tinygo/compiler/channel.go
Ayke van Laethem 79dae62c78 compiler,runtime: check for channel size limits
This patch is a combination of two related changes:

 1. The compiler now allows other types than `int` when specifying the
    size of a channel in a make(chan ..., size) call.
 2. The compiler now checks for maximum allowed channel sizes. Such
    checks are trivially optimized out in the vast majority of cases as
    channel sizes are usually constant.

I discovered this issue when trying out channels on AVR.
2020-03-13 16:15:36 -07:00

243 строки
9,6 КиБ
Go

package compiler
// This file lowers channel operations (make/send/recv/close) to runtime calls
// or pseudo-operations that are lowered during goroutine lowering.
import (
"go/types"
"github.com/tinygo-org/tinygo/compiler/llvmutil"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
func (c *Compiler) emitMakeChan(frame *Frame, expr *ssa.MakeChan) llvm.Value {
elementSize := c.targetData.TypeAllocSize(c.getLLVMType(expr.Type().(*types.Chan).Elem()))
elementSizeValue := llvm.ConstInt(c.uintptrType, elementSize, false)
bufSize := c.getValue(frame, expr.Size)
c.emitChanBoundsCheck(frame, elementSize, bufSize, expr.Size.Type().Underlying().(*types.Basic), expr.Pos())
if bufSize.Type().IntTypeWidth() < c.uintptrType.IntTypeWidth() {
bufSize = c.builder.CreateZExt(bufSize, c.uintptrType, "")
} else if bufSize.Type().IntTypeWidth() > c.uintptrType.IntTypeWidth() {
bufSize = c.builder.CreateTrunc(bufSize, c.uintptrType, "")
}
return c.createRuntimeCall("chanMake", []llvm.Value{elementSizeValue, bufSize}, "")
}
// emitChanSend emits a pseudo chan send operation. It is lowered to the actual
// channel send operation during goroutine lowering.
func (c *Compiler) emitChanSend(frame *Frame, instr *ssa.Send) {
ch := c.getValue(frame, instr.Chan)
chanValue := c.getValue(frame, instr.X)
// store value-to-send
valueType := c.getLLVMType(instr.X.Type())
valueAlloca, valueAllocaCast, valueAllocaSize := c.createTemporaryAlloca(valueType, "chan.value")
c.builder.CreateStore(chanValue, valueAlloca)
// Do the send.
c.createRuntimeCall("chanSend", []llvm.Value{ch, valueAllocaCast}, "")
// End the lifetime of the alloca.
// This also works around a bug in CoroSplit, at least in LLVM 8:
// https://bugs.llvm.org/show_bug.cgi?id=41742
c.emitLifetimeEnd(valueAllocaCast, valueAllocaSize)
}
// emitChanRecv emits a pseudo chan receive operation. It is lowered to the
// actual channel receive operation during goroutine lowering.
func (c *Compiler) emitChanRecv(frame *Frame, unop *ssa.UnOp) llvm.Value {
valueType := c.getLLVMType(unop.X.Type().(*types.Chan).Elem())
ch := c.getValue(frame, unop.X)
// Allocate memory to receive into.
valueAlloca, valueAllocaCast, valueAllocaSize := c.createTemporaryAlloca(valueType, "chan.value")
// Do the receive.
commaOk := c.createRuntimeCall("chanRecv", []llvm.Value{ch, valueAllocaCast}, "")
received := c.builder.CreateLoad(valueAlloca, "chan.received")
c.emitLifetimeEnd(valueAllocaCast, valueAllocaSize)
if unop.CommaOk {
tuple := llvm.Undef(c.ctx.StructType([]llvm.Type{valueType, c.ctx.Int1Type()}, false))
tuple = c.builder.CreateInsertValue(tuple, received, 0, "")
tuple = c.builder.CreateInsertValue(tuple, commaOk, 1, "")
return tuple
} else {
return received
}
}
// emitChanClose closes the given channel.
func (c *Compiler) emitChanClose(frame *Frame, param ssa.Value) {
ch := c.getValue(frame, param)
c.createRuntimeCall("chanClose", []llvm.Value{ch}, "")
}
// emitSelect emits all IR necessary for a select statements. That's a
// non-trivial amount of code because select is very complex to implement.
func (c *Compiler) emitSelect(frame *Frame, expr *ssa.Select) llvm.Value {
if len(expr.States) == 0 {
// Shortcuts for some simple selects.
llvmType := c.getLLVMType(expr.Type())
if expr.Blocking {
// Blocks forever:
// select {}
c.createRuntimeCall("deadlock", nil, "")
return llvm.Undef(llvmType)
} else {
// No-op:
// select {
// default:
// }
retval := llvm.Undef(llvmType)
retval = c.builder.CreateInsertValue(retval, llvm.ConstInt(c.intType, 0xffffffffffffffff, true), 0, "")
return retval // {-1, false}
}
}
// This code create a (stack-allocated) slice containing all the select
// cases and then calls runtime.chanSelect to perform the actual select
// statement.
// Simple selects (blocking and with just one case) are already transformed
// into regular chan operations during SSA construction so we don't have to
// optimize such small selects.
// Go through all the cases. Create the selectStates slice and and
// determine the receive buffer size and alignment.
recvbufSize := uint64(0)
recvbufAlign := 0
hasReceives := false
var selectStates []llvm.Value
chanSelectStateType := c.getLLVMRuntimeType("chanSelectState")
for _, state := range expr.States {
ch := c.getValue(frame, state.Chan)
selectState := llvm.ConstNull(chanSelectStateType)
selectState = c.builder.CreateInsertValue(selectState, ch, 0, "")
switch state.Dir {
case types.RecvOnly:
// Make sure the receive buffer is big enough and has the correct alignment.
llvmType := c.getLLVMType(state.Chan.Type().(*types.Chan).Elem())
if size := c.targetData.TypeAllocSize(llvmType); size > recvbufSize {
recvbufSize = size
}
if align := c.targetData.ABITypeAlignment(llvmType); align > recvbufAlign {
recvbufAlign = align
}
hasReceives = true
case types.SendOnly:
// Store this value in an alloca and put a pointer to this alloca
// in the send state.
sendValue := c.getValue(frame, state.Send)
alloca := llvmutil.CreateEntryBlockAlloca(c.builder, sendValue.Type(), "select.send.value")
c.builder.CreateStore(sendValue, alloca)
ptr := c.builder.CreateBitCast(alloca, c.i8ptrType, "")
selectState = c.builder.CreateInsertValue(selectState, ptr, 1, "")
default:
panic("unreachable")
}
selectStates = append(selectStates, selectState)
}
// Create a receive buffer, where the received value will be stored.
recvbuf := llvm.Undef(c.i8ptrType)
if hasReceives {
allocaType := llvm.ArrayType(c.ctx.Int8Type(), int(recvbufSize))
recvbufAlloca, _, _ := c.createTemporaryAlloca(allocaType, "select.recvbuf.alloca")
recvbufAlloca.SetAlignment(recvbufAlign)
recvbuf = c.builder.CreateGEP(recvbufAlloca, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
}, "select.recvbuf")
}
// Create the states slice (allocated on the stack).
statesAllocaType := llvm.ArrayType(chanSelectStateType, len(selectStates))
statesAlloca, statesI8, statesSize := c.createTemporaryAlloca(statesAllocaType, "select.states.alloca")
for i, state := range selectStates {
// Set each slice element to the appropriate channel.
gep := c.builder.CreateGEP(statesAlloca, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), uint64(i), false),
}, "")
c.builder.CreateStore(state, gep)
}
statesPtr := c.builder.CreateGEP(statesAlloca, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
}, "select.states")
statesLen := llvm.ConstInt(c.uintptrType, uint64(len(selectStates)), false)
// Do the select in the runtime.
var results llvm.Value
if expr.Blocking {
// Stack-allocate operation structures.
// If these were simply created as a slice, they would heap-allocate.
chBlockAllocaType := llvm.ArrayType(c.getLLVMRuntimeType("channelBlockedList"), len(selectStates))
chBlockAlloca, chBlockAllocaPtr, chBlockSize := c.createTemporaryAlloca(chBlockAllocaType, "select.block.alloca")
chBlockLen := llvm.ConstInt(c.uintptrType, uint64(len(selectStates)), false)
chBlockPtr := c.builder.CreateGEP(chBlockAlloca, []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
}, "select.block")
results = c.createRuntimeCall("chanSelect", []llvm.Value{
recvbuf,
statesPtr, statesLen, statesLen, // []chanSelectState
chBlockPtr, chBlockLen, chBlockLen, // []channelBlockList
}, "select.result")
// Terminate the lifetime of the operation structures.
c.emitLifetimeEnd(chBlockAllocaPtr, chBlockSize)
} else {
results = c.createRuntimeCall("tryChanSelect", []llvm.Value{
recvbuf,
statesPtr, statesLen, statesLen, // []chanSelectState
}, "select.result")
}
// Terminate the lifetime of the states alloca.
c.emitLifetimeEnd(statesI8, statesSize)
// The result value does not include all the possible received values,
// because we can't load them in advance. Instead, the *ssa.Extract
// instruction will treat a *ssa.Select specially and load it there inline.
// Store the receive alloca in a sidetable until we hit this extract
// instruction.
if frame.selectRecvBuf == nil {
frame.selectRecvBuf = make(map[*ssa.Select]llvm.Value)
}
frame.selectRecvBuf[expr] = recvbuf
return results
}
// getChanSelectResult returns the special values from a *ssa.Extract expression
// when extracting a value from a select statement (*ssa.Select). Because
// *ssa.Select cannot load all values in advance, it does this later in the
// *ssa.Extract expression.
func (c *Compiler) getChanSelectResult(frame *Frame, expr *ssa.Extract) llvm.Value {
if expr.Index == 0 {
// index
value := c.getValue(frame, expr.Tuple)
index := c.builder.CreateExtractValue(value, expr.Index, "")
if index.Type().IntTypeWidth() < c.intType.IntTypeWidth() {
index = c.builder.CreateSExt(index, c.intType, "")
}
return index
} else if expr.Index == 1 {
// comma-ok
value := c.getValue(frame, expr.Tuple)
return c.builder.CreateExtractValue(value, expr.Index, "")
} else {
// Select statements are (index, ok, ...) where ... is a number of
// received values, depending on how many receive statements there
// are. They are all combined into one alloca (because only one
// receive can proceed at a time) so we'll get that alloca, bitcast
// it to the correct type, and dereference it.
recvbuf := frame.selectRecvBuf[expr.Tuple.(*ssa.Select)]
typ := llvm.PointerType(c.getLLVMType(expr.Type()), 0)
ptr := c.builder.CreateBitCast(recvbuf, typ, "")
return c.builder.CreateLoad(ptr, "")
}
}