripheral...
if len(periphEl.Interrupts) == 1 && strings.HasPrefix(device.Name, "nrf") {
addInterrupt(interrupts, periphEl.Name, interrupt.Name, interrupt.Index, description)
}
}
if _, ok := groups[groupName]; ok || periphEl.DerivedFrom != "" {
var derivedFrom *Peripheral
if periphEl.DerivedFrom != "" {
derivedFrom = peripheralDict[periphEl.DerivedFrom]
} else {
derivedFrom = groups[groupName]
}
p := &Peripheral{
Name: periphEl.Name,
GroupName: derivedFrom.GroupName,
Description: description,
BaseAddress: baseAddress,
}
if p.Description == "" {
p.Description = derivedFrom.Description
}
peripheralsList = append(peripheralsList, p)
peripheralDict[p.Name] = p
for _, subtype := range derivedFrom.Subtypes {
peripheralsList = append(peripheralsList, &Peripheral{
Name: periphEl.Name + "_" + subtype.ClusterName,
GroupName: subtype.GroupName,
Description: subtype.Description,
BaseAddress: baseAddress,
})
}
continue
}
p := &Peripheral{
Name: periphEl.Name,
GroupName: groupName,
Description: description,
BaseAddress: baseAddress,
Registers: []*PeripheralField{},
}
if p.GroupName == "" {
p.GroupName = periphEl.Name
}
peripheralsList = append(peripheralsList, p)
peripheralDict[periphEl.Name] = p
if _, ok := groups[groupName]; !ok && groupName != "" {
groups[groupName] = p
}
for _, register := range periphEl.Registers {
regName := groupName // preferably use the group name
if regName == "" {
regName = periphEl.Name // fall back to peripheral name
}
p.Registers = append(p.Registers, parseRegister(regName, register, baseAddress, "")...)
}
peripheralsList = append(peripheralsList, processCluster(p, periphEl.Clusters, peripheralDict)...)
}
// Make a sorted list of interrupts.
interruptList := make([]*Interrupt, 0, len(interrupts))
for _, intr := range interrupts {
interruptList = append(interruptList, intr)
}
sort.SliceStable(interruptList, func(i, j int) bool {
if interruptList[i].Value != interruptList[j].Value {
return interruptList[i].Value < interruptList[j].Value
}
return interruptList[i].PeripheralIndex < interruptList[j].PeripheralIndex
})
// Properly format the license block, with comments.
licenseBlock := ""
if text := formatText(device.LicenseText); text != "" {
licenseBlock = "// " + strings.ReplaceAll(text, "\n", "\n// ")
licenseBlock = regexp.MustCompile(`\s+\n`).ReplaceAllString(licenseBlock, "\n")
}
// Remove "-" characters from the device name because such characters cannot
// be used in build tags. Necessary for the ESP32-C3 for example.
nameLower := strings.ReplaceAll(strings.ToLower(device.Name), "-", "")
metadata := &Metadata{
File: filepath.Base(path),
DescriptorSource: sourceURL,
Name: device.Name,
NameLower: nameLower,
Description: strings.TrimSpace(device.Description),
LicenseBlock: licenseBlock,
}
if device.CPU != nil {
metadata.HasCPUInfo = true
metadata.CPUName = device.CPU.Name
metadata.FPUPresent = device.CPU.FPUPresent
metadata.NVICPrioBits = device.CPU.NVICPrioBits
}
return &Device{
Metadata: metadata,
Interrupts: interruptList,
Peripherals: peripheralsList,
PeripheralDict: peripheralDict,
}, nil
}
// orderPeripherals sorts the peripherals so that derived peripherals come after
// base peripherals. This is necessary for some SVD files.
func orderPeripherals(input []SVDPeripheral) []*SVDPeripheral {
var sortedPeripherals []*SVDPeripheral
var missingBasePeripherals []*SVDPeripheral
knownBasePeripherals := map[string]struct{}{}
for i := range input {
p := &input[i]
groupName := p.GroupName
if groupName == "" {
groupName = p.Name
}
knownBasePeripherals[groupName] = struct{}{}
if p.DerivedFrom != "" {
if _, ok := knownBasePeripherals[p.DerivedFrom]; !ok {
missingBasePeripherals = append(missingBasePeripherals, p)
continue
}
}
sortedPeripherals = append(sortedPeripherals, p)
}
// Let's hope all base peripherals are now included.
sortedPeripherals = append(sortedPeripherals, missingBasePeripherals...)
return sortedPeripherals
}
func addInterrupt(interrupts map[string]*Interrupt, name, interruptName string, index int, description string) {
if _, ok := interrupts[name]; ok {
if interrupts[name].Value != index {
// Note: some SVD files like the one for STM32H7x7 contain mistakes.
// Instead of throwing an error, simply log it.
fmt.Fprintf(os.Stderr, "interrupt with the same name has different indexes: %s (%d vs %d)\n",
name, interrupts[name].Value, index)
}
parts := strings.Split(interrupts[name].Description, " // ")
hasDescription := false
for _, part := range parts {
if part == description {
hasDescription = true
}
}
if !hasDescription {
interrupts[name].Description += " // " + description
}
} else {
interrupts[name] = &Interrupt{
Name: name,
HandlerName: interruptName + "_IRQHandler",
PeripheralIndex: len(interrupts),
Value: index,
Description: description,
}
}
}
func parseBitfields(groupName, regName string, fieldEls []*SVDField, bitfieldPrefix string) ([]Constant, []Bitfield) {
var fields []Constant
var bitfields []Bitfield
enumSeen := map[string]int64{}
for _, fieldEl := range fieldEls {
// Some bitfields (like the STM32H7x7) contain invalid bitfield
// names like "CNT[31]". Replace invalid characters with "_" when
// needed.
fieldName := cleanName(fieldEl.Name)
if !unicode.IsUpper(rune(fieldName[0])) && !unicode.IsDigit(rune(fieldName[0])) {
fieldName = strings.ToUpper(fieldName)
}
// Find the lsb/msb that is encoded in various ways.
// Standards are great, that's why there are so many to choose from!
var lsb, msb uint32
if fieldEl.Lsb != nil && fieldEl.Msb != nil {
// try to use lsb/msb tags
lsb = *fieldEl.Lsb
msb = *fieldEl.Msb
} else if fieldEl.BitOffset != nil && fieldEl.BitWidth != nil {
// try to use bitOffset/bitWidth tags
lsb = *fieldEl.BitOffset
msb = *fieldEl.BitWidth + lsb - 1
} else if fieldEl.BitRange != nil {
// try use bitRange
// example string: "[20:16]"
parts := strings.Split(strings.Trim(*fieldEl.BitRange, "[]"), ":")
l, err := strconv.ParseUint(parts[1], 0, 32)
if err != nil {
panic(err)
}
lsb = uint32(l)
m, err := strconv.ParseUint(parts[0], 0, 32)
if err != nil {
panic(err)
}
msb = uint32(m)
} else {
// this is an error. what to do?
fmt.Fprintln(os.Stderr, "unable to find lsb/msb in field:", fieldName)
continue
}
// The enumerated values can be the same as another field, so to avoid
// duplication SVD files can simply refer to another set of enumerated
// values in the same register.
// See: https://www.keil.com/pack/doc/CMSIS/SVD/html/elem_registers.html#elem_enumeratedValues
enumeratedValues := fieldEl.EnumeratedValues
if enumeratedValues.DerivedFrom != "" {
parts := strings.Split(enumeratedValues.DerivedFrom, ".")
if len(parts) == 1 {
found := false
for _, otherFieldEl := range fieldEls {
if otherFieldEl.EnumeratedValues.Name == parts[0] {
found = true
enumeratedValues = otherFieldEl.EnumeratedValues
}
}
if !found {
fmt.Fprintf(os.Stderr, "Warning: could not find enumeratedValue.derivedFrom of %s for register field %s\n", enumeratedValues.DerivedFrom, fieldName)
}
} else {
// The derivedFrom attribute may also point to enumerated values
// in other registers and even peripherals, but this feature
// isn't often used in SVD files.
fmt.Fprintf(os.Stderr, "TODO: enumeratedValue.derivedFrom to a different register: %s\n", enumeratedValues.DerivedFrom)
}
}
bitfields = append(bitfields, Bitfield{
Name: fieldName,
Offset: lsb,
Mask: (0xffffffff >> (31 - (msb - lsb))) << lsb,
})
fields = append(fields, Constant{
Name: fmt.Sprintf("%s_%s%s_%s_Pos", groupName, bitfieldPrefix, regName, fieldName),
Description: fmt.Sprintf("Position of %s field.", fieldName),
Value: uint64(lsb),
})
fields = append(fields, Constant{
Name: fmt.Sprintf("%s_%s%s_%s_Msk", groupName, bitfieldPrefix, regName, fieldName),
Description: fmt.Sprintf("Bit mask of %s field.", fieldName),
Value: (0xffffffffffffffff >> (63 - (msb - lsb))) << lsb,
})
if lsb == msb { // single bit
fields = append(fields, Constant{
Name: fmt.Sprintf("%s_%s%s_%s", groupName, bitfieldPrefix, regName, fieldName),
Description: fmt.Sprintf("Bit %s.", fieldName),
Value: 1 << lsb,
})
}
for _, enumEl := range enumeratedValues.EnumeratedValue {
enumName := enumEl.Name
// Renesas has enum without actual values that we have to skip
if enumEl.Value == "" {
continue
}
if strings.EqualFold(enumName, "reserved") || !validName.MatchString(enumName) {
continue
}
if !unicode.IsUpper(rune(enumName[0])) && !unicode.IsDigit(rune(enumName[0])) {
enumName = strings.ToUpper(enumName)
}
enumDescription := formatText(enumEl.Description)
var enumValue uint64
var err error
if strings.HasPrefix(enumEl.Value, "0b") {
val := strings.TrimPrefix(enumEl.Value, "0b")
enumValue, err = strconv.ParseUint(val, 2, 64)
} else {
enumValue, err = strconv.ParseUint(enumEl.Value, 0, 64)
}
if err != nil {
if enumBitSpecifier.MatchString(enumEl.Value) {
// NXP and Renesas SVDs use the form #xx1x, #x0xx, etc for values
enumValue, err = strconv.ParseUint(strings.ReplaceAll(enumEl.Value[1:], "x", "0"), 2, 64)
if err != nil {
panic(err)
}
} else {
panic(err)
}
}
enumName = fmt.Sprintf("%s_%s%s_%s_%s", groupName, bitfieldPrefix, regName, fieldName, enumName)
// Avoid duplicate values. Duplicate names with the same value are
// allowed, but the same name with a different value is not. Instead
// of trying to work around those cases, remove the value entirely
// as there is probably not one correct answer in such a case.
// For example, SVD files from NXP have enums limited to 20
// characters, leading to lots of duplicates when these enum names
// are long. Nothing here can really fix those cases.
previousEnumValue, seenBefore := enumSeen[enumName]
if seenBefore {
if previousEnumValue < 0 {
// There was a mismatch before, ignore all equally named fields.
continue
}
if int64(enumValue) != previousEnumValue {
// There is a mismatch. Mark it as such, and remove the
// existing enum bitfield value.
enumSeen[enumName] = -1
for i, field := range fields {
if field.Name == enumName {
fields = append(fields[:i], fields[i+1:]...)
break
}
}
}
continue
}
enumSeen[enumName] = int64(enumValue)
fields = append(fields, Constant{
Name: enumName,
Description: enumDescription,
Value: enumValue,
})
}
}
return fields, bitfields
}
type Register struct {
element *SVDRegister
baseAddress uint64
}
func NewRegister(element *SVDRegister, baseAddress uint64) *Register {
return &Register{
element: element,
baseAddress: baseAddress,
}
}
func (r *Register) name() string {
return strings.ReplaceAll(r.element.Name, "[%s]", "")
}
func (r *Register) description() string {
return formatText(r.element.Description)
}
func (r *Register) address() uint64 {
offsetString := r.element.Offset
if offsetString == nil {
offsetString = r.element.AddressOffset
}
addr, err := strconv.ParseUint(*offsetString, 0, 32)
if err != nil {
panic(err)
}
return r.baseAddress + addr
}
func (r *Register) dim() int {
if r.element.Dim == nil {
return -1 // no dim elements
}
dim, err := strconv.ParseInt(*r.element.Dim, 0, 32)
if err != nil {
panic(err)
}
return int(dim)
}
func (r *Register) dimIndex() []string {
defer func() {
if err := recover(); err != nil {
fmt.Println("register", r.name())
panic(err)
}
}()
dim := r.dim()
if r.element.DimIndex == nil {
if dim <= 0 {
return nil
}
idx := make([]string, dim)
for i := range idx {
idx[i] = strconv.FormatInt(int64(i), 10)
}
return idx
}
t := strings.Split(*r.element.DimIndex, "-")
if len(t) == 2 {
// renesas uses hex letters e.g. A-B
if strings.Contains("ABCDEFabcdef", t[0]) {
t[0] = "0x" + t[0]
}
if strings.Contains("ABCDEFabcdef", t[1]) {
t[1] = "0x" + t[1]
}
x, err := strconv.ParseInt(t[0], 0, 32)
if err != nil {
panic(err)
}
y, err := strconv.ParseInt(t[1], 0, 32)
if err != nil {
panic(err)
}
if x < 0 || y < x || y-x != int64(dim-1) {
panic("invalid dimIndex")
}
idx := make([]string, dim)
for i := x; i <= y; i++ {
idx[i-x] = strconv.FormatInt(i, 10)
}
return idx
} else if len(t) > 2 {
panic("invalid dimIndex")
}
s := strings.Split(*r.element.DimIndex, ",")
if len(s) != dim {
panic("invalid dimIndex")
}
return s
}
func (r *Register) size() int {
if r.element.Size != nil {
size, err := strconv.ParseInt(*r.element.Size, 0, 32)
if err != nil {
panic(err)
}
return int(size) / 8
}
return 4
}
func parseRegister(groupName string, regEl *SVDRegister, baseAddress uint64, bitfieldPrefix string) []*PeripheralField {
reg := NewRegister(regEl, baseAddress)
if reg.dim() != -1 {
dimIncrement, err := strconv.ParseUint(regEl.DimIncrement, 0, 32)
if err != nil {
panic(err)
}
if strings.Contains(reg.name(), "%s") {
// a "spaced array" of registers, special processing required
// we need to generate a separate register for each "element"
var results []*PeripheralField
shortName := strings.ToUpper(strings.ReplaceAll(strings.ReplaceAll(reg.name(), "_%s", ""), "%s", ""))
for i, j := range reg.dimIndex() {
regAddress := reg.address() + (uint64(i) * dimIncrement)
results = append(results, &PeripheralField{
Name: strings.ToUpper(strings.ReplaceAll(reg.name(), "%s", j)),
Address: regAddress,
Description: reg.description(),
Array: -1,
ElementSize: reg.size(),
ShortName: shortName,
})
}
// set first result bitfield
results[0].Constants, results[0].Bitfields = parseBitfields(groupName, shortName, regEl.Fields, bitfieldPrefix)
results[0].HasBitfields = len(results[0].Bitfields) > 0
for i := 1; i < len(results); i++ {
results[i].Bitfields = results[0].Bitfields
results[i].HasBitfields = results[0].HasBitfields
}
return results
}
}
regName := reg.name()
if !unicode.IsUpper(rune(regName[0])) && !unicode.IsDigit(rune(regName[0])) {
regName = strings.ToUpper(regName)
}
regName = cleanName(regName)
constants, bitfields := parseBitfields(groupName, regName, regEl.Fields, bitfieldPrefix)
return []*PeripheralField{&PeripheralField{
Name: regName,
Address: reg.address(),
Description: reg.description(),
Constants: constants,
Array: reg.dim(),
ElementSize: reg.size(),
ShortName: regName,
Bitfields: bitfields,
HasBitfields: len(bitfields) > 0,
}}
}
// The Go module for this device.
func writeGo(outdir string, device *Device, interruptSystem string) error {
outf, err := os.Create(filepath.Join(outdir, device.Metadata.NameLower+".go"))
if err != nil {
return err
}
defer outf.Close()
w := bufio.NewWriter(outf)
maxInterruptValue := 0
for _, intr := range device.Interrupts {
if intr.Value > maxInterruptValue {
maxInterruptValue = intr.Value
}
}
interruptHandlerMap := make(map[string]*Interrupt)
var interruptHandlers []*Interrupt
for _, intr := range device.Interrupts {
if _, ok := interruptHandlerMap[intr.HandlerName]; !ok {
interruptHandlerMap[intr.HandlerName] = intr
interruptHandlers = append(interruptHandlers, intr)
}
}
t := template.Must(template.New("go").Funcs(template.FuncMap{
"bytesNeeded": func(i, j uint64) uint64 { return j - i },
"isMultiline": isMultiline,
"splitLine": splitLine,
}).Parse(`// Automatically generated file. DO NOT EDIT.
// Generated by gen-device-svd.go from {{.device.Metadata.File}}, see {{.device.Metadata.DescriptorSource}}
//go:build {{.pkgName}} && {{.device.Metadata.NameLower}}
// {{.device.Metadata.Description}}
//
{{.device.Metadata.LicenseBlock}}
package {{.pkgName}}
import (
"runtime/volatile"
"unsafe"
)
// Some information about this device.
const (
Device = "{{.device.Metadata.Name}}"
{{- if .device.Metadata.HasCPUInfo }}
CPU = "{{.device.Metadata.CPUName}}"
FPUPresent = {{.device.Metadata.FPUPresent}}
NVICPrioBits = {{.device.Metadata.NVICPrioBits}}
{{- end }}
)
// Interrupt numbers.
const (
{{- range .device.Interrupts}}
{{- if .Description}}
{{- range .Description|splitLine}}
// {{.}}
{{- end}}
{{- end}}
IRQ_{{.Name}} = {{.Value}}
{{- "\n"}}
{{- end}}
// Highest interrupt number on this device.
IRQ_max = {{.interruptMax}}
)
// Pseudo function call that is replaced by the compiler with the actual
// functions registered through interrupt.New.
//go:linkname callHandlers runtime/interrupt.callHandlers
func callHandlers(num int)
{{- if eq .interruptSystem "hardware"}}
{{- range .interruptHandlers}}
//export {{.HandlerName}}
func interrupt{{.Name}}() {
callHandlers(IRQ_{{.Name}})
}
{{- end}}
{{- end}}
{{- if eq .interruptSystem "software"}}
func HandleInterrupt(num int) {
switch num {
{{- range .interruptHandlers}}
case IRQ_{{.Name}}:
callHandlers(IRQ_{{.Name}})
{{- end}}
}
}
{{- end}}
// Peripherals.
var (
{{- range .device.Peripherals}}
{{- if .Description}}
{{- range .Description|splitLine}}
// {{.}}
{{- end}}
{{- end}}
{{.Name}} = (*{{.GroupName}}_Type)(unsafe.Pointer(uintptr(0x{{printf "%x" .BaseAddress}})))
{{- "\n"}}
{{- end}}
)
`))
err = t.Execute(w, map[string]interface{}{
"device": device,
"pkgName": filepath.Base(strings.TrimRight(outdir, "/")),
"interruptMax": maxInterruptValue,
"interruptSystem": interruptSystem,
"interruptHandlers": interruptHandlers,
})
if err != nil {
return err
}
// Define peripheral struct types.
for _, peripheral := range device.Peripherals {
if peripheral.Registers == nil {
// This peripheral was derived from another peripheral. No new type
// needs to be defined for it.
continue
}
fmt.Fprintln(w)
if peripheral.Description != "" {
for _, l := range splitLine(peripheral.Description) {
fmt.Fprintf(w, "// %s\n", l)
}
}
fmt.Fprintf(w, "type %s_Type struct {\n", peripheral.GroupName)
address := peripheral.BaseAddress
type clusterInfo struct {
name string
description string
address uint64
size uint64
registers []*PeripheralField
}
clusters := []clusterInfo{}
for _, register := range peripheral.Registers {
if register.Registers == nil && address > register.Address {
// In Nordic SVD files, these registers are deprecated or
// duplicates, so can be ignored.
//fmt.Fprintf(os.Stderr, "skip: %s.%s 0x%x - 0x%x %d\n", peripheral.Name, register.name, address, register.address, register.elementSize)
// remove bit fields from such register
register.Bitfields = nil
continue
}
var regType string
switch register.ElementSize {
case 8:
regType = "volatile.Register64"
case 4:
regType = "volatile.Register32"
case 2:
regType = "volatile.Register16"
case 1:
regType = "volatile.Register8"
default:
regType = "volatile.Register32"
}
// insert padding, if needed
if address < register.Address {
bytesNeeded := register.Address - address
if bytesNeeded == 1 {
w.WriteString("\t_ byte\n")
} else {
fmt.Fprintf(w, "\t_ [%d]byte\n", bytesNeeded)
}
address = register.Address
}
lastCluster := false
if register.Registers != nil {
// This is a cluster, not a register. Create the cluster type.
regType = peripheral.GroupName + "_" + register.Name
clusters = append(clusters, clusterInfo{regType, register.Description, register.Address, uint64(register.ElementSize), register.Registers})
regType = regType + "_Type"
subaddress := register.Address
for _, subregister := range register.Registers {
if subaddress != subregister.Address {
bytesNeeded := subregister.Address - subaddress
subaddress += bytesNeeded
}
var subregSize uint64
if subregister.Array != -1 {
subregSize = uint64(subregister.Array * subregister.ElementSize)
} else {
subregSize = uint64(subregister.ElementSize)
}
subaddress += subregSize
}
if register.Array == -1 {
lastCluster = true
}
address = subaddress
}
if register.Array != -1 {
regType = fmt.Sprintf("[%d]%s", register.Array, regType)
}
fmt.Fprintf(w, "\t%s %s // 0x%X\n", register.Name, regType, register.Address-peripheral.BaseAddress)
// next address
if lastCluster {
lastCluster = false
} else if register.Array != -1 {
address = register.Address + uint64(register.ElementSize*register.Array)
} else {
address = register.Address + uint64(register.ElementSize)
}
}
w.WriteString("}\n")
for _, register := range peripheral.Registers {
regName := register.Name
writeGoRegisterBitfieldType(w, register, peripheral.GroupName, regName)
}
// Define clusters
for i := 0; i < len(clusters); i++ {
cluster := clusters[i]
if len(cluster.registers) == 0 {
continue
}
if _, ok := device.PeripheralDict[cluster.name]; ok {
continue
}
fmt.Fprintln(w)
if cluster.description != "" {
for _, l := range splitLine(cluster.description) {
fmt.Fprintf(w, "// %s\n", l)
}
}
fmt.Fprintf(w, "type %s_Type struct {\n", cluster.name)
address := cluster.address
for _, register := range cluster.registers {
if register.Registers == nil && address > register.Address {
// In Nordic SVD files, these registers are deprecated or
// duplicates, so can be ignored.
//fmt.Fprintf(os.Stderr, "skip: %s.%s 0x%x - 0x%x %d\n", peripheral.Name, register.name, address, register.address, register.elementSize)
continue
}
var regType string
switch register.ElementSize {
case 8:
regType = "volatile.Register64"
case 4:
regType = "volatile.Register32"
case 2:
regType = "volatile.Register16"
case 1:
regType = "volatile.Register8"
default:
regType = "volatile.Register32"
}
// insert padding, if needed
if address < register.Address {
bytesNeeded := register.Address - address
if bytesNeeded == 1 {
w.WriteString("\t_ byte\n")
} else {
fmt.Fprintf(w, "\t_ [%d]byte\n", bytesNeeded)
}
address = register.Address
}
lastCluster := false
if register.Registers != nil {
// This is a cluster, not a register. Create the cluster type.
regType = peripheral.GroupName + "_" + register.Name
clusters = append(clusters, clusterInfo{regType, register.Description, register.Address, uint64(register.ElementSize), register.Registers})
regType = regType + "_Type"
subaddress := register.Address
for _, subregister := range register.Registers {
if subaddress != subregister.Address {
bytesNeeded := subregister.Address - subaddress
subaddress += bytesNeeded
}
var subregSize uint64
if subregister.Array != -1 {
subregSize = uint64(subregister.Array * subregister.ElementSize)
} else {
subregSize = uint64(subregister.ElementSize)
}
subaddress += subregSize
}
if register.Array == -1 {
lastCluster = true
}
address = subaddress
}
if register.Array != -1 {
regType = fmt.Sprintf("[%d]%s", register.Array, regType)
}
fmt.Fprintf(w, "\t%s %s // 0x%X\n", register.Name, regType, register.Address-peripheral.BaseAddress)
// next address
if lastCluster {
lastCluster = false
} else if register.Array != -1 {
address = register.Address + uint64(register.ElementSize*register.Array)
} else {
address = register.Address + uint64(register.ElementSize)
}
}
// make sure the structure is full
if cluster.size > (address - cluster.registers[0].Address) {
bytesNeeded := cluster.size - (address - cluster.registers[0].Address)
if bytesNeeded == 1 {
w.WriteString("\t_ byte\n")
} else {
fmt.Fprintf(w, "\t_ [%d]byte\n", bytesNeeded)
}
} else if cluster.size != (address - cluster.registers[0].Address) {
println("peripheral:", peripheral.Name, "cluster:", cluster.name, "size:", cluster.size, "struct size:", (address - cluster.registers[0].Address))
}
w.WriteString("}\n")
for _, register := range cluster.registers {
regName := register.Name
if register.Array == -1 {
writeGoRegisterBitfieldType(w, register, cluster.name, regName)
}
}
}
}
// Define bitfields.
for _, peripheral := range device.Peripherals {
if peripheral.Registers == nil {
// This peripheral was derived from another peripheral. Constants are
// already defined.
continue
}
fmt.Fprintf(w, "\n// Constants for %s", peripheral.Name)
if isMultiline(peripheral.Description) {
for _, l := range splitLine(peripheral.Description) {
fmt.Fprintf(w, "\n// %s", l)
}
} else if peripheral.Description != "" {
fmt.Fprintf(w, ": %s", peripheral.Description)
}
fmt.Fprint(w, "\nconst(")
for _, register := range peripheral.Registers {
if len(register.Constants) != 0 {
writeGoRegisterConstants(w, register, register.Name)
}
if register.Registers == nil {
continue
}
for _, subregister := range register.Registers {
writeGoRegisterConstants(w, subregister, register.Name+"."+subregister.Name)
}
}
w.WriteString(")\n")
}
return w.Flush()
}
func writeGoRegisterConstants(w *bufio.Writer, register *PeripheralField, name string) {
w.WriteString("\n\t// " + name)
if register.Description != "" {
if isMultiline(register.Description) {
for _, l := range splitLine(register.Description) {
w.WriteString("\n\t// " + l)
}
} else {
w.WriteString(": " + register.Description)
}
}
w.WriteByte('\n')
for _, bitfield := range register.Constants {
if bitfield.Description != "" {
for _, l := range splitLine(bitfield.Description) {
w.WriteString("\t// " + l + "\n")
}
}
fmt.Fprintf(w, "\t%s = 0x%x\n", bitfield.Name, bitfield.Value)
}
}
func writeGoRegisterBitfieldType(w *bufio.Writer, register *PeripheralField, peripheralName, registerName string) {
if len(register.Bitfields) == 0 {
return
}
w.WriteString("\n// " + peripheralName + "." + registerName)
if register.Description != "" {
if isMultiline(register.Description) {
for _, l := range splitLine(register.Description) {
w.WriteString("\n\t// " + l)
}
} else {
w.WriteString(": " + register.Description)
}
}
w.WriteByte('\n')
var bitSize int
var maxMask uint32
switch register.ElementSize {
case 8:
bitSize = 64
maxMask = 0xffffffff
// maxMask = 0xffffffffffffffff // TODO how to handle 64-bit fields
case 4:
bitSize = 32
maxMask = 0xffffffff
case 2:
bitSize = 16
maxMask = 0xffff
case 1:
bitSize = 8
maxMask = 0xff
default:
bitSize = 32
maxMask = 0xffffffff
}
typeName := fmt.Sprintf("%s_Type", peripheralName)
for _, bitfield := range register.Bitfields {
idxArg := ""
regAccess := "&o." + registerName + ".Reg"
if register.Array != -1 {
idxArg = "idx int, "
regAccess = "&o." + registerName + "[idx].Reg"
}
var funcSuffix string
if maxMask == bitfield.Mask || registerName == bitfield.Name {
funcSuffix = registerName
} else {
funcSuffix = registerName + "_" + bitfield.Name
}
fmt.Fprintf(w, "func (o *%s) Set%s(%s value uint%d) {\n", typeName, funcSuffix, idxArg, bitSize)
if maxMask == bitfield.Mask {
fmt.Fprintf(w, "\tvolatile.StoreUint%d(%s, value)\n", bitSize, regAccess)
} else if bitfield.Offset > 0 {
fmt.Fprintf(w, "\tvolatile.StoreUint%d(%s, volatile.LoadUint%d(%s)&^(0x%x)|value<<%d)\n", bitSize, regAccess, bitSize, regAccess, bitfield.Mask, bitfield.Offset)
} else {
fmt.Fprintf(w, "\tvolatile.StoreUint%d(%s, volatile.LoadUint%d(%s)&^(0x%x)|value)\n", bitSize, regAccess, bitSize, regAccess, bitfield.Mask)
}
w.WriteString("}\n")
fmt.Fprintf(w, "func (o *%s) Get%s(%s) uint%d {\n", typeName, funcSuffix, idxArg, bitSize)
if maxMask == bitfield.Mask {
fmt.Fprintf(w, "\treturn volatile.LoadUint%d(%s)\n", bitSize, regAccess)
} else if bitfield.Offset > 0 {
fmt.Fprintf(w, "\treturn (volatile.LoadUint%d(%s)&0x%x) >> %d\n", bitSize, regAccess, bitfield.Mask, bitfield.Offset)
} else {
fmt.Fprintf(w, "\treturn volatile.LoadUint%d(%s)&0x%x\n", bitSize, regAccess, bitfield.Mask)
}
w.WriteString("}\n")
}
}
// The interrupt vector, which is hard to write directly in Go.
func writeAsm(outdir string, device *Device) error {
outf, err := os.Create(filepath.Join(outdir, device.Metadata.NameLower+".s"))
if err != nil {
return err
}
defer outf.Close()
w := bufio.NewWriter(outf)
t := template.Must(template.New("go").Parse(`// Automatically generated file. DO NOT EDIT.
// Generated by gen-device-svd.go from {{.File}}, see {{.DescriptorSource}}
// {{.Description}}
//
{{.LicenseBlock}}
.syntax unified
// This is the default handler for interrupts, if triggered but not defined.
.section .text.Default_Handler
.global Default_Handler
.type Default_Handler, %function
Default_Handler:
wfe
b Default_Handler
.size Default_Handler, .-Default_Handler
// Avoid the need for repeated .weak and .set instructions.
.macro IRQ handler
.weak \handler
.set \handler, Default_Handler
.endm
// Must set the "a" flag on the section:
// https://svnweb.freebsd.org/base/stable/11/sys/arm/arm/locore-v4.S?r1=321049&r2=321048&pathrev=321049
// https://sourceware.org/binutils/docs/as/Section.html#ELF-Version
.section .isr_vector, "a", %progbits
.global __isr_vector
__isr_vector:
// Interrupt vector as defined by Cortex-M, starting with the stack top.
// On reset, SP is initialized with *0x0 and PC is loaded with *0x4, loading
// _stack_top and Reset_Handler.
.long _stack_top
.long Reset_Handler
.long NMI_Handler
.long HardFault_Handler
.long MemoryManagement_Handler
.long BusFault_Handler
.long UsageFault_Handler
.long 0
.long 0
.long 0
.long 0
.long SVC_Handler
.long DebugMon_Handler
.long 0
.long PendSV_Handler
.long SysTick_Handler
// Extra interrupts for peripherals defined by the hardware vendor.
`))
err = t.Execute(w, device.Metadata)
if err != nil {
return err
}
num := 0
for _, intr := range device.Interrupts {
if intr.Value == num-1 {
continue
}
if intr.Value < num {
panic("interrupt numbers are not sorted")
}
for intr.Value > num {
w.WriteString(" .long 0\n")
num++
}
num++
fmt.Fprintf(w, " .long %s\n", intr.HandlerName)
}
w.WriteString(`
// Define default implementations for interrupts, redirecting to
// Default_Handler when not implemented.
IRQ NMI_Handler
IRQ HardFault_Handler
IRQ MemoryManagement_Handler
IRQ BusFault_Handler
IRQ UsageFault_Handler
IRQ SVC_Handler
IRQ DebugMon_Handler
IRQ PendSV_Handler
IRQ SysTick_Handler
`)
for _, intr := range device.Interrupts {
fmt.Fprintf(w, " IRQ %s_IRQHandler\n", intr.Name)
}
w.WriteString(`
.size __isr_vector, .-__isr_vector
`)
return w.Flush()
}
func generate(indir, outdir, sourceURL, interruptSystem string) error {
if _, err := os.Stat(indir); errors.Is(err, fs.ErrNotExist) {
fmt.Fprintln(os.Stderr, "cannot find input directory:", indir)
os.Exit(1)
}
os.MkdirAll(outdir, 0777)
infiles, err := filepath.Glob(filepath.Join(indir, "*.svd"))
if err != nil {
fmt.Fprintln(os.Stderr, "could not read .svd files:", err)
os.Exit(1)
}
sort.Strings(infiles)
for _, infile := range infiles {
fmt.Println(infile)
device, err := readSVD(infile, sourceURL)
if err != nil {
return fmt.Errorf("failed to read: %w", err)
}
err = writeGo(outdir, device, interruptSystem)
if err != nil {
return fmt.Errorf("failed to write Go file: %w", err)
}
switch interruptSystem {
case "software":
// Nothing to do.
case "hardware":
err = writeAsm(outdir, device)
if err != nil {
return fmt.Errorf("failed to write assembly file: %w", err)
}
default:
return fmt.Errorf("unknown interrupt system: %s", interruptSystem)
}
}
return nil
}
func main() {
sourceURL := flag.String("source", "<unknown>", "source SVD file")
interruptSystem := flag.String("interrupts", "hardware", "interrupt system in use (software, hardware)")
flag.Parse()
if flag.NArg() != 2 {
fmt.Fprintln(os.Stderr, "provide exactly two arguments: input directory (with .svd files) and output directory for generated files")
flag.PrintDefaults()
return
}
indir := flag.Arg(0)
outdir := flag.Arg(1)
err := generate(indir, outdir, *sourceURL, *interruptSystem)
if err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
}