tinygo/src/reflect/all_test.go
Ayke van Laethem ee3106be98 reflect: update to Go 1.22 semantics
The IsZero function was changed slightly in Go 1.22, so we'll need to
update it.

While this could in theory break existing programs that rely on the old
behavior, they'd also break with the imminent Go 1.22 release so I don't
think this is a real problem.
2024-01-20 08:53:49 +01:00

8530 строки
214 КиБ
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflect_test
import (
"bytes"
"encoding/base64"
"flag"
"fmt"
"go/token"
"io"
"math"
"math/rand"
"net"
"os"
. "reflect"
"reflect/internal/example1"
"reflect/internal/example2"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"testing"
"time"
"unsafe"
)
// keep imports
var (
_ = bytes.MinRead
_ = base64.StdPadding
_ = flag.ErrHelp
_ = fmt.Append
_ = token.LowestPrec
_ = io.EOF
_ = math.E
_ = rand.Int
_ = net.IPv4len
_ = os.PathSeparator
_ = example1.MyStruct{}
_ = example2.MyStruct{}
_ = Invalid // reflect
_ = runtime.Compiler
_ = sort.Find
_ = strconv.IntSize
_ = strings.Clone
_ = sync.NewCond
_ = atomic.AddInt32
_ = testing.T{}
_ = time.Now
_ = unsafe.Add(nil, 0)
)
var goarch = struct {
PtrSize uintptr
}{
PtrSize: unsafe.Sizeof(uintptr(0)),
}
var testenv = struct {
OptimizationOff func() bool
}{
OptimizationOff: func() bool { return false },
}
var sink any
func TestBool(t *testing.T) {
v := ValueOf(true)
if v.Bool() != true {
t.Fatal("ValueOf(true).Bool() = false")
}
}
type integer int
type T struct {
a int
b float64
c string
d *int
}
var _ = T{} == T{} // tests depend on T being comparable
type pair struct {
i any
s string
}
func assert(t *testing.T, s, want string) {
if s != want {
t.Errorf("have %#q want %#q", s, want)
}
}
var typeTests = []pair{
{struct{ x int }{}, "int"},
{struct{ x int8 }{}, "int8"},
{struct{ x int16 }{}, "int16"},
{struct{ x int32 }{}, "int32"},
{struct{ x int64 }{}, "int64"},
{struct{ x uint }{}, "uint"},
{struct{ x uint8 }{}, "uint8"},
{struct{ x uint16 }{}, "uint16"},
{struct{ x uint32 }{}, "uint32"},
{struct{ x uint64 }{}, "uint64"},
{struct{ x float32 }{}, "float32"},
{struct{ x float64 }{}, "float64"},
{struct{ x int8 }{}, "int8"},
{struct{ x (**int8) }{}, "**int8"},
{struct{ x (**integer) }{}, "**reflect_test.integer"},
{struct{ x ([32]int32) }{}, "[32]int32"},
{struct{ x ([]int8) }{}, "[]int8"},
{struct{ x (map[string]int32) }{}, "map[string]int32"},
{struct{ x (chan<- string) }{}, "chan<- string"},
{struct{ x (chan<- chan string) }{}, "chan<- chan string"},
{struct{ x (chan<- <-chan string) }{}, "chan<- <-chan string"},
{struct{ x (<-chan <-chan string) }{}, "<-chan <-chan string"},
{struct{ x (chan (<-chan string)) }{}, "chan (<-chan string)"},
{struct {
x struct {
c chan *int32
d float32
}
}{},
"struct { c chan *int32; d float32 }",
},
/* // TODO(tinygo): No function support
{struct{ x (func(a int8, b int32)) }{}, "func(int8, int32)"},
{struct {
x struct {
c func(chan *integer, *int8)
}
}{},
"struct { c func(chan *reflect_test.integer, *int8) }",
}, */
{struct {
x struct {
a int8
b int32
}
}{},
"struct { a int8; b int32 }",
},
{struct {
x struct {
a int8
b int8
c int32
}
}{},
"struct { a int8; b int8; c int32 }",
},
{struct {
x struct {
a int8
b int8
c int8
d int32
}
}{},
"struct { a int8; b int8; c int8; d int32 }",
},
{struct {
x struct {
a int8
b int8
c int8
d int8
e int32
}
}{},
"struct { a int8; b int8; c int8; d int8; e int32 }",
},
{struct {
x struct {
a int8
b int8
c int8
d int8
e int8
f int32
}
}{},
"struct { a int8; b int8; c int8; d int8; e int8; f int32 }",
},
{struct {
x struct {
a int8 `reflect:"hi there"`
}
}{},
`struct { a int8 "reflect:\"hi there\"" }`,
},
{struct {
x struct {
a int8 `reflect:"hi \x00there\t\n\"\\"`
}
}{},
`struct { a int8 "reflect:\"hi \\x00there\\t\\n\\\"\\\\\"" }`,
},
/* // TODO(tinygo): Functions not supported
{struct {
x struct {
f func(args ...int)
}
}{},
"struct { f func(...int) }",
},
{struct {
x (interface {
a(func(func(int) int) func(func(int)) int)
b()
})
}{},
"interface { reflect_test.a(func(func(int) int) func(func(int)) int); reflect_test.b() }",
},
{struct {
x struct {
int32
int64
}
}{},
"struct { int32; int64 }",
},
*/
}
var valueTests = []pair{
{new(int), "132"},
{new(int8), "8"},
{new(int16), "16"},
{new(int32), "32"},
{new(int64), "64"},
{new(uint), "132"},
{new(uint8), "8"},
{new(uint16), "16"},
{new(uint32), "32"},
{new(uint64), "64"},
{new(float32), "256.25"},
{new(float64), "512.125"},
{new(complex64), "532.125+10i"},
{new(complex128), "564.25+1i"},
{new(string), "stringy cheese"},
{new(bool), "true"},
{new(*int8), "*int8(0)"},
{new(**int8), "**int8(0)"},
{new([5]int32), "[5]int32{0, 0, 0, 0, 0}"},
{new(**integer), "**reflect_test.integer(0)"},
{new(map[string]int32), "map[string]int32{<can't iterate on maps>}"},
{new(chan<- string), "chan<- string"},
//{new(func(a int8, b int32)), "func(int8, int32)(0)"}, // TODO(tinygo): No function support
{new(struct {
c chan *int32
d float32
}),
"struct { c chan *int32; d float32 }{chan *int32, 0}",
},
/* // TODO(tinygo): No function support
{new(struct{ c func(chan *integer, *int8) }),
"struct { c func(chan *reflect_test.integer, *int8) }{func(chan *reflect_test.integer, *int8)(0)}",
},
*/
{new(struct {
a int8
b int32
}),
"struct { a int8; b int32 }{0, 0}",
},
{new(struct {
a int8
b int8
c int32
}),
"struct { a int8; b int8; c int32 }{0, 0, 0}",
},
}
func testType(t *testing.T, i int, typ Type, want string) {
s := typ.String()
if s != want {
t.Errorf("#%d: have %#q, want %#q", i, s, want)
}
}
func TestTypes(t *testing.T) {
for i, tt := range typeTests {
testType(t, i, ValueOf(tt.i).Field(0).Type(), tt.s)
}
}
func TestSet(t *testing.T) {
for i, tt := range valueTests {
v := ValueOf(tt.i)
v = v.Elem()
switch v.Kind() {
case Int:
v.SetInt(132)
case Int8:
v.SetInt(8)
case Int16:
v.SetInt(16)
case Int32:
v.SetInt(32)
case Int64:
v.SetInt(64)
case Uint:
v.SetUint(132)
case Uint8:
v.SetUint(8)
case Uint16:
v.SetUint(16)
case Uint32:
v.SetUint(32)
case Uint64:
v.SetUint(64)
case Float32:
v.SetFloat(256.25)
case Float64:
v.SetFloat(512.125)
case Complex64:
v.SetComplex(532.125 + 10i)
case Complex128:
v.SetComplex(564.25 + 1i)
case String:
v.SetString("stringy cheese")
case Bool:
v.SetBool(true)
}
s := valueToString(v)
if s != tt.s {
t.Errorf("#%d: have %#q, want %#q", i, s, tt.s)
}
}
}
func TestSetValue(t *testing.T) {
for i, tt := range valueTests {
v := ValueOf(tt.i).Elem()
switch v.Kind() {
case Int:
v.Set(ValueOf(int(132)))
case Int8:
v.Set(ValueOf(int8(8)))
case Int16:
v.Set(ValueOf(int16(16)))
case Int32:
v.Set(ValueOf(int32(32)))
case Int64:
v.Set(ValueOf(int64(64)))
case Uint:
v.Set(ValueOf(uint(132)))
case Uint8:
v.Set(ValueOf(uint8(8)))
case Uint16:
v.Set(ValueOf(uint16(16)))
case Uint32:
v.Set(ValueOf(uint32(32)))
case Uint64:
v.Set(ValueOf(uint64(64)))
case Float32:
v.Set(ValueOf(float32(256.25)))
case Float64:
v.Set(ValueOf(512.125))
case Complex64:
v.Set(ValueOf(complex64(532.125 + 10i)))
case Complex128:
v.Set(ValueOf(complex128(564.25 + 1i)))
case String:
v.Set(ValueOf("stringy cheese"))
case Bool:
v.Set(ValueOf(true))
}
s := valueToString(v)
if s != tt.s {
t.Errorf("#%d: have %#q, want %#q", i, s, tt.s)
}
}
}
/*
func TestMapIterSet(t *testing.T) {
m := make(map[string]any, len(valueTests))
for _, tt := range valueTests {
m[tt.s] = tt.i
}
v := ValueOf(m)
k := New(v.Type().Key()).Elem()
e := New(v.Type().Elem()).Elem()
iter := v.MapRange()
for iter.Next() {
k.SetIterKey(iter)
e.SetIterValue(iter)
want := m[k.String()]
got := e.Interface()
if got != want {
t.Errorf("%q: want (%T) %v, got (%T) %v", k.String(), want, want, got, got)
}
if setkey, key := valueToString(k), valueToString(iter.Key()); setkey != key {
t.Errorf("MapIter.Key() = %q, MapIter.SetKey() = %q", key, setkey)
}
if setval, val := valueToString(e), valueToString(iter.Value()); setval != val {
t.Errorf("MapIter.Value() = %q, MapIter.SetValue() = %q", val, setval)
}
}
if testenv.OptimizationOff() {
return // no inlining with the noopt builder
}
got := int(testing.AllocsPerRun(10, func() {
iter := v.MapRange()
for iter.Next() {
k.SetIterKey(iter)
e.SetIterValue(iter)
}
}))
// Calling MapRange should not allocate even though it returns a *MapIter.
// The function is inlineable, so if the local usage does not escape
// the *MapIter, it can remain stack allocated.
want := 0
if got != want {
t.Errorf("wanted %d alloc, got %d", want, got)
}
}
*/
func TestCanIntUintFloatComplex(t *testing.T) {
type integer int
type uinteger uint
type float float64
type complex complex128
var ops = [...]string{"CanInt", "CanUint", "CanFloat", "CanComplex"}
var testCases = []struct {
i any
want [4]bool
}{
// signed integer
{132, [...]bool{true, false, false, false}},
{int8(8), [...]bool{true, false, false, false}},
{int16(16), [...]bool{true, false, false, false}},
{int32(32), [...]bool{true, false, false, false}},
{int64(64), [...]bool{true, false, false, false}},
// unsigned integer
{uint(132), [...]bool{false, true, false, false}},
{uint8(8), [...]bool{false, true, false, false}},
{uint16(16), [...]bool{false, true, false, false}},
{uint32(32), [...]bool{false, true, false, false}},
{uint64(64), [...]bool{false, true, false, false}},
{uintptr(0xABCD), [...]bool{false, true, false, false}},
// floating-point
{float32(256.25), [...]bool{false, false, true, false}},
{float64(512.125), [...]bool{false, false, true, false}},
// complex
{complex64(532.125 + 10i), [...]bool{false, false, false, true}},
{complex128(564.25 + 1i), [...]bool{false, false, false, true}},
// underlying
{integer(-132), [...]bool{true, false, false, false}},
{uinteger(132), [...]bool{false, true, false, false}},
{float(256.25), [...]bool{false, false, true, false}},
{complex(532.125 + 10i), [...]bool{false, false, false, true}},
// not-acceptable
{"hello world", [...]bool{false, false, false, false}},
{new(int), [...]bool{false, false, false, false}},
{new(uint), [...]bool{false, false, false, false}},
{new(float64), [...]bool{false, false, false, false}},
{new(complex64), [...]bool{false, false, false, false}},
{new([5]int), [...]bool{false, false, false, false}},
{new(integer), [...]bool{false, false, false, false}},
{new(map[int]int), [...]bool{false, false, false, false}},
{new(chan<- int), [...]bool{false, false, false, false}},
{new(func(a int8)), [...]bool{false, false, false, false}},
{new(struct{ i int }), [...]bool{false, false, false, false}},
}
for i, tc := range testCases {
v := ValueOf(tc.i)
got := [...]bool{v.CanInt(), v.CanUint(), v.CanFloat(), v.CanComplex()}
for j := range tc.want {
if got[j] != tc.want[j] {
t.Errorf(
"#%d: v.%s() returned %t for type %T, want %t",
i,
ops[j],
got[j],
tc.i,
tc.want[j],
)
}
}
}
}
func TestCanSetField(t *testing.T) {
type embed struct{ x, X int }
type Embed struct{ x, X int }
type S1 struct {
embed
x, X int
}
type S2 struct {
*embed
x, X int
}
type S3 struct {
Embed
x, X int
}
type S4 struct {
*Embed
x, X int
}
type testCase struct {
// -1 means Addr().Elem() of current value
index []int
canSet bool
}
tests := []struct {
val Value
cases []testCase
}{{
val: ValueOf(&S1{}),
cases: []testCase{
{[]int{0}, false},
{[]int{0, -1}, false},
{[]int{0, 0}, false},
{[]int{0, 0, -1}, false},
{[]int{0, -1, 0}, false},
{[]int{0, -1, 0, -1}, false},
{[]int{0, 1}, true},
{[]int{0, 1, -1}, true},
{[]int{0, -1, 1}, true},
{[]int{0, -1, 1, -1}, true},
{[]int{1}, false},
{[]int{1, -1}, false},
{[]int{2}, true},
{[]int{2, -1}, true},
},
}, {
val: ValueOf(&S2{embed: &embed{}}),
cases: []testCase{
{[]int{0}, false},
{[]int{0, -1}, false},
{[]int{0, 0}, false},
{[]int{0, 0, -1}, false},
{[]int{0, -1, 0}, false},
{[]int{0, -1, 0, -1}, false},
{[]int{0, 1}, true},
{[]int{0, 1, -1}, true},
{[]int{0, -1, 1}, true},
{[]int{0, -1, 1, -1}, true},
{[]int{1}, false},
{[]int{2}, true},
},
}, {
val: ValueOf(&S3{}),
cases: []testCase{
{[]int{0}, true},
{[]int{0, -1}, true},
{[]int{0, 0}, false},
{[]int{0, 0, -1}, false},
{[]int{0, -1, 0}, false},
{[]int{0, -1, 0, -1}, false},
{[]int{0, 1}, true},
{[]int{0, 1, -1}, true},
{[]int{0, -1, 1}, true},
{[]int{0, -1, 1, -1}, true},
{[]int{1}, false},
{[]int{2}, true},
},
}, {
val: ValueOf(&S4{Embed: &Embed{}}),
cases: []testCase{
{[]int{0}, true},
{[]int{0, -1}, true},
{[]int{0, 0}, false},
{[]int{0, 0, -1}, false},
{[]int{0, -1, 0}, false},
{[]int{0, -1, 0, -1}, false},
{[]int{0, 1}, true},
{[]int{0, 1, -1}, true},
{[]int{0, -1, 1}, true},
{[]int{0, -1, 1, -1}, true},
{[]int{1}, false},
{[]int{2}, true},
},
}}
for _, tt := range tests {
t.Run(tt.val.Type().Name(), func(t *testing.T) {
for _, tc := range tt.cases {
f := tt.val
for _, i := range tc.index {
if f.Kind() == Pointer {
f = f.Elem()
}
if i == -1 {
f = f.Addr().Elem()
} else {
f = f.Field(i)
}
}
if got := f.CanSet(); got != tc.canSet {
t.Errorf("CanSet() = %v, want %v", got, tc.canSet)
}
}
})
}
}
var _i = 7
var valueToStringTests = []pair{
{123, "123"},
{123.5, "123.5"},
{byte(123), "123"},
{"abc", "abc"},
{T{123, 456.75, "hello", &_i}, "reflect_test.T{123, 456.75, hello, *int(&7)}"},
{new(chan *T), "*chan *reflect_test.T(&chan *reflect_test.T)"},
{[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
{&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[10]int(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
{[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
{&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[]int(&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
}
func TestValueToString(t *testing.T) {
for i, test := range valueToStringTests {
s := valueToString(ValueOf(test.i))
if s != test.s {
t.Errorf("#%d: have %#q, want %#q", i, s, test.s)
}
}
}
func TestArrayElemSet(t *testing.T) {
v := ValueOf(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}).Elem()
v.Index(4).SetInt(123)
s := valueToString(v)
const want = "[10]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
if s != want {
t.Errorf("[10]int: have %#q want %#q", s, want)
}
v = ValueOf([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
v.Index(4).SetInt(123)
s = valueToString(v)
const want1 = "[]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
if s != want1 {
t.Errorf("[]int: have %#q want %#q", s, want1)
}
}
func TestPtrPointTo(t *testing.T) {
var ip *int32
var i int32 = 1234
vip := ValueOf(&ip)
vi := ValueOf(&i).Elem()
vip.Elem().Set(vi.Addr())
if *ip != 1234 {
t.Errorf("got %d, want 1234", *ip)
}
ip = nil
vp := ValueOf(&ip).Elem()
vp.Set(Zero(vp.Type()))
if ip != nil {
t.Errorf("got non-nil (%p), want nil", ip)
}
}
func TestPtrSetNil(t *testing.T) {
var i int32 = 1234
ip := &i
vip := ValueOf(&ip)
vip.Elem().Set(Zero(vip.Elem().Type()))
if ip != nil {
t.Errorf("got non-nil (%d), want nil", *ip)
}
}
func TestMapSetNil(t *testing.T) {
m := make(map[string]int)
vm := ValueOf(&m)
vm.Elem().Set(Zero(vm.Elem().Type()))
if m != nil {
t.Errorf("got non-nil (%p), want nil", m)
}
}
/*
func TestAll(t *testing.T) {
testType(t, 1, TypeOf((int8)(0)), "int8")
testType(t, 2, TypeOf((*int8)(nil)).Elem(), "int8")
typ := TypeOf((*struct {
c chan *int32
d float32
})(nil))
testType(t, 3, typ, "*struct { c chan *int32; d float32 }")
etyp := typ.Elem()
testType(t, 4, etyp, "struct { c chan *int32; d float32 }")
styp := etyp
f := styp.Field(0)
testType(t, 5, f.Type, "chan *int32")
f, present := styp.FieldByName("d")
if !present {
t.Errorf("FieldByName says present field is absent")
}
testType(t, 6, f.Type, "float32")
f, present = styp.FieldByName("absent")
if present {
t.Errorf("FieldByName says absent field is present")
}
typ = TypeOf([32]int32{})
testType(t, 7, typ, "[32]int32")
testType(t, 8, typ.Elem(), "int32")
typ = TypeOf((map[string]*int32)(nil))
testType(t, 9, typ, "map[string]*int32")
mtyp := typ
testType(t, 10, mtyp.Key(), "string")
testType(t, 11, mtyp.Elem(), "*int32")
typ = TypeOf((chan<- string)(nil))
testType(t, 12, typ, "chan<- string")
testType(t, 13, typ.Elem(), "string")
// make sure tag strings are not part of element type
typ = TypeOf(struct {
d []uint32 `reflect:"TAG"`
}{}).Field(0).Type
testType(t, 14, typ, "[]uint32")
}
*/
func TestInterfaceGet(t *testing.T) {
var inter struct {
E any
}
inter.E = 123.456
v1 := ValueOf(&inter)
v2 := v1.Elem().Field(0)
assert(t, v2.Type().String(), "interface {}")
i2 := v2.Interface()
v3 := ValueOf(i2)
assert(t, v3.Type().String(), "float64")
}
func TestInterfaceValue(t *testing.T) {
var inter struct {
E any
}
inter.E = 123.456
v1 := ValueOf(&inter)
v2 := v1.Elem().Field(0)
assert(t, v2.Type().String(), "interface {}")
v3 := v2.Elem()
assert(t, v3.Type().String(), "float64")
i3 := v2.Interface()
if _, ok := i3.(float64); !ok {
t.Error("v2.Interface() did not return float64, got ", TypeOf(i3))
}
}
/*
func TestFunctionValue(t *testing.T) {
var x any = func() {}
v := ValueOf(x)
if fmt.Sprint(v.Interface()) != fmt.Sprint(x) {
t.Fatalf("TestFunction returned wrong pointer")
}
assert(t, v.Type().String(), "func()")
}
*/
func TestGrow(t *testing.T) {
v := ValueOf([]int(nil))
shouldPanic("reflect.Value.Grow using unaddressable value", func() { v.Grow(0) })
v = ValueOf(new([]int)).Elem()
v.Grow(0)
if !v.IsNil() {
t.Errorf("v.Grow(0) should still be nil")
}
v.Grow(1)
if v.Cap() == 0 {
t.Errorf("v.Cap = %v, want non-zero", v.Cap())
}
want := v.UnsafePointer()
v.Grow(1)
got := v.UnsafePointer()
if got != want {
t.Errorf("noop v.Grow should not change pointers")
}
t.Run("Append", func(t *testing.T) {
var got, want []T
v := ValueOf(&got).Elem()
appendValue := func(vt T) {
v.Grow(1)
v.SetLen(v.Len() + 1)
v.Index(v.Len() - 1).Set(ValueOf(vt))
}
for i := 0; i < 10; i++ {
vt := T{i, float64(i), strconv.Itoa(i), &i}
appendValue(vt)
want = append(want, vt)
}
if !DeepEqual(got, want) {
t.Errorf("value mismatch:\ngot %v\nwant %v", got, want)
}
})
t.Run("Rate", func(t *testing.T) {
var b []byte
v := ValueOf(new([]byte)).Elem()
for i := 0; i < 10; i++ {
b = append(b[:cap(b)], make([]byte, 1)...)
v.SetLen(v.Cap())
v.Grow(1)
if v.Cap() != cap(b) {
t.Errorf("v.Cap = %v, want %v", v.Cap(), cap(b))
}
}
})
t.Run("ZeroCapacity", func(t *testing.T) {
for i := 0; i < 10; i++ {
v := ValueOf(new([]byte)).Elem()
v.Grow(61)
b := v.Bytes()
b = b[:cap(b)]
for i, c := range b {
if c != 0 {
t.Fatalf("Value.Bytes[%d] = 0x%02x, want 0x00", i, c)
}
b[i] = 0xff
}
runtime.GC()
}
})
}
var appendTests = []struct {
orig, extra []int
}{
{nil, nil},
{[]int{}, nil},
{nil, []int{}},
{[]int{}, []int{}},
{nil, []int{22}},
{[]int{}, []int{22}},
{make([]int, 2, 4), nil},
{make([]int, 2, 4), []int{}},
{make([]int, 2, 4), []int{22}},
{make([]int, 2, 4), []int{22, 33, 44}},
}
func TestAppend(t *testing.T) {
for i, test := range appendTests {
origLen, extraLen := len(test.orig), len(test.extra)
want := append(test.orig, test.extra...)
// Convert extra from []int to []Value.
e0 := make([]Value, len(test.extra))
for j, e := range test.extra {
e0[j] = ValueOf(e)
}
// Convert extra from []int to *SliceValue.
e1 := ValueOf(test.extra)
// Test Append.
a0 := ValueOf(&test.orig).Elem()
have0 := Append(a0, e0...)
if have0.CanAddr() {
t.Errorf("Append #%d: have slice should not be addressable", i)
}
if !DeepEqual(have0.Interface(), want) {
t.Errorf("Append #%d: have %v, want %v (%p %p)", i, have0, want, test.orig, have0.Interface())
}
// Check that the orig and extra slices were not modified.
if a0.Len() != len(test.orig) {
t.Errorf("Append #%d: a0.Len: have %d, want %d", i, a0.Len(), origLen)
}
if len(test.orig) != origLen {
t.Errorf("Append #%d origLen: have %v, want %v", i, len(test.orig), origLen)
}
if len(test.extra) != extraLen {
t.Errorf("Append #%d extraLen: have %v, want %v", i, len(test.extra), extraLen)
}
// Test AppendSlice.
a1 := ValueOf(&test.orig).Elem()
have1 := AppendSlice(a1, e1)
if have1.CanAddr() {
t.Errorf("AppendSlice #%d: have slice should not be addressable", i)
}
if !DeepEqual(have1.Interface(), want) {
t.Errorf("AppendSlice #%d: have %v, want %v", i, have1, want)
}
// Check that the orig and extra slices were not modified.
if a1.Len() != len(test.orig) {
t.Errorf("AppendSlice #%d: a1.Len: have %d, want %d", i, a0.Len(), origLen)
}
if len(test.orig) != origLen {
t.Errorf("AppendSlice #%d origLen: have %v, want %v", i, len(test.orig), origLen)
}
if len(test.extra) != extraLen {
t.Errorf("AppendSlice #%d extraLen: have %v, want %v", i, len(test.extra), extraLen)
}
// Test Append and AppendSlice with unexported value.
ax := ValueOf(struct{ x []int }{test.orig}).Field(0)
shouldPanic("using unexported field", func() { Append(ax, e0...) })
shouldPanic("using unexported field", func() { AppendSlice(ax, e1) })
}
}
func TestCopy(t *testing.T) {
a := []int{1, 2, 3, 4, 10, 9, 8, 7}
b := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
c := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
for i := 0; i < len(b); i++ {
if b[i] != c[i] {
t.Fatalf("b != c before test")
}
}
a1 := a
b1 := b
aa := ValueOf(&a1).Elem()
ab := ValueOf(&b1).Elem()
for tocopy := 1; tocopy <= 7; tocopy++ {
aa.SetLen(tocopy)
Copy(ab, aa)
aa.SetLen(8)
for i := 0; i < tocopy; i++ {
if a[i] != b[i] {
t.Errorf("(i) tocopy=%d a[%d]=%d, b[%d]=%d",
tocopy, i, a[i], i, b[i])
}
}
for i := tocopy; i < len(b); i++ {
if b[i] != c[i] {
if i < len(a) {
t.Errorf("(ii) tocopy=%d a[%d]=%d, b[%d]=%d, c[%d]=%d",
tocopy, i, a[i], i, b[i], i, c[i])
} else {
t.Errorf("(iii) tocopy=%d b[%d]=%d, c[%d]=%d",
tocopy, i, b[i], i, c[i])
}
} else {
t.Logf("tocopy=%d elem %d is okay\n", tocopy, i)
}
}
}
}
func TestCopyString(t *testing.T) {
t.Run("Slice", func(t *testing.T) {
s := bytes.Repeat([]byte{'_'}, 8)
val := ValueOf(s)
n := Copy(val, ValueOf(""))
if expecting := []byte("________"); n != 0 || !bytes.Equal(s, expecting) {
t.Errorf("got n = %d, s = %s, expecting n = 0, s = %s", n, s, expecting)
}
n = Copy(val, ValueOf("hello"))
if expecting := []byte("hello___"); n != 5 || !bytes.Equal(s, expecting) {
t.Errorf("got n = %d, s = %s, expecting n = 5, s = %s", n, s, expecting)
}
n = Copy(val, ValueOf("helloworld"))
if expecting := []byte("hellowor"); n != 8 || !bytes.Equal(s, expecting) {
t.Errorf("got n = %d, s = %s, expecting n = 8, s = %s", n, s, expecting)
}
})
t.Run("Array", func(t *testing.T) {
s := [...]byte{'_', '_', '_', '_', '_', '_', '_', '_'}
val := ValueOf(&s).Elem()
n := Copy(val, ValueOf(""))
if expecting := []byte("________"); n != 0 || !bytes.Equal(s[:], expecting) {
t.Errorf("got n = %d, s = %s, expecting n = 0, s = %s", n, s[:], expecting)
}
n = Copy(val, ValueOf("hello"))
if expecting := []byte("hello___"); n != 5 || !bytes.Equal(s[:], expecting) {
t.Errorf("got n = %d, s = %s, expecting n = 5, s = %s", n, s[:], expecting)
}
n = Copy(val, ValueOf("helloworld"))
if expecting := []byte("hellowor"); n != 8 || !bytes.Equal(s[:], expecting) {
t.Errorf("got n = %d, s = %s, expecting n = 8, s = %s", n, s[:], expecting)
}
})
}
func TestCopyArray(t *testing.T) {
a := [8]int{1, 2, 3, 4, 10, 9, 8, 7}
b := [11]int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
c := b
aa := ValueOf(&a).Elem()
ab := ValueOf(&b).Elem()
Copy(ab, aa)
for i := 0; i < len(a); i++ {
if a[i] != b[i] {
t.Errorf("(i) a[%d]=%d, b[%d]=%d", i, a[i], i, b[i])
}
}
for i := len(a); i < len(b); i++ {
if b[i] != c[i] {
t.Errorf("(ii) b[%d]=%d, c[%d]=%d", i, b[i], i, c[i])
} else {
t.Logf("elem %d is okay\n", i)
}
}
}
func TestBigUnnamedStruct(t *testing.T) {
b := struct{ a, b, c, d int64 }{1, 2, 3, 4}
v := ValueOf(b)
b1 := v.Interface().(struct {
a, b, c, d int64
})
if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d {
t.Errorf("ValueOf(%v).Interface().(*Big) = %v", b, b1)
}
}
type big struct {
a, b, c, d, e int64
}
func TestBigStruct(t *testing.T) {
b := big{1, 2, 3, 4, 5}
v := ValueOf(b)
b1 := v.Interface().(big)
if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d || b1.e != b.e {
t.Errorf("ValueOf(%v).Interface().(big) = %v", b, b1)
}
}
type Basic struct {
x int
y float32
}
type NotBasic Basic
type DeepEqualTest struct {
a, b any
eq bool
}
// Simple functions for DeepEqual tests.
var (
fn1 func() // nil.
fn2 func() // nil.
fn3 = func() { fn1() } // Not nil.
)
type self struct{}
type Loop *Loop
type Loopy any
var loop1, loop2 Loop
var loopy1, loopy2 Loopy
var cycleMap1, cycleMap2, cycleMap3 map[string]any
type structWithSelfPtr struct {
p *structWithSelfPtr
s string
}
func init() {
loop1 = &loop2
loop2 = &loop1
loopy1 = &loopy2
loopy2 = &loopy1
cycleMap1 = map[string]any{}
cycleMap1["cycle"] = cycleMap1
cycleMap2 = map[string]any{}
cycleMap2["cycle"] = cycleMap2
cycleMap3 = map[string]any{}
cycleMap3["different"] = cycleMap3
}
var deepEqualTests = []DeepEqualTest{
// Equalities
{nil, nil, true},
{1, 1, true},
{int32(1), int32(1), true},
{0.5, 0.5, true},
{float32(0.5), float32(0.5), true},
{"hello", "hello", true},
{make([]int, 10), make([]int, 10), true},
{&[3]int{1, 2, 3}, &[3]int{1, 2, 3}, true},
{Basic{1, 0.5}, Basic{1, 0.5}, true},
{error(nil), error(nil), true},
{map[int]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, true},
{fn1, fn2, true},
{[]byte{1, 2, 3}, []byte{1, 2, 3}, true},
{[]MyByte{1, 2, 3}, []MyByte{1, 2, 3}, true},
{MyBytes{1, 2, 3}, MyBytes{1, 2, 3}, true},
// Inequalities
{1, 2, false},
{int32(1), int32(2), false},
{0.5, 0.6, false},
{float32(0.5), float32(0.6), false},
{"hello", "hey", false},
{make([]int, 10), make([]int, 11), false},
{&[3]int{1, 2, 3}, &[3]int{1, 2, 4}, false},
{Basic{1, 0.5}, Basic{1, 0.6}, false},
{Basic{1, 0}, Basic{2, 0}, false},
{map[int]string{1: "one", 3: "two"}, map[int]string{2: "two", 1: "one"}, false},
{map[int]string{1: "one", 2: "txo"}, map[int]string{2: "two", 1: "one"}, false},
{map[int]string{1: "one"}, map[int]string{2: "two", 1: "one"}, false},
{map[int]string{2: "two", 1: "one"}, map[int]string{1: "one"}, false},
{nil, 1, false},
{1, nil, false},
{fn1, fn3, false},
{fn3, fn3, false},
{[][]int{{1}}, [][]int{{2}}, false},
{&structWithSelfPtr{p: &structWithSelfPtr{s: "a"}}, &structWithSelfPtr{p: &structWithSelfPtr{s: "b"}}, false},
// Fun with floating point.
{math.NaN(), math.NaN(), false},
{&[1]float64{math.NaN()}, &[1]float64{math.NaN()}, false},
{&[1]float64{math.NaN()}, self{}, true},
{[]float64{math.NaN()}, []float64{math.NaN()}, false},
{[]float64{math.NaN()}, self{}, true},
{map[float64]float64{math.NaN(): 1}, map[float64]float64{1: 2}, false},
{map[float64]float64{math.NaN(): 1}, self{}, true},
// Nil vs empty: not the same.
{[]int{}, []int(nil), false},
{[]int{}, []int{}, true},
{[]int(nil), []int(nil), true},
{map[int]int{}, map[int]int(nil), false},
{map[int]int{}, map[int]int{}, true},
{map[int]int(nil), map[int]int(nil), true},
// Mismatched types
{1, 1.0, false},
{int32(1), int64(1), false},
{0.5, "hello", false},
{[]int{1, 2, 3}, [3]int{1, 2, 3}, false},
{&[3]any{1, 2, 4}, &[3]any{1, 2, "s"}, false},
{Basic{1, 0.5}, NotBasic{1, 0.5}, false},
{map[uint]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, false},
{[]byte{1, 2, 3}, []MyByte{1, 2, 3}, false},
{[]MyByte{1, 2, 3}, MyBytes{1, 2, 3}, false},
{[]byte{1, 2, 3}, MyBytes{1, 2, 3}, false},
// Possible loops.
{&loop1, &loop1, true},
{&loop1, &loop2, true},
{&loopy1, &loopy1, true},
{&loopy1, &loopy2, true},
{&cycleMap1, &cycleMap2, true},
{&cycleMap1, &cycleMap3, false},
}
func TestDeepEqual(t *testing.T) {
for _, test := range deepEqualTests {
if test.b == (self{}) {
test.b = test.a
}
if r := DeepEqual(test.a, test.b); r != test.eq {
t.Errorf("DeepEqual(%#v, %#v) = %v, want %v", test.a, test.b, r, test.eq)
}
}
}
func TestTypeOf(t *testing.T) {
// Special case for nil
if typ := TypeOf(nil); typ != nil {
t.Errorf("expected nil type for nil value; got %v", typ)
}
for _, test := range deepEqualTests {
v := ValueOf(test.a)
if !v.IsValid() {
continue
}
typ := TypeOf(test.a)
if typ != v.Type() {
t.Errorf("TypeOf(%v) = %v, but ValueOf(%v).Type() = %v", test.a, typ, test.a, v.Type())
}
}
}
type Recursive struct {
x int
r *Recursive
}
func TestDeepEqualRecursiveStruct(t *testing.T) {
a, b := new(Recursive), new(Recursive)
*a = Recursive{12, a}
*b = Recursive{12, b}
if !DeepEqual(a, b) {
t.Error("DeepEqual(recursive same) = false, want true")
}
}
type _Complex struct {
a int
b [3]*_Complex
c *string
d map[float64]float64
}
func TestDeepEqualComplexStruct(t *testing.T) {
m := make(map[float64]float64)
stra, strb := "hello", "hello"
a, b := new(_Complex), new(_Complex)
*a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m}
*b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m}
if !DeepEqual(a, b) {
t.Error("DeepEqual(complex same) = false, want true")
}
}
func TestDeepEqualComplexStructInequality(t *testing.T) {
m := make(map[float64]float64)
stra, strb := "hello", "helloo" // Difference is here
a, b := new(_Complex), new(_Complex)
*a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m}
*b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m}
if DeepEqual(a, b) {
t.Error("DeepEqual(complex different) = true, want false")
}
}
type UnexpT struct {
m map[int]int
}
func TestDeepEqualUnexportedMap(t *testing.T) {
// Check that DeepEqual can look at unexported fields.
x1 := UnexpT{map[int]int{1: 2}}
x2 := UnexpT{map[int]int{1: 2}}
if !DeepEqual(&x1, &x2) {
t.Error("DeepEqual(x1, x2) = false, want true")
}
y1 := UnexpT{map[int]int{2: 3}}
if DeepEqual(&x1, &y1) {
t.Error("DeepEqual(x1, y1) = true, want false")
}
}
/*
var deepEqualPerfTests = []struct {
x, y any
}{
{x: int8(99), y: int8(99)},
{x: []int8{99}, y: []int8{99}},
{x: int16(99), y: int16(99)},
{x: []int16{99}, y: []int16{99}},
{x: int32(99), y: int32(99)},
{x: []int32{99}, y: []int32{99}},
{x: int64(99), y: int64(99)},
{x: []int64{99}, y: []int64{99}},
{x: int(999999), y: int(999999)},
{x: []int{999999}, y: []int{999999}},
{x: uint8(99), y: uint8(99)},
{x: []uint8{99}, y: []uint8{99}},
{x: uint16(99), y: uint16(99)},
{x: []uint16{99}, y: []uint16{99}},
{x: uint32(99), y: uint32(99)},
{x: []uint32{99}, y: []uint32{99}},
{x: uint64(99), y: uint64(99)},
{x: []uint64{99}, y: []uint64{99}},
{x: uint(999999), y: uint(999999)},
{x: []uint{999999}, y: []uint{999999}},
{x: uintptr(999999), y: uintptr(999999)},
{x: []uintptr{999999}, y: []uintptr{999999}},
{x: float32(1.414), y: float32(1.414)},
{x: []float32{1.414}, y: []float32{1.414}},
{x: float64(1.414), y: float64(1.414)},
{x: []float64{1.414}, y: []float64{1.414}},
{x: complex64(1.414), y: complex64(1.414)},
{x: []complex64{1.414}, y: []complex64{1.414}},
{x: complex128(1.414), y: complex128(1.414)},
{x: []complex128{1.414}, y: []complex128{1.414}},
{x: true, y: true},
{x: []bool{true}, y: []bool{true}},
{x: "abcdef", y: "abcdef"},
{x: []string{"abcdef"}, y: []string{"abcdef"}},
{x: []byte("abcdef"), y: []byte("abcdef")},
{x: [][]byte{[]byte("abcdef")}, y: [][]byte{[]byte("abcdef")}},
{x: [6]byte{'a', 'b', 'c', 'a', 'b', 'c'}, y: [6]byte{'a', 'b', 'c', 'a', 'b', 'c'}},
{x: [][6]byte{[6]byte{'a', 'b', 'c', 'a', 'b', 'c'}}, y: [][6]byte{[6]byte{'a', 'b', 'c', 'a', 'b', 'c'}}},
}
func TestDeepEqualAllocs(t *testing.T) {
for _, tt := range deepEqualPerfTests {
t.Run(ValueOf(tt.x).Type().String(), func(t *testing.T) {
got := testing.AllocsPerRun(100, func() {
if !DeepEqual(tt.x, tt.y) {
t.Errorf("DeepEqual(%v, %v)=false", tt.x, tt.y)
}
})
if int(got) != 0 {
t.Errorf("DeepEqual(%v, %v) allocated %d times", tt.x, tt.y, int(got))
}
})
}
}
*/
func check2ndField(x any, offs uintptr, t *testing.T) {
s := ValueOf(x)
f := s.Type().Field(1)
if f.Offset != offs {
t.Error("mismatched offsets in structure alignment:", f.Offset, offs)
}
}
// Check that structure alignment & offsets viewed through reflect agree with those
// from the compiler itself.
func TestAlignment(t *testing.T) {
type T1inner struct {
a int
}
type T1 struct {
T1inner
f int
}
type T2inner struct {
a, b int
}
type T2 struct {
T2inner
f int
}
x := T1{T1inner{2}, 17}
check2ndField(x, uintptr(unsafe.Pointer(&x.f))-uintptr(unsafe.Pointer(&x)), t)
x1 := T2{T2inner{2, 3}, 17}
check2ndField(x1, uintptr(unsafe.Pointer(&x1.f))-uintptr(unsafe.Pointer(&x1)), t)
}
func Nil(a any, t *testing.T) {
n := ValueOf(a).Field(0)
if !n.IsNil() {
t.Errorf("%v should be nil", a)
}
}
func NotNil(a any, t *testing.T) {
n := ValueOf(a).Field(0)
if n.IsNil() {
t.Errorf("value of type %v should not be nil", ValueOf(a).Type().String())
}
}
func TestIsNil(t *testing.T) {
// These implement IsNil.
// Wrap in extra struct to hide interface type.
doNil := []any{
struct{ x *int }{},
struct{ x any }{},
struct{ x map[string]int }{},
struct{ x func() bool }{},
struct{ x chan int }{},
struct{ x []string }{},
struct{ x unsafe.Pointer }{},
}
for _, ts := range doNil {
ty := TypeOf(ts).Field(0).Type
v := Zero(ty)
v.IsNil() // panics if not okay to call
}
// Check the implementations
var pi struct {
x *int
}
Nil(pi, t)
pi.x = new(int)
NotNil(pi, t)
var si struct {
x []int
}
Nil(si, t)
si.x = make([]int, 10)
NotNil(si, t)
var ci struct {
x chan int
}
Nil(ci, t)
ci.x = make(chan int)
NotNil(ci, t)
var mi struct {
x map[int]int
}
Nil(mi, t)
mi.x = make(map[int]int)
NotNil(mi, t)
var ii struct {
x any
}
Nil(ii, t)
ii.x = 2
NotNil(ii, t)
var fi struct {
x func(t *testing.T)
}
Nil(fi, t)
fi.x = TestIsNil
NotNil(fi, t)
}
func setField[S, V any](in S, offset uintptr, value V) (out S) {
*(*V)(unsafe.Add(unsafe.Pointer(&in), offset)) = value
return in
}
func TestIsZero(t *testing.T) {
for i, tt := range []struct {
x any
want bool
}{
// Booleans
{true, false},
{false, true},
// Numeric types
{int(0), true},
{int(1), false},
{int8(0), true},
{int8(1), false},
{int16(0), true},
{int16(1), false},
{int32(0), true},
{int32(1), false},
{int64(0), true},
{int64(1), false},
{uint(0), true},
{uint(1), false},
{uint8(0), true},
{uint8(1), false},
{uint16(0), true},
{uint16(1), false},
{uint32(0), true},
{uint32(1), false},
{uint64(0), true},
{uint64(1), false},
{float32(0), true},
{float32(1.2), false},
{float64(0), true},
{float64(1.2), false},
{math.Copysign(0, -1), true},
{complex64(0), true},
{complex64(1.2), false},
{complex128(0), true},
{complex128(1.2), false},
{complex(math.Copysign(0, -1), 0), true},
{complex(0, math.Copysign(0, -1)), true},
{complex(math.Copysign(0, -1), math.Copysign(0, -1)), true},
{uintptr(0), true},
{uintptr(128), false},
// Array
{Zero(TypeOf([5]string{})).Interface(), true},
{[5]string{}, true}, // comparable array
{[5]string{"", "", "", "a", ""}, false}, // comparable array
{[1]*int{}, true}, // direct pointer array
{[1]*int{new(int)}, false}, // direct pointer array
{[3][]int{}, true}, // incomparable array
{[3][]int{{1}}, false}, // incomparable array
{[1 << 12]byte{}, true},
{[1 << 12]byte{1}, false},
{[1]struct{ p *int }{}, true},
{[1]struct{ p *int }{{new(int)}}, false},
{[3]Value{}, true},
{[3]Value{{}, ValueOf(0), {}}, false},
// Chan
{(chan string)(nil), true},
{make(chan string), false},
{time.After(1), false},
// Func
{(func())(nil), true},
{New, false},
// Interface
{New(TypeOf(new(error)).Elem()).Elem(), true},
{(io.Reader)(strings.NewReader("")), false},
// Map
{(map[string]string)(nil), true},
{map[string]string{}, false},
{make(map[string]string), false},
// Pointer
{(*func())(nil), true},
{(*int)(nil), true},
{new(int), false},
// Slice
{[]string{}, false},
{([]string)(nil), true},
{make([]string, 0), false},
// Strings
{"", true},
{"not-zero", false},
// Structs
{T{}, true}, // comparable struct
{T{123, 456.75, "hello", &_i}, false}, // comparable struct
{struct{ p *int }{}, true}, // direct pointer struct
{struct{ p *int }{new(int)}, false}, // direct pointer struct
{struct{ s []int }{}, true}, // incomparable struct
{struct{ s []int }{[]int{1}}, false}, // incomparable struct
{struct{ Value }{}, true},
{struct{ Value }{ValueOf(0)}, false},
{struct{ _, a, _ uintptr }{}, true}, // comparable struct with blank fields
{setField(struct{ _, a, _ uintptr }{}, 0*unsafe.Sizeof(uintptr(0)), 1), true},
{setField(struct{ _, a, _ uintptr }{}, 1*unsafe.Sizeof(uintptr(0)), 1), false},
{setField(struct{ _, a, _ uintptr }{}, 2*unsafe.Sizeof(uintptr(0)), 1), true},
{struct{ _, a, _ func() }{}, true}, // incomparable struct with blank fields
{setField(struct{ _, a, _ func() }{}, 0*unsafe.Sizeof((func())(nil)), func() {}), true},
{setField(struct{ _, a, _ func() }{}, 1*unsafe.Sizeof((func())(nil)), func() {}), false},
{setField(struct{ _, a, _ func() }{}, 2*unsafe.Sizeof((func())(nil)), func() {}), true},
{struct{ a [256]S }{}, true},
{struct{ a [256]S }{a: [256]S{2: {i1: 1}}}, false},
{struct{ a [256]float32 }{}, true},
{struct{ a [256]float32 }{a: [256]float32{2: 1.0}}, false},
{struct{ _, a [256]S }{}, true},
{setField(struct{ _, a [256]S }{}, 0*unsafe.Sizeof(int64(0)), int64(1)), true},
// UnsafePointer
{(unsafe.Pointer)(nil), true},
{(unsafe.Pointer)(new(int)), false},
} {
var x Value
if v, ok := tt.x.(Value); ok {
x = v
} else {
x = ValueOf(tt.x)
}
b := x.IsZero()
if b != tt.want {
t.Errorf("%d: IsZero((%s)(%+v)) = %t, want %t", i, x.Kind(), tt.x, b, tt.want)
}
if !Zero(TypeOf(tt.x)).IsZero() {
t.Errorf("%d: IsZero(Zero(TypeOf((%s)(%+v)))) is false", i, x.Kind(), tt.x)
}
p := New(x.Type()).Elem()
p.Set(x)
p.SetZero()
if !p.IsZero() {
t.Errorf("%d: IsZero((%s)(%+v)) is true after SetZero", i, p.Kind(), tt.x)
}
}
/* // TODO(tinygo): panic/recover support
func() {
defer func() {
if r := recover(); r == nil {
t.Error("should panic for invalid value")
}
}()
(Value{}).IsZero()
}()
*/
}
/*
func TestInterfaceExtraction(t *testing.T) {
var s struct {
W io.Writer
}
s.W = os.Stdout
v := Indirect(ValueOf(&s)).Field(0).Interface()
if v != s.W.(any) {
t.Error("Interface() on interface: ", v, s.W)
}
}
*/
func TestNilPtrValueSub(t *testing.T) {
var pi *int
if pv := ValueOf(pi); pv.Elem().IsValid() {
t.Error("ValueOf((*int)(nil)).Elem().IsValid()")
}
}
func TestMap(t *testing.T) {
m := map[string]int{"a": 1, "b": 2}
mv := ValueOf(m)
if n := mv.Len(); n != len(m) {
t.Errorf("Len = %d, want %d", n, len(m))
}
keys := mv.MapKeys()
newmap := MakeMap(mv.Type())
for k, v := range m {
// Check that returned Keys match keys in range.
// These aren't required to be in the same order.
seen := false
for _, kv := range keys {
if kv.String() == k {
seen = true
break
}
}
if !seen {
t.Errorf("Missing key %q", k)
}
// Check that value lookup is correct.
vv := mv.MapIndex(ValueOf(k))
if vi := vv.Int(); vi != int64(v) {
t.Errorf("Key %q: have value %d, want %d", k, vi, v)
}
// Copy into new map.
newmap.SetMapIndex(ValueOf(k), ValueOf(v))
}
vv := mv.MapIndex(ValueOf("not-present"))
if vv.IsValid() {
t.Errorf("Invalid key: got non-nil value %s", valueToString(vv))
}
newm := newmap.Interface().(map[string]int)
if len(newm) != len(m) {
t.Errorf("length after copy: newm=%d, m=%d", len(newm), len(m))
}
for k, v := range newm {
mv, ok := m[k]
if mv != v {
t.Errorf("newm[%q] = %d, but m[%q] = %d, %v", k, v, k, mv, ok)
}
}
newmap.SetMapIndex(ValueOf("a"), Value{})
v, ok := newm["a"]
if ok {
t.Errorf("newm[\"a\"] = %d after delete", v)
}
mv = ValueOf(&m).Elem()
mv.Set(Zero(mv.Type()))
if m != nil {
t.Errorf("mv.Set(nil) failed")
}
type S string
shouldPanic("not assignable", func() { mv.MapIndex(ValueOf(S("key"))) })
shouldPanic("not assignable", func() { mv.SetMapIndex(ValueOf(S("key")), ValueOf(0)) })
}
func TestNilMap(t *testing.T) {
var m map[string]int
mv := ValueOf(m)
keys := mv.MapKeys()
if len(keys) != 0 {
t.Errorf(">0 keys for nil map: %v", keys)
}
// Check that value for missing key is zero.
x := mv.MapIndex(ValueOf("hello"))
if x.Kind() != Invalid {
t.Errorf("m.MapIndex(\"hello\") for nil map = %v, want Invalid Value", x)
}
// Check big value too.
var mbig map[string][10 << 20]byte
x = ValueOf(mbig).MapIndex(ValueOf("hello"))
if x.Kind() != Invalid {
t.Errorf("mbig.MapIndex(\"hello\") for nil map = %v, want Invalid Value", x)
}
// Test that deletes from a nil map succeed.
mv.SetMapIndex(ValueOf("hi"), Value{})
}
/* // TODO(tinygo): missing chan reflect support
func TestChan(t *testing.T) {
for loop := 0; loop < 2; loop++ {
var c chan int
var cv Value
// check both ways to allocate channels
switch loop {
case 1:
c = make(chan int, 1)
cv = ValueOf(c)
case 0:
cv = MakeChan(TypeOf(c), 1)
c = cv.Interface().(chan int)
}
// Send
cv.Send(ValueOf(2))
if i := <-c; i != 2 {
t.Errorf("reflect Send 2, native recv %d", i)
}
// Recv
c <- 3
if i, ok := cv.Recv(); i.Int() != 3 || !ok {
t.Errorf("native send 3, reflect Recv %d, %t", i.Int(), ok)
}
// TryRecv fail
val, ok := cv.TryRecv()
if val.IsValid() || ok {
t.Errorf("TryRecv on empty chan: %s, %t", valueToString(val), ok)
}
// TryRecv success
c <- 4
val, ok = cv.TryRecv()
if !val.IsValid() {
t.Errorf("TryRecv on ready chan got nil")
} else if i := val.Int(); i != 4 || !ok {
t.Errorf("native send 4, TryRecv %d, %t", i, ok)
}
// TrySend fail
c <- 100
ok = cv.TrySend(ValueOf(5))
i := <-c
if ok {
t.Errorf("TrySend on full chan succeeded: value %d", i)
}
// TrySend success
ok = cv.TrySend(ValueOf(6))
if !ok {
t.Errorf("TrySend on empty chan failed")
select {
case x := <-c:
t.Errorf("TrySend failed but it did send %d", x)
default:
}
} else {
if i = <-c; i != 6 {
t.Errorf("TrySend 6, recv %d", i)
}
}
// Close
c <- 123
cv.Close()
if i, ok := cv.Recv(); i.Int() != 123 || !ok {
t.Errorf("send 123 then close; Recv %d, %t", i.Int(), ok)
}
if i, ok := cv.Recv(); i.Int() != 0 || ok {
t.Errorf("after close Recv %d, %t", i.Int(), ok)
}
}
// check creation of unbuffered channel
var c chan int
cv := MakeChan(TypeOf(c), 0)
c = cv.Interface().(chan int)
if cv.TrySend(ValueOf(7)) {
t.Errorf("TrySend on sync chan succeeded")
}
if v, ok := cv.TryRecv(); v.IsValid() || ok {
t.Errorf("TryRecv on sync chan succeeded: isvalid=%v ok=%v", v.IsValid(), ok)
}
// len/cap
cv = MakeChan(TypeOf(c), 10)
c = cv.Interface().(chan int)
for i := 0; i < 3; i++ {
c <- i
}
if l, m := cv.Len(), cv.Cap(); l != len(c) || m != cap(c) {
t.Errorf("Len/Cap = %d/%d want %d/%d", l, m, len(c), cap(c))
}
}
// caseInfo describes a single case in a select test.
type caseInfo struct {
desc string
canSelect bool
recv Value
closed bool
helper func()
panic bool
}
var allselect = flag.Bool("allselect", false, "exhaustive select test")
func TestSelect(t *testing.T) {
selectWatch.once.Do(func() { go selectWatcher() })
var x exhaustive
nch := 0
newop := func(n int, cap int) (ch, val Value) {
nch++
if nch%101%2 == 1 {
c := make(chan int, cap)
ch = ValueOf(c)
val = ValueOf(n)
} else {
c := make(chan string, cap)
ch = ValueOf(c)
val = ValueOf(fmt.Sprint(n))
}
return
}
for n := 0; x.Next(); n++ {
if testing.Short() && n >= 1000 {
break
}
if n >= 100000 && !*allselect {
break
}
if n%100000 == 0 && testing.Verbose() {
println("TestSelect", n)
}
var cases []SelectCase
var info []caseInfo
// Ready send.
if x.Maybe() {
ch, val := newop(len(cases), 1)
cases = append(cases, SelectCase{
Dir: SelectSend,
Chan: ch,
Send: val,
})
info = append(info, caseInfo{desc: "ready send", canSelect: true})
}
// Ready recv.
if x.Maybe() {
ch, val := newop(len(cases), 1)
ch.Send(val)
cases = append(cases, SelectCase{
Dir: SelectRecv,
Chan: ch,
})
info = append(info, caseInfo{desc: "ready recv", canSelect: true, recv: val})
}
// Blocking send.
if x.Maybe() {
ch, val := newop(len(cases), 0)
cases = append(cases, SelectCase{
Dir: SelectSend,
Chan: ch,
Send: val,
})
// Let it execute?
if x.Maybe() {
f := func() { ch.Recv() }
info = append(info, caseInfo{desc: "blocking send", helper: f})
} else {
info = append(info, caseInfo{desc: "blocking send"})
}
}
// Blocking recv.
if x.Maybe() {
ch, val := newop(len(cases), 0)
cases = append(cases, SelectCase{
Dir: SelectRecv,
Chan: ch,
})
// Let it execute?
if x.Maybe() {
f := func() { ch.Send(val) }
info = append(info, caseInfo{desc: "blocking recv", recv: val, helper: f})
} else {
info = append(info, caseInfo{desc: "blocking recv"})
}
}
// Zero Chan send.
if x.Maybe() {
// Maybe include value to send.
var val Value
if x.Maybe() {
val = ValueOf(100)
}
cases = append(cases, SelectCase{
Dir: SelectSend,
Send: val,
})
info = append(info, caseInfo{desc: "zero Chan send"})
}
// Zero Chan receive.
if x.Maybe() {
cases = append(cases, SelectCase{
Dir: SelectRecv,
})
info = append(info, caseInfo{desc: "zero Chan recv"})
}
// nil Chan send.
if x.Maybe() {
cases = append(cases, SelectCase{
Dir: SelectSend,
Chan: ValueOf((chan int)(nil)),
Send: ValueOf(101),
})
info = append(info, caseInfo{desc: "nil Chan send"})
}
// nil Chan recv.
if x.Maybe() {
cases = append(cases, SelectCase{
Dir: SelectRecv,
Chan: ValueOf((chan int)(nil)),
})
info = append(info, caseInfo{desc: "nil Chan recv"})
}
// closed Chan send.
if x.Maybe() {
ch := make(chan int)
close(ch)
cases = append(cases, SelectCase{
Dir: SelectSend,
Chan: ValueOf(ch),
Send: ValueOf(101),
})
info = append(info, caseInfo{desc: "closed Chan send", canSelect: true, panic: true})
}
// closed Chan recv.
if x.Maybe() {
ch, val := newop(len(cases), 0)
ch.Close()
val = Zero(val.Type())
cases = append(cases, SelectCase{
Dir: SelectRecv,
Chan: ch,
})
info = append(info, caseInfo{desc: "closed Chan recv", canSelect: true, closed: true, recv: val})
}
var helper func() // goroutine to help the select complete
// Add default? Must be last case here, but will permute.
// Add the default if the select would otherwise
// block forever, and maybe add it anyway.
numCanSelect := 0
canProceed := false
canBlock := true
canPanic := false
helpers := []int{}
for i, c := range info {
if c.canSelect {
canProceed = true
canBlock = false
numCanSelect++
if c.panic {
canPanic = true
}
} else if c.helper != nil {
canProceed = true
helpers = append(helpers, i)
}
}
if !canProceed || x.Maybe() {
cases = append(cases, SelectCase{
Dir: SelectDefault,
})
info = append(info, caseInfo{desc: "default", canSelect: canBlock})
numCanSelect++
} else if canBlock {
// Select needs to communicate with another goroutine.
cas := &info[helpers[x.Choose(len(helpers))]]
helper = cas.helper
cas.canSelect = true
numCanSelect++
}
// Permute cases and case info.
// Doing too much here makes the exhaustive loop
// too exhausting, so just do two swaps.
for loop := 0; loop < 2; loop++ {
i := x.Choose(len(cases))
j := x.Choose(len(cases))
cases[i], cases[j] = cases[j], cases[i]
info[i], info[j] = info[j], info[i]
}
if helper != nil {
// We wait before kicking off a goroutine to satisfy a blocked select.
// The pause needs to be big enough to let the select block before
// we run the helper, but if we lose that race once in a while it's okay: the
// select will just proceed immediately. Not a big deal.
// For short tests we can grow [sic] the timeout a bit without fear of taking too long
pause := 10 * time.Microsecond
if testing.Short() {
pause = 100 * time.Microsecond
}
time.AfterFunc(pause, helper)
}
// Run select.
i, recv, recvOK, panicErr := runSelect(cases, info)
if panicErr != nil && !canPanic {
t.Fatalf("%s\npanicked unexpectedly: %v", fmtSelect(info), panicErr)
}
if panicErr == nil && canPanic && numCanSelect == 1 {
t.Fatalf("%s\nselected #%d incorrectly (should panic)", fmtSelect(info), i)
}
if panicErr != nil {
continue
}
cas := info[i]
if !cas.canSelect {
recvStr := ""
if recv.IsValid() {
recvStr = fmt.Sprintf(", received %v, %v", recv.Interface(), recvOK)
}
t.Fatalf("%s\nselected #%d incorrectly%s", fmtSelect(info), i, recvStr)
}
if cas.panic {
t.Fatalf("%s\nselected #%d incorrectly (case should panic)", fmtSelect(info), i)
}
if cases[i].Dir == SelectRecv {
if !recv.IsValid() {
t.Fatalf("%s\nselected #%d but got %v, %v, want %v, %v", fmtSelect(info), i, recv, recvOK, cas.recv.Interface(), !cas.closed)
}
if !cas.recv.IsValid() {
t.Fatalf("%s\nselected #%d but internal error: missing recv value", fmtSelect(info), i)
}
if recv.Interface() != cas.recv.Interface() || recvOK != !cas.closed {
if recv.Interface() == cas.recv.Interface() && recvOK == !cas.closed {
t.Fatalf("%s\nselected #%d, got %#v, %v, and DeepEqual is broken on %T", fmtSelect(info), i, recv.Interface(), recvOK, recv.Interface())
}
t.Fatalf("%s\nselected #%d but got %#v, %v, want %#v, %v", fmtSelect(info), i, recv.Interface(), recvOK, cas.recv.Interface(), !cas.closed)
}
} else {
if recv.IsValid() || recvOK {
t.Fatalf("%s\nselected #%d but got %v, %v, want %v, %v", fmtSelect(info), i, recv, recvOK, Value{}, false)
}
}
}
}
func TestSelectMaxCases(t *testing.T) {
var sCases []SelectCase
channel := make(chan int)
close(channel)
for i := 0; i < 65536; i++ {
sCases = append(sCases, SelectCase{
Dir: SelectRecv,
Chan: ValueOf(channel),
})
}
// Should not panic
_, _, _ = Select(sCases)
sCases = append(sCases, SelectCase{
Dir: SelectRecv,
Chan: ValueOf(channel),
})
defer func() {
if err := recover(); err != nil {
if err.(string) != "reflect.Select: too many cases (max 65536)" {
t.Fatalf("unexpected error from select call with greater than max supported cases")
}
} else {
t.Fatalf("expected select call to panic with greater than max supported cases")
}
}()
// Should panic
_, _, _ = Select(sCases)
}
func TestSelectNop(t *testing.T) {
// "select { default: }" should always return the default case.
chosen, _, _ := Select([]SelectCase{{Dir: SelectDefault}})
if chosen != 0 {
t.Fatalf("expected Select to return 0, but got %#v", chosen)
}
}
// selectWatch and the selectWatcher are a watchdog mechanism for running Select.
// If the selectWatcher notices that the select has been blocked for >1 second, it prints
// an error describing the select and panics the entire test binary.
var selectWatch struct {
sync.Mutex
once sync.Once
now time.Time
info []caseInfo
}
func selectWatcher() {
for {
time.Sleep(1 * time.Second)
selectWatch.Lock()
if selectWatch.info != nil && time.Since(selectWatch.now) > 10*time.Second {
fmt.Fprintf(os.Stderr, "TestSelect:\n%s blocked indefinitely\n", fmtSelect(selectWatch.info))
panic("select stuck")
}
selectWatch.Unlock()
}
}
// runSelect runs a single select test.
// It returns the values returned by Select but also returns
// a panic value if the Select panics.
func runSelect(cases []SelectCase, info []caseInfo) (chosen int, recv Value, recvOK bool, panicErr any) {
defer func() {
panicErr = recover()
selectWatch.Lock()
selectWatch.info = nil
selectWatch.Unlock()
}()
selectWatch.Lock()
selectWatch.now = time.Now()
selectWatch.info = info
selectWatch.Unlock()
chosen, recv, recvOK = Select(cases)
return
}
// fmtSelect formats the information about a single select test.
func fmtSelect(info []caseInfo) string {
var buf strings.Builder
fmt.Fprintf(&buf, "\nselect {\n")
for i, cas := range info {
fmt.Fprintf(&buf, "%d: %s", i, cas.desc)
if cas.recv.IsValid() {
fmt.Fprintf(&buf, " val=%#v", cas.recv.Interface())
}
if cas.canSelect {
fmt.Fprintf(&buf, " canselect")
}
if cas.panic {
fmt.Fprintf(&buf, " panic")
}
fmt.Fprintf(&buf, "\n")
}
fmt.Fprintf(&buf, "}")
return buf.String()
}
// TODO(tinygo): missing func/method/call support
type two [2]uintptr
// Difficult test for function call because of
// implicit padding between arguments.
func dummy(b byte, c int, d byte, e two, f byte, g float32, h byte) (i byte, j int, k byte, l two, m byte, n float32, o byte) {
return b, c, d, e, f, g, h
}
func TestFunc(t *testing.T) {
ret := ValueOf(dummy).Call([]Value{
ValueOf(byte(10)),
ValueOf(20),
ValueOf(byte(30)),
ValueOf(two{40, 50}),
ValueOf(byte(60)),
ValueOf(float32(70)),
ValueOf(byte(80)),
})
if len(ret) != 7 {
t.Fatalf("Call returned %d values, want 7", len(ret))
}
i := byte(ret[0].Uint())
j := int(ret[1].Int())
k := byte(ret[2].Uint())
l := ret[3].Interface().(two)
m := byte(ret[4].Uint())
n := float32(ret[5].Float())
o := byte(ret[6].Uint())
if i != 10 || j != 20 || k != 30 || l != (two{40, 50}) || m != 60 || n != 70 || o != 80 {
t.Errorf("Call returned %d, %d, %d, %v, %d, %g, %d; want 10, 20, 30, [40, 50], 60, 70, 80", i, j, k, l, m, n, o)
}
for i, v := range ret {
if v.CanAddr() {
t.Errorf("result %d is addressable", i)
}
}
}
func TestCallConvert(t *testing.T) {
v := ValueOf(new(io.ReadWriter)).Elem()
f := ValueOf(func(r io.Reader) io.Reader { return r })
out := f.Call([]Value{v})
if len(out) != 1 || out[0].Type() != TypeOf(new(io.Reader)).Elem() || !out[0].IsNil() {
t.Errorf("expected [nil], got %v", out)
}
}
type emptyStruct struct{}
type nonEmptyStruct struct {
member int
}
func returnEmpty() emptyStruct {
return emptyStruct{}
}
func takesEmpty(e emptyStruct) {
}
func returnNonEmpty(i int) nonEmptyStruct {
return nonEmptyStruct{member: i}
}
func takesNonEmpty(n nonEmptyStruct) int {
return n.member
}
func TestCallWithStruct(t *testing.T) {
r := ValueOf(returnEmpty).Call(nil)
if len(r) != 1 || r[0].Type() != TypeOf(emptyStruct{}) {
t.Errorf("returning empty struct returned %#v instead", r)
}
r = ValueOf(takesEmpty).Call([]Value{ValueOf(emptyStruct{})})
if len(r) != 0 {
t.Errorf("takesEmpty returned values: %#v", r)
}
r = ValueOf(returnNonEmpty).Call([]Value{ValueOf(42)})
if len(r) != 1 || r[0].Type() != TypeOf(nonEmptyStruct{}) || r[0].Field(0).Int() != 42 {
t.Errorf("returnNonEmpty returned %#v", r)
}
r = ValueOf(takesNonEmpty).Call([]Value{ValueOf(nonEmptyStruct{member: 42})})
if len(r) != 1 || r[0].Type() != TypeOf(1) || r[0].Int() != 42 {
t.Errorf("takesNonEmpty returned %#v", r)
}
}
func TestCallReturnsEmpty(t *testing.T) {
// Issue 21717: past-the-end pointer write in Call with
// nonzero-sized frame and zero-sized return value.
runtime.GC()
var finalized uint32
f := func() (emptyStruct, *[2]int64) {
i := new([2]int64) // big enough to not be tinyalloc'd, so finalizer always runs when i dies
runtime.SetFinalizer(i, func(*[2]int64) { atomic.StoreUint32(&finalized, 1) })
return emptyStruct{}, i
}
v := ValueOf(f).Call(nil)[0] // out[0] should not alias out[1]'s memory, so the finalizer should run.
timeout := time.After(5 * time.Second)
for atomic.LoadUint32(&finalized) == 0 {
select {
case <-timeout:
t.Fatal("finalizer did not run")
default:
}
runtime.Gosched()
runtime.GC()
}
runtime.KeepAlive(v)
}
func TestMakeFunc(t *testing.T) {
f := dummy
fv := MakeFunc(TypeOf(f), func(in []Value) []Value { return in })
ValueOf(&f).Elem().Set(fv)
// Call g with small arguments so that there is
// something predictable (and different from the
// correct results) in those positions on the stack.
g := dummy
g(1, 2, 3, two{4, 5}, 6, 7, 8)
// Call constructed function f.
i, j, k, l, m, n, o := f(10, 20, 30, two{40, 50}, 60, 70, 80)
if i != 10 || j != 20 || k != 30 || l != (two{40, 50}) || m != 60 || n != 70 || o != 80 {
t.Errorf("Call returned %d, %d, %d, %v, %d, %g, %d; want 10, 20, 30, [40, 50], 60, 70, 80", i, j, k, l, m, n, o)
}
}
func TestMakeFuncInterface(t *testing.T) {
fn := func(i int) int { return i }
incr := func(in []Value) []Value {
return []Value{ValueOf(int(in[0].Int() + 1))}
}
fv := MakeFunc(TypeOf(fn), incr)
ValueOf(&fn).Elem().Set(fv)
if r := fn(2); r != 3 {
t.Errorf("Call returned %d, want 3", r)
}
if r := fv.Call([]Value{ValueOf(14)})[0].Int(); r != 15 {
t.Errorf("Call returned %d, want 15", r)
}
if r := fv.Interface().(func(int) int)(26); r != 27 {
t.Errorf("Call returned %d, want 27", r)
}
}
func TestMakeFuncVariadic(t *testing.T) {
// Test that variadic arguments are packed into a slice and passed as last arg
fn := func(_ int, is ...int) []int { return nil }
fv := MakeFunc(TypeOf(fn), func(in []Value) []Value { return in[1:2] })
ValueOf(&fn).Elem().Set(fv)
r := fn(1, 2, 3)
if r[0] != 2 || r[1] != 3 {
t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
}
r = fn(1, []int{2, 3}...)
if r[0] != 2 || r[1] != 3 {
t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
}
r = fv.Call([]Value{ValueOf(1), ValueOf(2), ValueOf(3)})[0].Interface().([]int)
if r[0] != 2 || r[1] != 3 {
t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
}
r = fv.CallSlice([]Value{ValueOf(1), ValueOf([]int{2, 3})})[0].Interface().([]int)
if r[0] != 2 || r[1] != 3 {
t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
}
f := fv.Interface().(func(int, ...int) []int)
r = f(1, 2, 3)
if r[0] != 2 || r[1] != 3 {
t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
}
r = f(1, []int{2, 3}...)
if r[0] != 2 || r[1] != 3 {
t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
}
}
// Dummy type that implements io.WriteCloser
type WC struct {
}
func (w *WC) Write(p []byte) (n int, err error) {
return 0, nil
}
func (w *WC) Close() error {
return nil
}
func TestMakeFuncValidReturnAssignments(t *testing.T) {
// reflect.Values returned from the wrapped function should be assignment-converted
// to the types returned by the result of MakeFunc.
// Concrete types should be promotable to interfaces they implement.
var f func() error
f = MakeFunc(TypeOf(f), func([]Value) []Value {
return []Value{ValueOf(io.EOF)}
}).Interface().(func() error)
f()
// Super-interfaces should be promotable to simpler interfaces.
var g func() io.Writer
g = MakeFunc(TypeOf(g), func([]Value) []Value {
var w io.WriteCloser = &WC{}
return []Value{ValueOf(&w).Elem()}
}).Interface().(func() io.Writer)
g()
// Channels should be promotable to directional channels.
var h func() <-chan int
h = MakeFunc(TypeOf(h), func([]Value) []Value {
return []Value{ValueOf(make(chan int))}
}).Interface().(func() <-chan int)
h()
// Unnamed types should be promotable to named types.
type T struct{ a, b, c int }
var i func() T
i = MakeFunc(TypeOf(i), func([]Value) []Value {
return []Value{ValueOf(struct{ a, b, c int }{a: 1, b: 2, c: 3})}
}).Interface().(func() T)
i()
}
func TestMakeFuncInvalidReturnAssignments(t *testing.T) {
// Type doesn't implement the required interface.
shouldPanic("", func() {
var f func() error
f = MakeFunc(TypeOf(f), func([]Value) []Value {
return []Value{ValueOf(int(7))}
}).Interface().(func() error)
f()
})
// Assigning to an interface with additional methods.
shouldPanic("", func() {
var f func() io.ReadWriteCloser
f = MakeFunc(TypeOf(f), func([]Value) []Value {
var w io.WriteCloser = &WC{}
return []Value{ValueOf(&w).Elem()}
}).Interface().(func() io.ReadWriteCloser)
f()
})
// Directional channels can't be assigned to bidirectional ones.
shouldPanic("", func() {
var f func() chan int
f = MakeFunc(TypeOf(f), func([]Value) []Value {
var c <-chan int = make(chan int)
return []Value{ValueOf(c)}
}).Interface().(func() chan int)
f()
})
// Two named types which are otherwise identical.
shouldPanic("", func() {
type T struct{ a, b, c int }
type U struct{ a, b, c int }
var f func() T
f = MakeFunc(TypeOf(f), func([]Value) []Value {
return []Value{ValueOf(U{a: 1, b: 2, c: 3})}
}).Interface().(func() T)
f()
})
}
*/
type Point struct {
x, y int
}
// This will be index 0.
func (p Point) AnotherMethod(scale int) int {
return -1
}
// This will be index 1.
func (p Point) Dist(scale int) int {
//println("Point.Dist", p.x, p.y, scale)
return p.x*p.x*scale + p.y*p.y*scale
}
// This will be index 2.
func (p Point) GCMethod(k int) int {
runtime.GC()
return k + p.x
}
// This will be index 3.
func (p Point) NoArgs() {
// Exercise no-argument/no-result paths.
}
// This will be index 4.
func (p Point) TotalDist(points ...Point) int {
tot := 0
for _, q := range points {
dx := q.x - p.x
dy := q.y - p.y
tot += dx*dx + dy*dy // Should call Sqrt, but it's just a test.
}
return tot
}
// This will be index 5.
func (p *Point) Int64Method(x int64) int64 {
return x
}
// This will be index 6.
func (p *Point) Int32Method(x int32) int32 {
return x
}
/*
// TODO(tinygo): missing method support
func TestMethod(t *testing.T) {
// Non-curried method of type.
p := Point{3, 4}
i := TypeOf(p).Method(1).Func.Call([]Value{ValueOf(p), ValueOf(10)})[0].Int()
if i != 250 {
t.Errorf("Type Method returned %d; want 250", i)
}
m, ok := TypeOf(p).MethodByName("Dist")
if !ok {
t.Fatalf("method by name failed")
}
i = m.Func.Call([]Value{ValueOf(p), ValueOf(11)})[0].Int()
if i != 275 {
t.Errorf("Type MethodByName returned %d; want 275", i)
}
m, ok = TypeOf(p).MethodByName("NoArgs")
if !ok {
t.Fatalf("method by name failed")
}
n := len(m.Func.Call([]Value{ValueOf(p)}))
if n != 0 {
t.Errorf("NoArgs returned %d values; want 0", n)
}
i = TypeOf(&p).Method(1).Func.Call([]Value{ValueOf(&p), ValueOf(12)})[0].Int()
if i != 300 {
t.Errorf("Pointer Type Method returned %d; want 300", i)
}
m, ok = TypeOf(&p).MethodByName("Dist")
if !ok {
t.Fatalf("ptr method by name failed")
}
i = m.Func.Call([]Value{ValueOf(&p), ValueOf(13)})[0].Int()
if i != 325 {
t.Errorf("Pointer Type MethodByName returned %d; want 325", i)
}
m, ok = TypeOf(&p).MethodByName("NoArgs")
if !ok {
t.Fatalf("method by name failed")
}
n = len(m.Func.Call([]Value{ValueOf(&p)}))
if n != 0 {
t.Errorf("NoArgs returned %d values; want 0", n)
}
_, ok = TypeOf(&p).MethodByName("AA")
if ok {
t.Errorf(`MethodByName("AA") should have failed`)
}
_, ok = TypeOf(&p).MethodByName("ZZ")
if ok {
t.Errorf(`MethodByName("ZZ") should have failed`)
}
// Curried method of value.
tfunc := TypeOf((func(int) int)(nil))
v := ValueOf(p).Method(1)
if tt := v.Type(); tt != tfunc {
t.Errorf("Value Method Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(14)})[0].Int()
if i != 350 {
t.Errorf("Value Method returned %d; want 350", i)
}
v = ValueOf(p).MethodByName("Dist")
if tt := v.Type(); tt != tfunc {
t.Errorf("Value MethodByName Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(15)})[0].Int()
if i != 375 {
t.Errorf("Value MethodByName returned %d; want 375", i)
}
v = ValueOf(p).MethodByName("NoArgs")
v.Call(nil)
// Curried method of pointer.
v = ValueOf(&p).Method(1)
if tt := v.Type(); tt != tfunc {
t.Errorf("Pointer Value Method Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(16)})[0].Int()
if i != 400 {
t.Errorf("Pointer Value Method returned %d; want 400", i)
}
v = ValueOf(&p).MethodByName("Dist")
if tt := v.Type(); tt != tfunc {
t.Errorf("Pointer Value MethodByName Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(17)})[0].Int()
if i != 425 {
t.Errorf("Pointer Value MethodByName returned %d; want 425", i)
}
v = ValueOf(&p).MethodByName("NoArgs")
v.Call(nil)
// Curried method of interface value.
// Have to wrap interface value in a struct to get at it.
// Passing it to ValueOf directly would
// access the underlying Point, not the interface.
var x interface {
Dist(int) int
} = p
pv := ValueOf(&x).Elem()
v = pv.Method(0)
if tt := v.Type(); tt != tfunc {
t.Errorf("Interface Method Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(18)})[0].Int()
if i != 450 {
t.Errorf("Interface Method returned %d; want 450", i)
}
v = pv.MethodByName("Dist")
if tt := v.Type(); tt != tfunc {
t.Errorf("Interface MethodByName Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(19)})[0].Int()
if i != 475 {
t.Errorf("Interface MethodByName returned %d; want 475", i)
}
}
func TestMethodValue(t *testing.T) {
p := Point{3, 4}
var i int64
// Check that method value have the same underlying code pointers.
if p1, p2 := ValueOf(Point{1, 1}).Method(1), ValueOf(Point{2, 2}).Method(1); p1.Pointer() != p2.Pointer() {
t.Errorf("methodValueCall mismatched: %v - %v", p1, p2)
}
// Curried method of value.
tfunc := TypeOf((func(int) int)(nil))
v := ValueOf(p).Method(1)
if tt := v.Type(); tt != tfunc {
t.Errorf("Value Method Type is %s; want %s", tt, tfunc)
}
i = ValueOf(v.Interface()).Call([]Value{ValueOf(10)})[0].Int()
if i != 250 {
t.Errorf("Value Method returned %d; want 250", i)
}
v = ValueOf(p).MethodByName("Dist")
if tt := v.Type(); tt != tfunc {
t.Errorf("Value MethodByName Type is %s; want %s", tt, tfunc)
}
i = ValueOf(v.Interface()).Call([]Value{ValueOf(11)})[0].Int()
if i != 275 {
t.Errorf("Value MethodByName returned %d; want 275", i)
}
v = ValueOf(p).MethodByName("NoArgs")
ValueOf(v.Interface()).Call(nil)
v.Interface().(func())()
// Curried method of pointer.
v = ValueOf(&p).Method(1)
if tt := v.Type(); tt != tfunc {
t.Errorf("Pointer Value Method Type is %s; want %s", tt, tfunc)
}
i = ValueOf(v.Interface()).Call([]Value{ValueOf(12)})[0].Int()
if i != 300 {
t.Errorf("Pointer Value Method returned %d; want 300", i)
}
v = ValueOf(&p).MethodByName("Dist")
if tt := v.Type(); tt != tfunc {
t.Errorf("Pointer Value MethodByName Type is %s; want %s", tt, tfunc)
}
i = ValueOf(v.Interface()).Call([]Value{ValueOf(13)})[0].Int()
if i != 325 {
t.Errorf("Pointer Value MethodByName returned %d; want 325", i)
}
v = ValueOf(&p).MethodByName("NoArgs")
ValueOf(v.Interface()).Call(nil)
v.Interface().(func())()
// Curried method of pointer to pointer.
pp := &p
v = ValueOf(&pp).Elem().Method(1)
if tt := v.Type(); tt != tfunc {
t.Errorf("Pointer Pointer Value Method Type is %s; want %s", tt, tfunc)
}
i = ValueOf(v.Interface()).Call([]Value{ValueOf(14)})[0].Int()
if i != 350 {
t.Errorf("Pointer Pointer Value Method returned %d; want 350", i)
}
v = ValueOf(&pp).Elem().MethodByName("Dist")
if tt := v.Type(); tt != tfunc {
t.Errorf("Pointer Pointer Value MethodByName Type is %s; want %s", tt, tfunc)
}
i = ValueOf(v.Interface()).Call([]Value{ValueOf(15)})[0].Int()
if i != 375 {
t.Errorf("Pointer Pointer Value MethodByName returned %d; want 375", i)
}
// Curried method of interface value.
// Have to wrap interface value in a struct to get at it.
// Passing it to ValueOf directly would
// access the underlying Point, not the interface.
var s = struct {
X interface {
Dist(int) int
}
}{p}
pv := ValueOf(s).Field(0)
v = pv.Method(0)
if tt := v.Type(); tt != tfunc {
t.Errorf("Interface Method Type is %s; want %s", tt, tfunc)
}
i = ValueOf(v.Interface()).Call([]Value{ValueOf(16)})[0].Int()
if i != 400 {
t.Errorf("Interface Method returned %d; want 400", i)
}
v = pv.MethodByName("Dist")
if tt := v.Type(); tt != tfunc {
t.Errorf("Interface MethodByName Type is %s; want %s", tt, tfunc)
}
i = ValueOf(v.Interface()).Call([]Value{ValueOf(17)})[0].Int()
if i != 425 {
t.Errorf("Interface MethodByName returned %d; want 425", i)
}
// For issue #33628: method args are not stored at the right offset
// on amd64p32.
m64 := ValueOf(&p).MethodByName("Int64Method").Interface().(func(int64) int64)
if x := m64(123); x != 123 {
t.Errorf("Int64Method returned %d; want 123", x)
}
m32 := ValueOf(&p).MethodByName("Int32Method").Interface().(func(int32) int32)
if x := m32(456); x != 456 {
t.Errorf("Int32Method returned %d; want 456", x)
}
}
func TestVariadicMethodValue(t *testing.T) {
p := Point{3, 4}
points := []Point{{20, 21}, {22, 23}, {24, 25}}
want := int64(p.TotalDist(points[0], points[1], points[2]))
// Variadic method of type.
tfunc := TypeOf((func(Point, ...Point) int)(nil))
if tt := TypeOf(p).Method(4).Type; tt != tfunc {
t.Errorf("Variadic Method Type from TypeOf is %s; want %s", tt, tfunc)
}
// Curried method of value.
tfunc = TypeOf((func(...Point) int)(nil))
v := ValueOf(p).Method(4)
if tt := v.Type(); tt != tfunc {
t.Errorf("Variadic Method Type is %s; want %s", tt, tfunc)
}
i := ValueOf(v.Interface()).Call([]Value{ValueOf(points[0]), ValueOf(points[1]), ValueOf(points[2])})[0].Int()
if i != want {
t.Errorf("Variadic Method returned %d; want %d", i, want)
}
i = ValueOf(v.Interface()).CallSlice([]Value{ValueOf(points)})[0].Int()
if i != want {
t.Errorf("Variadic Method CallSlice returned %d; want %d", i, want)
}
f := v.Interface().(func(...Point) int)
i = int64(f(points[0], points[1], points[2]))
if i != want {
t.Errorf("Variadic Method Interface returned %d; want %d", i, want)
}
i = int64(f(points...))
if i != want {
t.Errorf("Variadic Method Interface Slice returned %d; want %d", i, want)
}
}
type DirectIfaceT struct {
p *int
}
func (d DirectIfaceT) M() int { return *d.p }
func TestDirectIfaceMethod(t *testing.T) {
x := 42
v := DirectIfaceT{&x}
typ := TypeOf(v)
m, ok := typ.MethodByName("M")
if !ok {
t.Fatalf("cannot find method M")
}
in := []Value{ValueOf(v)}
out := m.Func.Call(in)
if got := out[0].Int(); got != 42 {
t.Errorf("Call with value receiver got %d, want 42", got)
}
pv := &v
typ = TypeOf(pv)
m, ok = typ.MethodByName("M")
if !ok {
t.Fatalf("cannot find method M")
}
in = []Value{ValueOf(pv)}
out = m.Func.Call(in)
if got := out[0].Int(); got != 42 {
t.Errorf("Call with pointer receiver got %d, want 42", got)
}
}
// Reflect version of $GOROOT/test/method5.go
// Concrete types implementing M method.
// Smaller than a word, word-sized, larger than a word.
// Value and pointer receivers.
type Tinter interface {
M(int, byte) (byte, int)
}
type Tsmallv byte
func (v Tsmallv) M(x int, b byte) (byte, int) { return b, x + int(v) }
type Tsmallp byte
func (p *Tsmallp) M(x int, b byte) (byte, int) { return b, x + int(*p) }
type Twordv uintptr
func (v Twordv) M(x int, b byte) (byte, int) { return b, x + int(v) }
type Twordp uintptr
func (p *Twordp) M(x int, b byte) (byte, int) { return b, x + int(*p) }
type Tbigv [2]uintptr
func (v Tbigv) M(x int, b byte) (byte, int) { return b, x + int(v[0]) + int(v[1]) }
type Tbigp [2]uintptr
func (p *Tbigp) M(x int, b byte) (byte, int) { return b, x + int(p[0]) + int(p[1]) }
type tinter interface {
m(int, byte) (byte, int)
}
// Embedding via pointer.
type Tm1 struct {
Tm2
}
type Tm2 struct {
*Tm3
}
type Tm3 struct {
*Tm4
}
type Tm4 struct {
}
func (t4 Tm4) M(x int, b byte) (byte, int) { return b, x + 40 }
func TestMethod5(t *testing.T) {
CheckF := func(name string, f func(int, byte) (byte, int), inc int) {
b, x := f(1000, 99)
if b != 99 || x != 1000+inc {
t.Errorf("%s(1000, 99) = %v, %v, want 99, %v", name, b, x, 1000+inc)
}
}
CheckV := func(name string, i Value, inc int) {
bx := i.Method(0).Call([]Value{ValueOf(1000), ValueOf(byte(99))})
b := bx[0].Interface()
x := bx[1].Interface()
if b != byte(99) || x != 1000+inc {
t.Errorf("direct %s.M(1000, 99) = %v, %v, want 99, %v", name, b, x, 1000+inc)
}
CheckF(name+".M", i.Method(0).Interface().(func(int, byte) (byte, int)), inc)
}
var TinterType = TypeOf(new(Tinter)).Elem()
CheckI := func(name string, i any, inc int) {
v := ValueOf(i)
CheckV(name, v, inc)
CheckV("(i="+name+")", v.Convert(TinterType), inc)
}
sv := Tsmallv(1)
CheckI("sv", sv, 1)
CheckI("&sv", &sv, 1)
sp := Tsmallp(2)
CheckI("&sp", &sp, 2)
wv := Twordv(3)
CheckI("wv", wv, 3)
CheckI("&wv", &wv, 3)
wp := Twordp(4)
CheckI("&wp", &wp, 4)
bv := Tbigv([2]uintptr{5, 6})
CheckI("bv", bv, 11)
CheckI("&bv", &bv, 11)
bp := Tbigp([2]uintptr{7, 8})
CheckI("&bp", &bp, 15)
t4 := Tm4{}
t3 := Tm3{&t4}
t2 := Tm2{&t3}
t1 := Tm1{t2}
CheckI("t4", t4, 40)
CheckI("&t4", &t4, 40)
CheckI("t3", t3, 40)
CheckI("&t3", &t3, 40)
CheckI("t2", t2, 40)
CheckI("&t2", &t2, 40)
CheckI("t1", t1, 40)
CheckI("&t1", &t1, 40)
var tnil Tinter
vnil := ValueOf(&tnil).Elem()
shouldPanic("Method", func() { vnil.Method(0) })
}
func TestInterfaceSet(t *testing.T) {
p := &Point{3, 4}
var s struct {
I any
P interface {
Dist(int) int
}
}
sv := ValueOf(&s).Elem()
sv.Field(0).Set(ValueOf(p))
if q := s.I.(*Point); q != p {
t.Errorf("i: have %p want %p", q, p)
}
pv := sv.Field(1)
pv.Set(ValueOf(p))
if q := s.P.(*Point); q != p {
t.Errorf("i: have %p want %p", q, p)
}
i := pv.Method(0).Call([]Value{ValueOf(10)})[0].Int()
if i != 250 {
t.Errorf("Interface Method returned %d; want 250", i)
}
}
*/
type T1 struct {
a string
int
}
func TestAnonymousFields(t *testing.T) {
var field StructField
var ok bool
var t1 T1
type1 := TypeOf(t1)
if field, ok = type1.FieldByName("int"); !ok {
t.Fatal("no field 'int'")
}
if field.Index[0] != 1 {
t.Error("field index should be 1; is", field.Index)
}
}
type FTest struct {
s any
name string
index []int
value int
}
type D1 struct {
d int
}
type D2 struct {
d int
}
type S0 struct {
A, B, C int
D1
D2
}
type S1 struct {
B int
S0
}
type S2 struct {
A int
*S1
}
type S1x struct {
S1
}
type S1y struct {
S1
}
type S3 struct {
S1x
S2
D, E int
*S1y
}
type S4 struct {
*S4
A int
}
// The X in S6 and S7 annihilate, but they also block the X in S8.S9.
type S5 struct {
S6
S7
S8
}
type S6 struct {
X int
}
type S7 S6
type S8 struct {
S9
}
type S9 struct {
X int
Y int
}
// The X in S11.S6 and S12.S6 annihilate, but they also block the X in S13.S8.S9.
type S10 struct {
S11
S12
S13
}
type S11 struct {
S6
}
type S12 struct {
S6
}
type S13 struct {
S8
}
// The X in S15.S11.S1 and S16.S11.S1 annihilate.
type S14 struct {
S15
S16
}
type S15 struct {
S11
}
type S16 struct {
S11
}
var fieldTests = []FTest{
{struct{}{}, "", nil, 0},
{struct{}{}, "Foo", nil, 0},
{S0{A: 'a'}, "A", []int{0}, 'a'},
{S0{}, "D", nil, 0},
{S1{S0: S0{A: 'a'}}, "A", []int{1, 0}, 'a'},
{S1{B: 'b'}, "B", []int{0}, 'b'},
{S1{}, "S0", []int{1}, 0},
{S1{S0: S0{C: 'c'}}, "C", []int{1, 2}, 'c'},
{S2{A: 'a'}, "A", []int{0}, 'a'},
{S2{}, "S1", []int{1}, 0},
{S2{S1: &S1{B: 'b'}}, "B", []int{1, 0}, 'b'},
{S2{S1: &S1{S0: S0{C: 'c'}}}, "C", []int{1, 1, 2}, 'c'},
{S2{}, "D", nil, 0},
{S3{}, "S1", nil, 0},
{S3{S2: S2{A: 'a'}}, "A", []int{1, 0}, 'a'},
{S3{}, "B", nil, 0},
{S3{D: 'd'}, "D", []int{2}, 0},
{S3{E: 'e'}, "E", []int{3}, 'e'},
{S4{A: 'a'}, "A", []int{1}, 'a'},
{S4{}, "B", nil, 0},
{S5{}, "X", nil, 0},
{S5{}, "Y", []int{2, 0, 1}, 0},
{S10{}, "X", nil, 0},
{S10{}, "Y", []int{2, 0, 0, 1}, 0},
{S14{}, "X", nil, 0},
}
func TestFieldByIndex(t *testing.T) {
for _, test := range fieldTests {
s := TypeOf(test.s)
f := s.FieldByIndex(test.index)
if f.Name != "" {
if test.index != nil {
if f.Name != test.name {
t.Errorf("%s.%s found; want %s", s.Name(), f.Name, test.name)
}
} else {
t.Errorf("%s.%s found", s.Name(), f.Name)
}
} else if len(test.index) > 0 {
t.Errorf("%s.%s not found", s.Name(), test.name)
}
if test.value != 0 {
v := ValueOf(test.s).FieldByIndex(test.index)
if v.IsValid() {
if x, ok := v.Interface().(int); ok {
if x != test.value {
t.Errorf("%s%v is %d; want %d", s.Name(), test.index, x, test.value)
}
} else {
t.Errorf("%s%v value not an int", s.Name(), test.index)
}
} else {
t.Errorf("%s%v value not found", s.Name(), test.index)
}
}
}
}
/*
func TestFieldByName(t *testing.T) {
for _, test := range fieldTests {
s := TypeOf(test.s)
f, found := s.FieldByName(test.name)
if found {
if test.index != nil {
// Verify field depth and index.
if len(f.Index) != len(test.index) {
t.Errorf("%s.%s depth %d; want %d: %v vs %v", s.Name(), test.name, len(f.Index), len(test.index), f.Index, test.index)
} else {
for i, x := range f.Index {
if x != test.index[i] {
t.Errorf("%s.%s.Index[%d] is %d; want %d", s.Name(), test.name, i, x, test.index[i])
}
}
}
} else {
t.Errorf("%s.%s found", s.Name(), f.Name)
}
} else if len(test.index) > 0 {
t.Errorf("%s.%s not found", s.Name(), test.name)
}
if test.value != 0 {
v := ValueOf(test.s).FieldByName(test.name)
if v.IsValid() {
if x, ok := v.Interface().(int); ok {
if x != test.value {
t.Errorf("%s.%s is %d; want %d", s.Name(), test.name, x, test.value)
}
} else {
t.Errorf("%s.%s value not an int", s.Name(), test.name)
}
} else {
t.Errorf("%s.%s value not found", s.Name(), test.name)
}
}
}
}
*/
func TestImportPath(t *testing.T) {
tests := []struct {
t Type
path string
}{
{TypeOf(&base64.Encoding{}).Elem(), "encoding/base64"},
{TypeOf(int(0)), ""},
{TypeOf(int8(0)), ""},
{TypeOf(int16(0)), ""},
{TypeOf(int32(0)), ""},
{TypeOf(int64(0)), ""},
{TypeOf(uint(0)), ""},
{TypeOf(uint8(0)), ""},
{TypeOf(uint16(0)), ""},
{TypeOf(uint32(0)), ""},
{TypeOf(uint64(0)), ""},
{TypeOf(uintptr(0)), ""},
{TypeOf(float32(0)), ""},
{TypeOf(float64(0)), ""},
{TypeOf(complex64(0)), ""},
{TypeOf(complex128(0)), ""},
{TypeOf(byte(0)), ""},
{TypeOf(rune(0)), ""},
{TypeOf([]byte(nil)), ""},
{TypeOf([]rune(nil)), ""},
{TypeOf(string("")), ""},
{TypeOf((*any)(nil)).Elem(), ""},
{TypeOf((*byte)(nil)), ""},
{TypeOf((*rune)(nil)), ""},
{TypeOf((*int64)(nil)), ""},
{TypeOf(map[string]int{}), ""},
{TypeOf((*error)(nil)).Elem(), ""},
{TypeOf((*Point)(nil)), ""},
{TypeOf((*Point)(nil)).Elem(), "reflect_test"},
}
for _, test := range tests {
if path := test.t.PkgPath(); path != test.path {
t.Errorf("%v.PkgPath() = %q, want %q", test.t, path, test.path)
}
}
}
func TestFieldPkgPath(t *testing.T) {
type x int
typ := TypeOf(struct {
Exported string
unexported string
OtherPkgFields
int // issue 21702
*x // issue 21122
}{})
type pkgpathTest struct {
index []int
pkgPath string
embedded bool
exported bool
}
checkPkgPath := func(name string, s []pkgpathTest) {
for _, test := range s {
f := typ.FieldByIndex(test.index)
if got, want := f.PkgPath, test.pkgPath; got != want {
t.Errorf("%s: Field(%d).PkgPath = %q, want %q", name, test.index, got, want)
}
if got, want := f.Anonymous, test.embedded; got != want {
t.Errorf("%s: Field(%d).Anonymous = %v, want %v", name, test.index, got, want)
}
if got, want := f.IsExported(), test.exported; got != want {
t.Errorf("%s: Field(%d).IsExported = %v, want %v", name, test.index, got, want)
}
}
}
checkPkgPath("testStruct", []pkgpathTest{
{[]int{0}, "", false, true}, // Exported
{[]int{1}, "reflect_test", false, false}, // unexported
{[]int{2}, "", true, true}, // OtherPkgFields
{[]int{2, 0}, "", false, true}, // OtherExported
{[]int{2, 1}, "reflect", false, false}, // otherUnexported
{[]int{3}, "reflect_test", true, false}, // int
{[]int{4}, "reflect_test", true, false}, // *x
})
type localOtherPkgFields OtherPkgFields
typ = TypeOf(localOtherPkgFields{})
checkPkgPath("localOtherPkgFields", []pkgpathTest{
{[]int{0}, "", false, true}, // OtherExported
{[]int{1}, "reflect", false, false}, // otherUnexported
})
}
/*
func TestMethodPkgPath(t *testing.T) {
type I interface {
x()
X()
}
typ := TypeOf((*interface {
I
y()
Y()
})(nil)).Elem()
tests := []struct {
name string
pkgPath string
exported bool
}{
{"X", "", true},
{"Y", "", true},
{"x", "reflect_test", false},
{"y", "reflect_test", false},
}
for _, test := range tests {
m, _ := typ.MethodByName(test.name)
if got, want := m.PkgPath, test.pkgPath; got != want {
t.Errorf("MethodByName(%q).PkgPath = %q, want %q", test.name, got, want)
}
if got, want := m.IsExported(), test.exported; got != want {
t.Errorf("MethodByName(%q).IsExported = %v, want %v", test.name, got, want)
}
}
}
func TestVariadicType(t *testing.T) {
// Test example from Type documentation.
var f func(x int, y ...float64)
typ := TypeOf(f)
if typ.NumIn() == 2 && typ.In(0) == TypeOf(int(0)) {
sl := typ.In(1)
if sl.Kind() == Slice {
if sl.Elem() == TypeOf(0.0) {
// ok
return
}
}
}
// Failed
t.Errorf("want NumIn() = 2, In(0) = int, In(1) = []float64")
s := fmt.Sprintf("have NumIn() = %d", typ.NumIn())
for i := 0; i < typ.NumIn(); i++ {
s += fmt.Sprintf(", In(%d) = %s", i, typ.In(i))
}
t.Error(s)
}
type inner struct {
x int
}
type outer struct {
y int
inner
}
func (*inner) M() {}
func (*outer) M() {}
func TestNestedMethods(t *testing.T) {
typ := TypeOf((*outer)(nil))
if typ.NumMethod() != 1 || typ.Method(0).Func.UnsafePointer() != ValueOf((*outer).M).UnsafePointer() {
t.Errorf("Wrong method table for outer: (M=%p)", (*outer).M)
for i := 0; i < typ.NumMethod(); i++ {
m := typ.Method(i)
t.Errorf("\t%d: %s %p\n", i, m.Name, m.Func.UnsafePointer())
}
}
}
type unexp struct{}
func (*unexp) f() (int32, int8) { return 7, 7 }
func (*unexp) g() (int64, int8) { return 8, 8 }
type unexpI interface {
f() (int32, int8)
}
var unexpi unexpI = new(unexp)
/*
func TestUnexportedMethods(t *testing.T) {
typ := TypeOf(unexpi)
if got := typ.NumMethod(); got != 0 {
t.Errorf("NumMethod=%d, want 0 satisfied methods", got)
}
}
*/
type InnerInt struct {
X int
}
type OuterInt struct {
Y int
InnerInt
}
func (i *InnerInt) M() int {
return i.X
}
/*
func TestEmbeddedMethods(t *testing.T) {
typ := TypeOf((*OuterInt)(nil))
if typ.NumMethod() != 1 || typ.Method(0).Func.UnsafePointer() != ValueOf((*OuterInt).M).UnsafePointer() {
t.Errorf("Wrong method table for OuterInt: (m=%p)", (*OuterInt).M)
for i := 0; i < typ.NumMethod(); i++ {
m := typ.Method(i)
t.Errorf("\t%d: %s %p\n", i, m.Name, m.Func.UnsafePointer())
}
}
i := &InnerInt{3}
if v := ValueOf(i).Method(0).Call(nil)[0].Int(); v != 3 {
t.Errorf("i.M() = %d, want 3", v)
}
o := &OuterInt{1, InnerInt{2}}
if v := ValueOf(o).Method(0).Call(nil)[0].Int(); v != 2 {
t.Errorf("i.M() = %d, want 2", v)
}
f := (*OuterInt).M
if v := f(o); v != 2 {
t.Errorf("f(o) = %d, want 2", v)
}
}
type FuncDDD func(...any) error
func (f FuncDDD) M() {}
func TestNumMethodOnDDD(t *testing.T) {
rv := ValueOf((FuncDDD)(nil))
if n := rv.NumMethod(); n != 1 {
t.Fatalf("NumMethod()=%d, want 1", n)
}
}
func TestPtrTo(t *testing.T) {
// This block of code means that the ptrToThis field of the
// reflect data for *unsafe.Pointer is non zero, see
// https://golang.org/issue/19003
var x unsafe.Pointer
var y = &x
var z = &y
var i int
typ := TypeOf(z)
for i = 0; i < 100; i++ {
typ = PointerTo(typ)
}
for i = 0; i < 100; i++ {
typ = typ.Elem()
}
if typ != TypeOf(z) {
t.Errorf("after 100 PointerTo and Elem, have %s, want %s", typ, TypeOf(z))
}
}
func TestPtrToGC(t *testing.T) {
type T *uintptr
tt := TypeOf(T(nil))
pt := PointerTo(tt)
const n = 100
var x []any
for i := 0; i < n; i++ {
v := New(pt)
p := new(*uintptr)
*p = new(uintptr)
**p = uintptr(i)
v.Elem().Set(ValueOf(p).Convert(pt))
x = append(x, v.Interface())
}
runtime.GC()
for i, xi := range x {
k := ValueOf(xi).Elem().Elem().Elem().Interface().(uintptr)
if k != uintptr(i) {
t.Errorf("lost x[%d] = %d, want %d", i, k, i)
}
}
}
func TestAddr(t *testing.T) {
var p struct {
X, Y int
}
v := ValueOf(&p)
v = v.Elem()
v = v.Addr()
v = v.Elem()
v = v.Field(0)
v.SetInt(2)
if p.X != 2 {
t.Errorf("Addr.Elem.Set failed to set value")
}
// Again but take address of the ValueOf value.
// Exercises generation of PtrTypes not present in the binary.
q := &p
v = ValueOf(&q).Elem()
v = v.Addr()
v = v.Elem()
v = v.Elem()
v = v.Addr()
v = v.Elem()
v = v.Field(0)
v.SetInt(3)
if p.X != 3 {
t.Errorf("Addr.Elem.Set failed to set value")
}
// Starting without pointer we should get changed value
// in interface.
qq := p
v = ValueOf(&qq).Elem()
v0 := v
v = v.Addr()
v = v.Elem()
v = v.Field(0)
v.SetInt(4)
if p.X != 3 { // should be unchanged from last time
t.Errorf("somehow value Set changed original p")
}
p = v0.Interface().(struct {
X, Y int
})
if p.X != 4 {
t.Errorf("Addr.Elem.Set valued to set value in top value")
}
// Verify that taking the address of a type gives us a pointer
// which we can convert back using the usual interface
// notation.
var s struct {
B *bool
}
ps := ValueOf(&s).Elem().Field(0).Addr().Interface()
*(ps.(**bool)) = new(bool)
if s.B == nil {
t.Errorf("Addr.Interface direct assignment failed")
}
}
func noAlloc(t *testing.T, n int, f func(int)) {
if testing.Short() {
t.Skip("skipping malloc count in short mode")
}
if runtime.GOMAXPROCS(0) > 1 {
t.Skip("skipping; GOMAXPROCS>1")
}
i := -1
allocs := testing.AllocsPerRun(n, func() {
f(i)
i++
})
if allocs > 0 {
t.Errorf("%d iterations: got %v mallocs, want 0", n, allocs)
}
}
func TestAllocations(t *testing.T) {
noAlloc(t, 100, func(j int) {
var i any
var v Value
// We can uncomment this when compiler escape analysis
// is good enough to see that the integer assigned to i
// does not escape and therefore need not be allocated.
//
// i = 42 + j
// v = ValueOf(i)
// if int(v.Int()) != 42+j {
// panic("wrong int")
// }
i = func(j int) int { return j }
v = ValueOf(i)
if v.Interface().(func(int) int)(j) != j {
panic("wrong result")
}
})
}
*/
func TestSmallNegativeInt(t *testing.T) {
i := int16(-1)
v := ValueOf(i)
if v.Int() != -1 {
t.Errorf("int16(-1).Int() returned %v", v.Int())
}
}
func TestIndex(t *testing.T) {
xs := []byte{1, 2, 3, 4, 5, 6, 7, 8}
v := ValueOf(xs).Index(3).Interface().(byte)
if v != xs[3] {
t.Errorf("xs.Index(3) = %v; expected %v", v, xs[3])
}
xa := [8]byte{10, 20, 30, 40, 50, 60, 70, 80}
v = ValueOf(xa).Index(2).Interface().(byte)
if v != xa[2] {
t.Errorf("xa.Index(2) = %v; expected %v", v, xa[2])
}
s := "0123456789"
v = ValueOf(s).Index(3).Interface().(byte)
if v != s[3] {
t.Errorf("s.Index(3) = %v; expected %v", v, s[3])
}
}
/*
func TestSlice(t *testing.T) {
xs := []int{1, 2, 3, 4, 5, 6, 7, 8}
v := ValueOf(xs).Slice(3, 5).Interface().([]int)
if len(v) != 2 {
t.Errorf("len(xs.Slice(3, 5)) = %d", len(v))
}
if cap(v) != 5 {
t.Errorf("cap(xs.Slice(3, 5)) = %d", cap(v))
}
if !DeepEqual(v[0:5], xs[3:]) {
t.Errorf("xs.Slice(3, 5)[0:5] = %v", v[0:5])
}
xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80}
v = ValueOf(&xa).Elem().Slice(2, 5).Interface().([]int)
if len(v) != 3 {
t.Errorf("len(xa.Slice(2, 5)) = %d", len(v))
}
if cap(v) != 6 {
t.Errorf("cap(xa.Slice(2, 5)) = %d", cap(v))
}
if !DeepEqual(v[0:6], xa[2:]) {
t.Errorf("xs.Slice(2, 5)[0:6] = %v", v[0:6])
}
s := "0123456789"
vs := ValueOf(s).Slice(3, 5).Interface().(string)
if vs != s[3:5] {
t.Errorf("s.Slice(3, 5) = %q; expected %q", vs, s[3:5])
}
rv := ValueOf(&xs).Elem()
rv = rv.Slice(3, 4)
ptr2 := rv.UnsafePointer()
rv = rv.Slice(5, 5)
ptr3 := rv.UnsafePointer()
if ptr3 != ptr2 {
t.Errorf("xs.Slice(3,4).Slice3(5,5).UnsafePointer() = %p, want %p", ptr3, ptr2)
}
}
func TestSlice3(t *testing.T) {
xs := []int{1, 2, 3, 4, 5, 6, 7, 8}
v := ValueOf(xs).Slice3(3, 5, 7).Interface().([]int)
if len(v) != 2 {
t.Errorf("len(xs.Slice3(3, 5, 7)) = %d", len(v))
}
if cap(v) != 4 {
t.Errorf("cap(xs.Slice3(3, 5, 7)) = %d", cap(v))
}
if !DeepEqual(v[0:4], xs[3:7:7]) {
t.Errorf("xs.Slice3(3, 5, 7)[0:4] = %v", v[0:4])
}
rv := ValueOf(&xs).Elem()
shouldPanic("Slice3", func() { rv.Slice3(1, 2, 1) })
shouldPanic("Slice3", func() { rv.Slice3(1, 1, 11) })
shouldPanic("Slice3", func() { rv.Slice3(2, 2, 1) })
xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80}
v = ValueOf(&xa).Elem().Slice3(2, 5, 6).Interface().([]int)
if len(v) != 3 {
t.Errorf("len(xa.Slice(2, 5, 6)) = %d", len(v))
}
if cap(v) != 4 {
t.Errorf("cap(xa.Slice(2, 5, 6)) = %d", cap(v))
}
if !DeepEqual(v[0:4], xa[2:6:6]) {
t.Errorf("xs.Slice(2, 5, 6)[0:4] = %v", v[0:4])
}
rv = ValueOf(&xa).Elem()
shouldPanic("Slice3", func() { rv.Slice3(1, 2, 1) })
shouldPanic("Slice3", func() { rv.Slice3(1, 1, 11) })
shouldPanic("Slice3", func() { rv.Slice3(2, 2, 1) })
s := "hello world"
rv = ValueOf(&s).Elem()
shouldPanic("Slice3", func() { rv.Slice3(1, 2, 3) })
rv = ValueOf(&xs).Elem()
rv = rv.Slice3(3, 5, 7)
ptr2 := rv.UnsafePointer()
rv = rv.Slice3(4, 4, 4)
ptr3 := rv.UnsafePointer()
if ptr3 != ptr2 {
t.Errorf("xs.Slice3(3,5,7).Slice3(4,4,4).UnsafePointer() = %p, want %p", ptr3, ptr2)
}
}
func TestSetLenCap(t *testing.T) {
xs := []int{1, 2, 3, 4, 5, 6, 7, 8}
xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80}
vs := ValueOf(&xs).Elem()
shouldPanic("SetLen", func() { vs.SetLen(10) })
shouldPanic("SetCap", func() { vs.SetCap(10) })
shouldPanic("SetLen", func() { vs.SetLen(-1) })
shouldPanic("SetCap", func() { vs.SetCap(-1) })
shouldPanic("SetCap", func() { vs.SetCap(6) }) // smaller than len
vs.SetLen(5)
if len(xs) != 5 || cap(xs) != 8 {
t.Errorf("after SetLen(5), len, cap = %d, %d, want 5, 8", len(xs), cap(xs))
}
vs.SetCap(6)
if len(xs) != 5 || cap(xs) != 6 {
t.Errorf("after SetCap(6), len, cap = %d, %d, want 5, 6", len(xs), cap(xs))
}
vs.SetCap(5)
if len(xs) != 5 || cap(xs) != 5 {
t.Errorf("after SetCap(5), len, cap = %d, %d, want 5, 5", len(xs), cap(xs))
}
shouldPanic("SetCap", func() { vs.SetCap(4) }) // smaller than len
shouldPanic("SetLen", func() { vs.SetLen(6) }) // bigger than cap
va := ValueOf(&xa).Elem()
shouldPanic("SetLen", func() { va.SetLen(8) })
shouldPanic("SetCap", func() { va.SetCap(8) })
}
func TestVariadic(t *testing.T) {
var b strings.Builder
V := ValueOf
b.Reset()
V(fmt.Fprintf).Call([]Value{V(&b), V("%s, %d world"), V("hello"), V(42)})
if b.String() != "hello, 42 world" {
t.Errorf("after Fprintf Call: %q != %q", b.String(), "hello 42 world")
}
b.Reset()
V(fmt.Fprintf).CallSlice([]Value{V(&b), V("%s, %d world"), V([]any{"hello", 42})})
if b.String() != "hello, 42 world" {
t.Errorf("after Fprintf CallSlice: %q != %q", b.String(), "hello 42 world")
}
}
func TestFuncArg(t *testing.T) {
f1 := func(i int, f func(int) int) int { return f(i) }
f2 := func(i int) int { return i + 1 }
r := ValueOf(f1).Call([]Value{ValueOf(100), ValueOf(f2)})
if r[0].Int() != 101 {
t.Errorf("function returned %d, want 101", r[0].Int())
}
}
func TestStructArg(t *testing.T) {
type padded struct {
B string
C int32
}
var (
gotA padded
gotB uint32
wantA = padded{"3", 4}
wantB = uint32(5)
)
f := func(a padded, b uint32) {
gotA, gotB = a, b
}
ValueOf(f).Call([]Value{ValueOf(wantA), ValueOf(wantB)})
if gotA != wantA || gotB != wantB {
t.Errorf("function called with (%v, %v), want (%v, %v)", gotA, gotB, wantA, wantB)
}
}
*/
var tagGetTests = []struct {
Tag StructTag
Key string
Value string
}{
{`protobuf:"PB(1,2)"`, `protobuf`, `PB(1,2)`},
{`protobuf:"PB(1,2)"`, `foo`, ``},
{`protobuf:"PB(1,2)"`, `rotobuf`, ``},
{`protobuf:"PB(1,2)" json:"name"`, `json`, `name`},
{`protobuf:"PB(1,2)" json:"name"`, `protobuf`, `PB(1,2)`},
{`k0:"values contain spaces" k1:"and\ttabs"`, "k0", "values contain spaces"},
{`k0:"values contain spaces" k1:"and\ttabs"`, "k1", "and\ttabs"},
}
func TestTagGet(t *testing.T) {
for _, tt := range tagGetTests {
if v := tt.Tag.Get(tt.Key); v != tt.Value {
t.Errorf("StructTag(%#q).Get(%#q) = %#q, want %#q", tt.Tag, tt.Key, v, tt.Value)
}
}
}
func TestBytes(t *testing.T) {
shouldPanic("on int Value", func() { ValueOf(0).Bytes() })
shouldPanic("of non-byte slice", func() { ValueOf([]string{}).Bytes() })
type S []byte
x := S{1, 2, 3, 4}
y := ValueOf(x).Bytes()
if !bytes.Equal(x, y) {
t.Fatalf("ValueOf(%v).Bytes() = %v", x, y)
}
if &x[0] != &y[0] {
t.Errorf("ValueOf(%p).Bytes() = %p", &x[0], &y[0])
}
type A [4]byte
a := A{1, 2, 3, 4}
shouldPanic("unaddressable", func() { ValueOf(a).Bytes() })
shouldPanic("on ptr Value", func() { ValueOf(&a).Bytes() })
b := ValueOf(&a).Elem().Bytes()
if !bytes.Equal(a[:], y) {
t.Fatalf("ValueOf(%v).Bytes() = %v", a, b)
}
if &a[0] != &b[0] {
t.Errorf("ValueOf(%p).Bytes() = %p", &a[0], &b[0])
}
// Per issue #24746, it was decided that Bytes can be called on byte slices
// that normally cannot be converted from per Go language semantics.
type B byte
type SB []B
type AB [4]B
ValueOf([]B{1, 2, 3, 4}).Bytes() // should not panic
ValueOf(new([4]B)).Elem().Bytes() // should not panic
ValueOf(SB{1, 2, 3, 4}).Bytes() // should not panic
ValueOf(new(AB)).Elem().Bytes() // should not panic
}
func TestSetBytes(t *testing.T) {
type B []byte
var x B
y := []byte{1, 2, 3, 4}
ValueOf(&x).Elem().SetBytes(y)
if !bytes.Equal(x, y) {
t.Fatalf("ValueOf(%v).Bytes() = %v", x, y)
}
if &x[0] != &y[0] {
t.Errorf("ValueOf(%p).Bytes() = %p", &x[0], &y[0])
}
}
type Private struct {
x int
y **int
Z int
}
func (p *Private) m() {
}
type private struct {
Z int
z int
S string
A [1]Private
T []Private
}
func (p *private) P() {
}
type Public struct {
X int
Y **int
private
}
func (p *Public) M() {
}
/*
func TestUnexported(t *testing.T) {
var pub Public
pub.S = "S"
pub.T = pub.A[:]
v := ValueOf(&pub)
isValid(v.Elem().Field(0))
isValid(v.Elem().Field(1))
isValid(v.Elem().Field(2))
isValid(v.Elem().FieldByName("X"))
isValid(v.Elem().FieldByName("Y"))
isValid(v.Elem().FieldByName("Z"))
isValid(v.Type().Method(0).Func)
m, _ := v.Type().MethodByName("M")
isValid(m.Func)
m, _ = v.Type().MethodByName("P")
isValid(m.Func)
isNonNil(v.Elem().Field(0).Interface())
isNonNil(v.Elem().Field(1).Interface())
isNonNil(v.Elem().Field(2).Field(2).Index(0))
isNonNil(v.Elem().FieldByName("X").Interface())
isNonNil(v.Elem().FieldByName("Y").Interface())
isNonNil(v.Elem().FieldByName("Z").Interface())
isNonNil(v.Elem().FieldByName("S").Index(0).Interface())
isNonNil(v.Type().Method(0).Func.Interface())
m, _ = v.Type().MethodByName("P")
isNonNil(m.Func.Interface())
var priv Private
v = ValueOf(&priv)
isValid(v.Elem().Field(0))
isValid(v.Elem().Field(1))
isValid(v.Elem().FieldByName("x"))
isValid(v.Elem().FieldByName("y"))
shouldPanic("Interface", func() { v.Elem().Field(0).Interface() })
shouldPanic("Interface", func() { v.Elem().Field(1).Interface() })
shouldPanic("Interface", func() { v.Elem().FieldByName("x").Interface() })
shouldPanic("Interface", func() { v.Elem().FieldByName("y").Interface() })
shouldPanic("Method", func() { v.Type().Method(0) })
}
func TestSetPanic(t *testing.T) {
ok := func(f func()) { f() }
bad := func(f func()) { shouldPanic("Set", f) }
clear := func(v Value) { v.Set(Zero(v.Type())) }
type t0 struct {
W int
}
type t1 struct {
Y int
t0
}
type T2 struct {
Z int
namedT0 t0
}
type T struct {
X int
t1
T2
NamedT1 t1
NamedT2 T2
namedT1 t1
namedT2 T2
}
// not addressable
v := ValueOf(T{})
bad(func() { clear(v.Field(0)) }) // .X
bad(func() { clear(v.Field(1)) }) // .t1
bad(func() { clear(v.Field(1).Field(0)) }) // .t1.Y
bad(func() { clear(v.Field(1).Field(1)) }) // .t1.t0
bad(func() { clear(v.Field(1).Field(1).Field(0)) }) // .t1.t0.W
bad(func() { clear(v.Field(2)) }) // .T2
bad(func() { clear(v.Field(2).Field(0)) }) // .T2.Z
bad(func() { clear(v.Field(2).Field(1)) }) // .T2.namedT0
bad(func() { clear(v.Field(2).Field(1).Field(0)) }) // .T2.namedT0.W
bad(func() { clear(v.Field(3)) }) // .NamedT1
bad(func() { clear(v.Field(3).Field(0)) }) // .NamedT1.Y
bad(func() { clear(v.Field(3).Field(1)) }) // .NamedT1.t0
bad(func() { clear(v.Field(3).Field(1).Field(0)) }) // .NamedT1.t0.W
bad(func() { clear(v.Field(4)) }) // .NamedT2
bad(func() { clear(v.Field(4).Field(0)) }) // .NamedT2.Z
bad(func() { clear(v.Field(4).Field(1)) }) // .NamedT2.namedT0
bad(func() { clear(v.Field(4).Field(1).Field(0)) }) // .NamedT2.namedT0.W
bad(func() { clear(v.Field(5)) }) // .namedT1
bad(func() { clear(v.Field(5).Field(0)) }) // .namedT1.Y
bad(func() { clear(v.Field(5).Field(1)) }) // .namedT1.t0
bad(func() { clear(v.Field(5).Field(1).Field(0)) }) // .namedT1.t0.W
bad(func() { clear(v.Field(6)) }) // .namedT2
bad(func() { clear(v.Field(6).Field(0)) }) // .namedT2.Z
bad(func() { clear(v.Field(6).Field(1)) }) // .namedT2.namedT0
bad(func() { clear(v.Field(6).Field(1).Field(0)) }) // .namedT2.namedT0.W
// addressable
v = ValueOf(&T{}).Elem()
ok(func() { clear(v.Field(0)) }) // .X
bad(func() { clear(v.Field(1)) }) // .t1
ok(func() { clear(v.Field(1).Field(0)) }) // .t1.Y
bad(func() { clear(v.Field(1).Field(1)) }) // .t1.t0
ok(func() { clear(v.Field(1).Field(1).Field(0)) }) // .t1.t0.W
ok(func() { clear(v.Field(2)) }) // .T2
ok(func() { clear(v.Field(2).Field(0)) }) // .T2.Z
bad(func() { clear(v.Field(2).Field(1)) }) // .T2.namedT0
bad(func() { clear(v.Field(2).Field(1).Field(0)) }) // .T2.namedT0.W
ok(func() { clear(v.Field(3)) }) // .NamedT1
ok(func() { clear(v.Field(3).Field(0)) }) // .NamedT1.Y
bad(func() { clear(v.Field(3).Field(1)) }) // .NamedT1.t0
ok(func() { clear(v.Field(3).Field(1).Field(0)) }) // .NamedT1.t0.W
ok(func() { clear(v.Field(4)) }) // .NamedT2
ok(func() { clear(v.Field(4).Field(0)) }) // .NamedT2.Z
bad(func() { clear(v.Field(4).Field(1)) }) // .NamedT2.namedT0
bad(func() { clear(v.Field(4).Field(1).Field(0)) }) // .NamedT2.namedT0.W
bad(func() { clear(v.Field(5)) }) // .namedT1
bad(func() { clear(v.Field(5).Field(0)) }) // .namedT1.Y
bad(func() { clear(v.Field(5).Field(1)) }) // .namedT1.t0
bad(func() { clear(v.Field(5).Field(1).Field(0)) }) // .namedT1.t0.W
bad(func() { clear(v.Field(6)) }) // .namedT2
bad(func() { clear(v.Field(6).Field(0)) }) // .namedT2.Z
bad(func() { clear(v.Field(6).Field(1)) }) // .namedT2.namedT0
bad(func() { clear(v.Field(6).Field(1).Field(0)) }) // .namedT2.namedT0.W
}
*/
type timp int
func (t timp) W() {}
func (t timp) Y() {}
func (t timp) w() {}
func (t timp) y() {}
/*
func TestCallPanic(t *testing.T) {
type t0 interface {
W()
w()
}
type T1 interface {
Y()
y()
}
type T2 struct {
T1
t0
}
type T struct {
t0 // 0
T1 // 1
NamedT0 t0 // 2
NamedT1 T1 // 3
NamedT2 T2 // 4
namedT0 t0 // 5
namedT1 T1 // 6
namedT2 T2 // 7
}
ok := func(f func()) { f() }
badCall := func(f func()) { shouldPanic("Call", f) }
badMethod := func(f func()) { shouldPanic("Method", f) }
call := func(v Value) { v.Call(nil) }
i := timp(0)
v := ValueOf(T{i, i, i, i, T2{i, i}, i, i, T2{i, i}})
badCall(func() { call(v.Field(0).Method(0)) }) // .t0.W
badCall(func() { call(v.Field(0).Elem().Method(0)) }) // .t0.W
badCall(func() { call(v.Field(0).Method(1)) }) // .t0.w
badMethod(func() { call(v.Field(0).Elem().Method(2)) }) // .t0.w
ok(func() { call(v.Field(1).Method(0)) }) // .T1.Y
ok(func() { call(v.Field(1).Elem().Method(0)) }) // .T1.Y
badCall(func() { call(v.Field(1).Method(1)) }) // .T1.y
badMethod(func() { call(v.Field(1).Elem().Method(2)) }) // .T1.y
ok(func() { call(v.Field(2).Method(0)) }) // .NamedT0.W
ok(func() { call(v.Field(2).Elem().Method(0)) }) // .NamedT0.W
badCall(func() { call(v.Field(2).Method(1)) }) // .NamedT0.w
badMethod(func() { call(v.Field(2).Elem().Method(2)) }) // .NamedT0.w
ok(func() { call(v.Field(3).Method(0)) }) // .NamedT1.Y
ok(func() { call(v.Field(3).Elem().Method(0)) }) // .NamedT1.Y
badCall(func() { call(v.Field(3).Method(1)) }) // .NamedT1.y
badMethod(func() { call(v.Field(3).Elem().Method(3)) }) // .NamedT1.y
ok(func() { call(v.Field(4).Field(0).Method(0)) }) // .NamedT2.T1.Y
ok(func() { call(v.Field(4).Field(0).Elem().Method(0)) }) // .NamedT2.T1.W
badCall(func() { call(v.Field(4).Field(1).Method(0)) }) // .NamedT2.t0.W
badCall(func() { call(v.Field(4).Field(1).Elem().Method(0)) }) // .NamedT2.t0.W
badCall(func() { call(v.Field(5).Method(0)) }) // .namedT0.W
badCall(func() { call(v.Field(5).Elem().Method(0)) }) // .namedT0.W
badCall(func() { call(v.Field(5).Method(1)) }) // .namedT0.w
badMethod(func() { call(v.Field(5).Elem().Method(2)) }) // .namedT0.w
badCall(func() { call(v.Field(6).Method(0)) }) // .namedT1.Y
badCall(func() { call(v.Field(6).Elem().Method(0)) }) // .namedT1.Y
badCall(func() { call(v.Field(6).Method(0)) }) // .namedT1.y
badCall(func() { call(v.Field(6).Elem().Method(0)) }) // .namedT1.y
badCall(func() { call(v.Field(7).Field(0).Method(0)) }) // .namedT2.T1.Y
badCall(func() { call(v.Field(7).Field(0).Elem().Method(0)) }) // .namedT2.T1.W
badCall(func() { call(v.Field(7).Field(1).Method(0)) }) // .namedT2.t0.W
badCall(func() { call(v.Field(7).Field(1).Elem().Method(0)) }) // .namedT2.t0.W
}
func TestValuePanic(t *testing.T) {
vo := ValueOf
shouldPanic("reflect.Value.Addr of unaddressable value", func() { vo(0).Addr() })
shouldPanic("call of reflect.Value.Bool on float64 Value", func() { vo(0.0).Bool() })
shouldPanic("call of reflect.Value.Bytes on string Value", func() { vo("").Bytes() })
shouldPanic("call of reflect.Value.Call on bool Value", func() { vo(true).Call(nil) })
shouldPanic("call of reflect.Value.CallSlice on int Value", func() { vo(0).CallSlice(nil) })
shouldPanic("call of reflect.Value.Close on string Value", func() { vo("").Close() })
shouldPanic("call of reflect.Value.Complex on float64 Value", func() { vo(0.0).Complex() })
shouldPanic("call of reflect.Value.Elem on bool Value", func() { vo(false).Elem() })
shouldPanic("call of reflect.Value.Field on int Value", func() { vo(0).Field(0) })
shouldPanic("call of reflect.Value.Float on string Value", func() { vo("").Float() })
shouldPanic("call of reflect.Value.Index on float64 Value", func() { vo(0.0).Index(0) })
shouldPanic("call of reflect.Value.Int on bool Value", func() { vo(false).Int() })
shouldPanic("call of reflect.Value.IsNil on int Value", func() { vo(0).IsNil() })
shouldPanic("call of reflect.Value.Len on bool Value", func() { vo(false).Len() })
shouldPanic("call of reflect.Value.MapIndex on float64 Value", func() { vo(0.0).MapIndex(vo(0.0)) })
shouldPanic("call of reflect.Value.MapKeys on string Value", func() { vo("").MapKeys() })
shouldPanic("call of reflect.Value.MapRange on int Value", func() { vo(0).MapRange() })
shouldPanic("call of reflect.Value.Method on zero Value", func() { vo(nil).Method(0) })
shouldPanic("call of reflect.Value.NumField on string Value", func() { vo("").NumField() })
shouldPanic("call of reflect.Value.NumMethod on zero Value", func() { vo(nil).NumMethod() })
shouldPanic("call of reflect.Value.OverflowComplex on float64 Value", func() { vo(float64(0)).OverflowComplex(0) })
shouldPanic("call of reflect.Value.OverflowFloat on int64 Value", func() { vo(int64(0)).OverflowFloat(0) })
shouldPanic("call of reflect.Value.OverflowInt on uint64 Value", func() { vo(uint64(0)).OverflowInt(0) })
shouldPanic("call of reflect.Value.OverflowUint on complex64 Value", func() { vo(complex64(0)).OverflowUint(0) })
shouldPanic("call of reflect.Value.Recv on string Value", func() { vo("").Recv() })
shouldPanic("call of reflect.Value.Send on bool Value", func() { vo(true).Send(vo(true)) })
shouldPanic("value of type string is not assignable to type bool", func() { vo(new(bool)).Elem().Set(vo("")) })
shouldPanic("call of reflect.Value.SetBool on string Value", func() { vo(new(string)).Elem().SetBool(false) })
shouldPanic("reflect.Value.SetBytes using unaddressable value", func() { vo("").SetBytes(nil) })
shouldPanic("call of reflect.Value.SetCap on string Value", func() { vo(new(string)).Elem().SetCap(0) })
shouldPanic("call of reflect.Value.SetComplex on string Value", func() { vo(new(string)).Elem().SetComplex(0) })
shouldPanic("call of reflect.Value.SetFloat on string Value", func() { vo(new(string)).Elem().SetFloat(0) })
shouldPanic("call of reflect.Value.SetInt on string Value", func() { vo(new(string)).Elem().SetInt(0) })
shouldPanic("call of reflect.Value.SetLen on string Value", func() { vo(new(string)).Elem().SetLen(0) })
shouldPanic("call of reflect.Value.SetString on int Value", func() { vo(new(int)).Elem().SetString("") })
shouldPanic("reflect.Value.SetUint using unaddressable value", func() { vo(0.0).SetUint(0) })
shouldPanic("call of reflect.Value.Slice on bool Value", func() { vo(true).Slice(1, 2) })
shouldPanic("call of reflect.Value.Slice3 on int Value", func() { vo(0).Slice3(1, 2, 3) })
shouldPanic("call of reflect.Value.TryRecv on bool Value", func() { vo(true).TryRecv() })
shouldPanic("call of reflect.Value.TrySend on string Value", func() { vo("").TrySend(vo("")) })
shouldPanic("call of reflect.Value.Uint on float64 Value", func() { vo(0.0).Uint() })
}
*/
func shouldPanic(expect string, f func()) {
return
defer func() {
r := recover()
if r == nil {
panic("did not panic")
}
if expect != "" {
var s string
switch r := r.(type) {
case string:
s = r
case *ValueError:
s = r.Error()
default:
panic(fmt.Sprintf("panicked with unexpected type %T", r))
}
if !strings.HasPrefix(s, "reflect") {
panic(`panic string does not start with "reflect": ` + s)
}
if !strings.Contains(s, expect) {
panic(`panic string does not contain "` + expect + `": ` + s)
}
}
}()
f()
}
func isNonNil(x any) {
if x == nil {
panic("nil interface")
}
}
func isValid(v Value) {
if !v.IsValid() {
panic("zero Value")
}
}
/*
func TestAlias(t *testing.T) {
x := string("hello")
v := ValueOf(&x).Elem()
oldvalue := v.Interface()
v.SetString("world")
newvalue := v.Interface()
if oldvalue != "hello" || newvalue != "world" {
t.Errorf("aliasing: old=%q new=%q, want hello, world", oldvalue, newvalue)
}
}
*/
var V = ValueOf
func EmptyInterfaceV(x any) Value {
return ValueOf(&x).Elem()
}
func ReaderV(x io.Reader) Value {
return ValueOf(&x).Elem()
}
func ReadWriterV(x io.ReadWriter) Value {
return ValueOf(&x).Elem()
}
type Empty struct{}
type MyStruct struct {
x int `some:"tag"`
}
type MyStruct1 struct {
x struct {
int `some:"bar"`
}
}
type MyStruct2 struct {
x struct {
int `some:"foo"`
}
}
type MyString string
type MyBytes []byte
type MyBytesArrayPtr0 *[0]byte
type MyBytesArrayPtr *[4]byte
type MyBytesArray0 [0]byte
type MyBytesArray [4]byte
type MyRunes []int32
type MyFunc func()
type MyByte byte
type IntChan chan int
type IntChanRecv <-chan int
type IntChanSend chan<- int
type BytesChan chan []byte
type BytesChanRecv <-chan []byte
type BytesChanSend chan<- []byte
/*
var convertTests = []struct {
in Value
out Value
}{
// numbers
/*
Edit .+1,/\*\//-1>cat >/tmp/x.go && go run /tmp/x.go
package main
import "fmt"
var numbers = []string{
"int8", "uint8", "int16", "uint16",
"int32", "uint32", "int64", "uint64",
"int", "uint", "uintptr",
"float32", "float64",
}
func main() {
// all pairs but in an unusual order,
// to emit all the int8, uint8 cases
// before n grows too big.
n := 1
for i, f := range numbers {
for _, g := range numbers[i:] {
fmt.Printf("\t{V(%s(%d)), V(%s(%d))},\n", f, n, g, n)
n++
if f != g {
fmt.Printf("\t{V(%s(%d)), V(%s(%d))},\n", g, n, f, n)
n++
}
}
}
}
*/ /*
{V(int8(1)), V(int8(1))},
{V(int8(2)), V(uint8(2))},
{V(uint8(3)), V(int8(3))},
{V(int8(4)), V(int16(4))},
{V(int16(5)), V(int8(5))},
{V(int8(6)), V(uint16(6))},
{V(uint16(7)), V(int8(7))},
{V(int8(8)), V(int32(8))},
{V(int32(9)), V(int8(9))},
{V(int8(10)), V(uint32(10))},
{V(uint32(11)), V(int8(11))},
{V(int8(12)), V(int64(12))},
{V(int64(13)), V(int8(13))},
{V(int8(14)), V(uint64(14))},
{V(uint64(15)), V(int8(15))},
{V(int8(16)), V(int(16))},
{V(int(17)), V(int8(17))},
{V(int8(18)), V(uint(18))},
{V(uint(19)), V(int8(19))},
{V(int8(20)), V(uintptr(20))},
{V(uintptr(21)), V(int8(21))},
{V(int8(22)), V(float32(22))},
{V(float32(23)), V(int8(23))},
{V(int8(24)), V(float64(24))},
{V(float64(25)), V(int8(25))},
{V(uint8(26)), V(uint8(26))},
{V(uint8(27)), V(int16(27))},
{V(int16(28)), V(uint8(28))},
{V(uint8(29)), V(uint16(29))},
{V(uint16(30)), V(uint8(30))},
{V(uint8(31)), V(int32(31))},
{V(int32(32)), V(uint8(32))},
{V(uint8(33)), V(uint32(33))},
{V(uint32(34)), V(uint8(34))},
{V(uint8(35)), V(int64(35))},
{V(int64(36)), V(uint8(36))},
{V(uint8(37)), V(uint64(37))},
{V(uint64(38)), V(uint8(38))},
{V(uint8(39)), V(int(39))},
{V(int(40)), V(uint8(40))},
{V(uint8(41)), V(uint(41))},
{V(uint(42)), V(uint8(42))},
{V(uint8(43)), V(uintptr(43))},
{V(uintptr(44)), V(uint8(44))},
{V(uint8(45)), V(float32(45))},
{V(float32(46)), V(uint8(46))},
{V(uint8(47)), V(float64(47))},
{V(float64(48)), V(uint8(48))},
{V(int16(49)), V(int16(49))},
{V(int16(50)), V(uint16(50))},
{V(uint16(51)), V(int16(51))},
{V(int16(52)), V(int32(52))},
{V(int32(53)), V(int16(53))},
{V(int16(54)), V(uint32(54))},
{V(uint32(55)), V(int16(55))},
{V(int16(56)), V(int64(56))},
{V(int64(57)), V(int16(57))},
{V(int16(58)), V(uint64(58))},
{V(uint64(59)), V(int16(59))},
{V(int16(60)), V(int(60))},
{V(int(61)), V(int16(61))},
{V(int16(62)), V(uint(62))},
{V(uint(63)), V(int16(63))},
{V(int16(64)), V(uintptr(64))},
{V(uintptr(65)), V(int16(65))},
{V(int16(66)), V(float32(66))},
{V(float32(67)), V(int16(67))},
{V(int16(68)), V(float64(68))},
{V(float64(69)), V(int16(69))},
{V(uint16(70)), V(uint16(70))},
{V(uint16(71)), V(int32(71))},
{V(int32(72)), V(uint16(72))},
{V(uint16(73)), V(uint32(73))},
{V(uint32(74)), V(uint16(74))},
{V(uint16(75)), V(int64(75))},
{V(int64(76)), V(uint16(76))},
{V(uint16(77)), V(uint64(77))},
{V(uint64(78)), V(uint16(78))},
{V(uint16(79)), V(int(79))},
{V(int(80)), V(uint16(80))},
{V(uint16(81)), V(uint(81))},
{V(uint(82)), V(uint16(82))},
{V(uint16(83)), V(uintptr(83))},
{V(uintptr(84)), V(uint16(84))},
{V(uint16(85)), V(float32(85))},
{V(float32(86)), V(uint16(86))},
{V(uint16(87)), V(float64(87))},
{V(float64(88)), V(uint16(88))},
{V(int32(89)), V(int32(89))},
{V(int32(90)), V(uint32(90))},
{V(uint32(91)), V(int32(91))},
{V(int32(92)), V(int64(92))},
{V(int64(93)), V(int32(93))},
{V(int32(94)), V(uint64(94))},
{V(uint64(95)), V(int32(95))},
{V(int32(96)), V(int(96))},
{V(int(97)), V(int32(97))},
{V(int32(98)), V(uint(98))},
{V(uint(99)), V(int32(99))},
{V(int32(100)), V(uintptr(100))},
{V(uintptr(101)), V(int32(101))},
{V(int32(102)), V(float32(102))},
{V(float32(103)), V(int32(103))},
{V(int32(104)), V(float64(104))},
{V(float64(105)), V(int32(105))},
{V(uint32(106)), V(uint32(106))},
{V(uint32(107)), V(int64(107))},
{V(int64(108)), V(uint32(108))},
{V(uint32(109)), V(uint64(109))},
{V(uint64(110)), V(uint32(110))},
{V(uint32(111)), V(int(111))},
{V(int(112)), V(uint32(112))},
{V(uint32(113)), V(uint(113))},
{V(uint(114)), V(uint32(114))},
{V(uint32(115)), V(uintptr(115))},
{V(uintptr(116)), V(uint32(116))},
{V(uint32(117)), V(float32(117))},
{V(float32(118)), V(uint32(118))},
{V(uint32(119)), V(float64(119))},
{V(float64(120)), V(uint32(120))},
{V(int64(121)), V(int64(121))},
{V(int64(122)), V(uint64(122))},
{V(uint64(123)), V(int64(123))},
{V(int64(124)), V(int(124))},
{V(int(125)), V(int64(125))},
{V(int64(126)), V(uint(126))},
{V(uint(127)), V(int64(127))},
{V(int64(128)), V(uintptr(128))},
{V(uintptr(129)), V(int64(129))},
{V(int64(130)), V(float32(130))},
{V(float32(131)), V(int64(131))},
{V(int64(132)), V(float64(132))},
{V(float64(133)), V(int64(133))},
{V(uint64(134)), V(uint64(134))},
{V(uint64(135)), V(int(135))},
{V(int(136)), V(uint64(136))},
{V(uint64(137)), V(uint(137))},
{V(uint(138)), V(uint64(138))},
{V(uint64(139)), V(uintptr(139))},
{V(uintptr(140)), V(uint64(140))},
{V(uint64(141)), V(float32(141))},
{V(float32(142)), V(uint64(142))},
{V(uint64(143)), V(float64(143))},
{V(float64(144)), V(uint64(144))},
{V(int(145)), V(int(145))},
{V(int(146)), V(uint(146))},
{V(uint(147)), V(int(147))},
{V(int(148)), V(uintptr(148))},
{V(uintptr(149)), V(int(149))},
{V(int(150)), V(float32(150))},
{V(float32(151)), V(int(151))},
{V(int(152)), V(float64(152))},
{V(float64(153)), V(int(153))},
{V(uint(154)), V(uint(154))},
{V(uint(155)), V(uintptr(155))},
{V(uintptr(156)), V(uint(156))},
{V(uint(157)), V(float32(157))},
{V(float32(158)), V(uint(158))},
{V(uint(159)), V(float64(159))},
{V(float64(160)), V(uint(160))},
{V(uintptr(161)), V(uintptr(161))},
{V(uintptr(162)), V(float32(162))},
{V(float32(163)), V(uintptr(163))},
{V(uintptr(164)), V(float64(164))},
{V(float64(165)), V(uintptr(165))},
{V(float32(166)), V(float32(166))},
{V(float32(167)), V(float64(167))},
{V(float64(168)), V(float32(168))},
{V(float64(169)), V(float64(169))},
// truncation
{V(float64(1.5)), V(int(1))},
// complex
{V(complex64(1i)), V(complex64(1i))},
{V(complex64(2i)), V(complex128(2i))},
{V(complex128(3i)), V(complex64(3i))},
{V(complex128(4i)), V(complex128(4i))},
// string
{V(string("hello")), V(string("hello"))},
{V(string("bytes1")), V([]byte("bytes1"))},
{V([]byte("bytes2")), V(string("bytes2"))},
{V([]byte("bytes3")), V([]byte("bytes3"))},
{V(string("runes♝")), V([]rune("runes♝"))},
{V([]rune("runes♕")), V(string("runes♕"))},
{V([]rune("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))},
{V(int('a')), V(string("a"))},
{V(int8('a')), V(string("a"))},
{V(int16('a')), V(string("a"))},
{V(int32('a')), V(string("a"))},
{V(int64('a')), V(string("a"))},
{V(uint('a')), V(string("a"))},
{V(uint8('a')), V(string("a"))},
{V(uint16('a')), V(string("a"))},
{V(uint32('a')), V(string("a"))},
{V(uint64('a')), V(string("a"))},
{V(uintptr('a')), V(string("a"))},
{V(int(-1)), V(string("\uFFFD"))},
{V(int8(-2)), V(string("\uFFFD"))},
{V(int16(-3)), V(string("\uFFFD"))},
{V(int32(-4)), V(string("\uFFFD"))},
{V(int64(-5)), V(string("\uFFFD"))},
{V(int64(-1 << 32)), V(string("\uFFFD"))},
{V(int64(1 << 32)), V(string("\uFFFD"))},
{V(uint(0x110001)), V(string("\uFFFD"))},
{V(uint32(0x110002)), V(string("\uFFFD"))},
{V(uint64(0x110003)), V(string("\uFFFD"))},
{V(uint64(1 << 32)), V(string("\uFFFD"))},
{V(uintptr(0x110004)), V(string("\uFFFD"))},
// named string
{V(MyString("hello")), V(string("hello"))},
{V(string("hello")), V(MyString("hello"))},
{V(string("hello")), V(string("hello"))},
{V(MyString("hello")), V(MyString("hello"))},
{V(MyString("bytes1")), V([]byte("bytes1"))},
{V([]byte("bytes2")), V(MyString("bytes2"))},
{V([]byte("bytes3")), V([]byte("bytes3"))},
{V(MyString("runes♝")), V([]rune("runes♝"))},
{V([]rune("runes♕")), V(MyString("runes♕"))},
{V([]rune("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))},
{V([]rune("runes🙈🙉🙊")), V(MyRunes("runes🙈🙉🙊"))},
{V(MyRunes("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))},
{V(int('a')), V(MyString("a"))},
{V(int8('a')), V(MyString("a"))},
{V(int16('a')), V(MyString("a"))},
{V(int32('a')), V(MyString("a"))},
{V(int64('a')), V(MyString("a"))},
{V(uint('a')), V(MyString("a"))},
{V(uint8('a')), V(MyString("a"))},
{V(uint16('a')), V(MyString("a"))},
{V(uint32('a')), V(MyString("a"))},
{V(uint64('a')), V(MyString("a"))},
{V(uintptr('a')), V(MyString("a"))},
{V(int(-1)), V(MyString("\uFFFD"))},
{V(int8(-2)), V(MyString("\uFFFD"))},
{V(int16(-3)), V(MyString("\uFFFD"))},
{V(int32(-4)), V(MyString("\uFFFD"))},
{V(int64(-5)), V(MyString("\uFFFD"))},
{V(uint(0x110001)), V(MyString("\uFFFD"))},
{V(uint32(0x110002)), V(MyString("\uFFFD"))},
{V(uint64(0x110003)), V(MyString("\uFFFD"))},
{V(uintptr(0x110004)), V(MyString("\uFFFD"))},
// named []byte
{V(string("bytes1")), V(MyBytes("bytes1"))},
{V(MyBytes("bytes2")), V(string("bytes2"))},
{V(MyBytes("bytes3")), V(MyBytes("bytes3"))},
{V(MyString("bytes1")), V(MyBytes("bytes1"))},
{V(MyBytes("bytes2")), V(MyString("bytes2"))},
// named []rune
{V(string("runes♝")), V(MyRunes("runes♝"))},
{V(MyRunes("runes♕")), V(string("runes♕"))},
{V(MyRunes("runes🙈🙉🙊")), V(MyRunes("runes🙈🙉🙊"))},
{V(MyString("runes♝")), V(MyRunes("runes♝"))},
{V(MyRunes("runes♕")), V(MyString("runes♕"))},
// slice to array
{V([]byte(nil)), V([0]byte{})},
{V([]byte{}), V([0]byte{})},
{V([]byte{1}), V([1]byte{1})},
{V([]byte{1, 2}), V([2]byte{1, 2})},
{V([]byte{1, 2, 3}), V([3]byte{1, 2, 3})},
{V(MyBytes([]byte(nil))), V([0]byte{})},
{V(MyBytes{}), V([0]byte{})},
{V(MyBytes{1}), V([1]byte{1})},
{V(MyBytes{1, 2}), V([2]byte{1, 2})},
{V(MyBytes{1, 2, 3}), V([3]byte{1, 2, 3})},
{V([]byte(nil)), V(MyBytesArray0{})},
{V([]byte{}), V(MyBytesArray0([0]byte{}))},
{V([]byte{1, 2, 3, 4}), V(MyBytesArray([4]byte{1, 2, 3, 4}))},
{V(MyBytes{}), V(MyBytesArray0([0]byte{}))},
{V(MyBytes{5, 6, 7, 8}), V(MyBytesArray([4]byte{5, 6, 7, 8}))},
{V([]MyByte{}), V([0]MyByte{})},
{V([]MyByte{1, 2}), V([2]MyByte{1, 2})},
// slice to array pointer
{V([]byte(nil)), V((*[0]byte)(nil))},
{V([]byte{}), V(new([0]byte))},
{V([]byte{7}), V(&[1]byte{7})},
{V(MyBytes([]byte(nil))), V((*[0]byte)(nil))},
{V(MyBytes([]byte{})), V(new([0]byte))},
{V(MyBytes([]byte{9})), V(&[1]byte{9})},
{V([]byte(nil)), V(MyBytesArrayPtr0(nil))},
{V([]byte{}), V(MyBytesArrayPtr0(new([0]byte)))},
{V([]byte{1, 2, 3, 4}), V(MyBytesArrayPtr(&[4]byte{1, 2, 3, 4}))},
{V(MyBytes([]byte{})), V(MyBytesArrayPtr0(new([0]byte)))},
{V(MyBytes([]byte{5, 6, 7, 8})), V(MyBytesArrayPtr(&[4]byte{5, 6, 7, 8}))},
{V([]byte(nil)), V((*MyBytesArray0)(nil))},
{V([]byte{}), V((*MyBytesArray0)(new([0]byte)))},
{V([]byte{1, 2, 3, 4}), V(&MyBytesArray{1, 2, 3, 4})},
{V(MyBytes([]byte(nil))), V((*MyBytesArray0)(nil))},
{V(MyBytes([]byte{})), V((*MyBytesArray0)(new([0]byte)))},
{V(MyBytes([]byte{5, 6, 7, 8})), V(&MyBytesArray{5, 6, 7, 8})},
{V(new([0]byte)), V(new(MyBytesArray0))},
{V(new(MyBytesArray0)), V(new([0]byte))},
{V(MyBytesArrayPtr0(nil)), V((*[0]byte)(nil))},
{V((*[0]byte)(nil)), V(MyBytesArrayPtr0(nil))},
// named types and equal underlying types
{V(new(int)), V(new(integer))},
{V(new(integer)), V(new(int))},
{V(Empty{}), V(struct{}{})},
{V(new(Empty)), V(new(struct{}))},
{V(struct{}{}), V(Empty{})},
{V(new(struct{})), V(new(Empty))},
{V(Empty{}), V(Empty{})},
{V(MyBytes{}), V([]byte{})},
{V([]byte{}), V(MyBytes{})},
{V((func())(nil)), V(MyFunc(nil))},
{V((MyFunc)(nil)), V((func())(nil))},
// structs with different tags
{V(struct {
x int `some:"foo"`
}{}), V(struct {
x int `some:"bar"`
}{})},
{V(struct {
x int `some:"bar"`
}{}), V(struct {
x int `some:"foo"`
}{})},
{V(MyStruct{}), V(struct {
x int `some:"foo"`
}{})},
{V(struct {
x int `some:"foo"`
}{}), V(MyStruct{})},
{V(MyStruct{}), V(struct {
x int `some:"bar"`
}{})},
{V(struct {
x int `some:"bar"`
}{}), V(MyStruct{})},
{V(MyStruct1{}), V(MyStruct2{})},
{V(MyStruct2{}), V(MyStruct1{})},
// can convert *byte and *MyByte
{V((*byte)(nil)), V((*MyByte)(nil))},
{V((*MyByte)(nil)), V((*byte)(nil))},
// cannot convert mismatched array sizes
{V([2]byte{}), V([2]byte{})},
{V([3]byte{}), V([3]byte{})},
{V(MyBytesArray0{}), V([0]byte{})},
{V([0]byte{}), V(MyBytesArray0{})},
// cannot convert other instances
{V((**byte)(nil)), V((**byte)(nil))},
{V((**MyByte)(nil)), V((**MyByte)(nil))},
{V((chan byte)(nil)), V((chan byte)(nil))},
{V((chan MyByte)(nil)), V((chan MyByte)(nil))},
{V(([]byte)(nil)), V(([]byte)(nil))},
{V(([]MyByte)(nil)), V(([]MyByte)(nil))},
{V((map[int]byte)(nil)), V((map[int]byte)(nil))},
{V((map[int]MyByte)(nil)), V((map[int]MyByte)(nil))},
{V((map[byte]int)(nil)), V((map[byte]int)(nil))},
{V((map[MyByte]int)(nil)), V((map[MyByte]int)(nil))},
{V([2]byte{}), V([2]byte{})},
{V([2]MyByte{}), V([2]MyByte{})},
// other
{V((***int)(nil)), V((***int)(nil))},
{V((***byte)(nil)), V((***byte)(nil))},
{V((***int32)(nil)), V((***int32)(nil))},
{V((***int64)(nil)), V((***int64)(nil))},
{V((chan byte)(nil)), V((chan byte)(nil))},
{V((chan MyByte)(nil)), V((chan MyByte)(nil))},
{V((map[int]bool)(nil)), V((map[int]bool)(nil))},
{V((map[int]byte)(nil)), V((map[int]byte)(nil))},
{V((map[uint]bool)(nil)), V((map[uint]bool)(nil))},
{V([]uint(nil)), V([]uint(nil))},
{V([]int(nil)), V([]int(nil))},
{V(new(any)), V(new(any))},
{V(new(io.Reader)), V(new(io.Reader))},
{V(new(io.Writer)), V(new(io.Writer))},
// channels
{V(IntChan(nil)), V((chan<- int)(nil))},
{V(IntChan(nil)), V((<-chan int)(nil))},
{V((chan int)(nil)), V(IntChanRecv(nil))},
{V((chan int)(nil)), V(IntChanSend(nil))},
{V(IntChanRecv(nil)), V((<-chan int)(nil))},
{V((<-chan int)(nil)), V(IntChanRecv(nil))},
{V(IntChanSend(nil)), V((chan<- int)(nil))},
{V((chan<- int)(nil)), V(IntChanSend(nil))},
{V(IntChan(nil)), V((chan int)(nil))},
{V((chan int)(nil)), V(IntChan(nil))},
{V((chan int)(nil)), V((<-chan int)(nil))},
{V((chan int)(nil)), V((chan<- int)(nil))},
{V(BytesChan(nil)), V((chan<- []byte)(nil))},
{V(BytesChan(nil)), V((<-chan []byte)(nil))},
{V((chan []byte)(nil)), V(BytesChanRecv(nil))},
{V((chan []byte)(nil)), V(BytesChanSend(nil))},
{V(BytesChanRecv(nil)), V((<-chan []byte)(nil))},
{V((<-chan []byte)(nil)), V(BytesChanRecv(nil))},
{V(BytesChanSend(nil)), V((chan<- []byte)(nil))},
{V((chan<- []byte)(nil)), V(BytesChanSend(nil))},
{V(BytesChan(nil)), V((chan []byte)(nil))},
{V((chan []byte)(nil)), V(BytesChan(nil))},
{V((chan []byte)(nil)), V((<-chan []byte)(nil))},
{V((chan []byte)(nil)), V((chan<- []byte)(nil))},
// cannot convert other instances (channels)
{V(IntChan(nil)), V(IntChan(nil))},
{V(IntChanRecv(nil)), V(IntChanRecv(nil))},
{V(IntChanSend(nil)), V(IntChanSend(nil))},
{V(BytesChan(nil)), V(BytesChan(nil))},
{V(BytesChanRecv(nil)), V(BytesChanRecv(nil))},
{V(BytesChanSend(nil)), V(BytesChanSend(nil))},
// interfaces
{V(int(1)), EmptyInterfaceV(int(1))},
{V(string("hello")), EmptyInterfaceV(string("hello"))},
{V(new(bytes.Buffer)), ReaderV(new(bytes.Buffer))},
{ReadWriterV(new(bytes.Buffer)), ReaderV(new(bytes.Buffer))},
{V(new(bytes.Buffer)), ReadWriterV(new(bytes.Buffer))},
}
func TestConvert(t *testing.T) {
canConvert := map[[2]Type]bool{}
all := map[Type]bool{}
for _, tt := range convertTests {
t1 := tt.in.Type()
if !t1.ConvertibleTo(t1) {
t.Errorf("(%s).ConvertibleTo(%s) = false, want true", t1, t1)
continue
}
t2 := tt.out.Type()
if !t1.ConvertibleTo(t2) {
t.Errorf("(%s).ConvertibleTo(%s) = false, want true", t1, t2)
continue
}
all[t1] = true
all[t2] = true
canConvert[[2]Type{t1, t2}] = true
// vout1 represents the in value converted to the in type.
v1 := tt.in
if !v1.CanConvert(t1) {
t.Errorf("ValueOf(%T(%[1]v)).CanConvert(%s) = false, want true", tt.in.Interface(), t1)
}
vout1 := v1.Convert(t1)
out1 := vout1.Interface()
if vout1.Type() != tt.in.Type() || !DeepEqual(out1, tt.in.Interface()) {
t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t1, out1, tt.in.Interface())
}
// vout2 represents the in value converted to the out type.
if !v1.CanConvert(t2) {
t.Errorf("ValueOf(%T(%[1]v)).CanConvert(%s) = false, want true", tt.in.Interface(), t2)
}
vout2 := v1.Convert(t2)
out2 := vout2.Interface()
if vout2.Type() != tt.out.Type() || !DeepEqual(out2, tt.out.Interface()) {
t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t2, out2, tt.out.Interface())
}
if got, want := vout2.Kind(), vout2.Type().Kind(); got != want {
t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) has internal kind %v want %v", tt.in.Interface(), t1, got, want)
}
// vout3 represents a new value of the out type, set to vout2. This makes
// sure the converted value vout2 is really usable as a regular value.
vout3 := New(t2).Elem()
vout3.Set(vout2)
out3 := vout3.Interface()
if vout3.Type() != tt.out.Type() || !DeepEqual(out3, tt.out.Interface()) {
t.Errorf("Set(ValueOf(%T(%[1]v)).Convert(%s)) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t2, out3, tt.out.Interface())
}
if IsRO(v1) {
t.Errorf("table entry %v is RO, should not be", v1)
}
if IsRO(vout1) {
t.Errorf("self-conversion output %v is RO, should not be", vout1)
}
if IsRO(vout2) {
t.Errorf("conversion output %v is RO, should not be", vout2)
}
if IsRO(vout3) {
t.Errorf("set(conversion output) %v is RO, should not be", vout3)
}
if !IsRO(MakeRO(v1).Convert(t1)) {
t.Errorf("RO self-conversion output %v is not RO, should be", v1)
}
if !IsRO(MakeRO(v1).Convert(t2)) {
t.Errorf("RO conversion output %v is not RO, should be", v1)
}
}
// Assume that of all the types we saw during the tests,
// if there wasn't an explicit entry for a conversion between
// a pair of types, then it's not to be allowed. This checks for
// things like 'int64' converting to '*int'.
for t1 := range all {
for t2 := range all {
expectOK := t1 == t2 || canConvert[[2]Type{t1, t2}] || t2.Kind() == Interface && t2.NumMethod() == 0
if ok := t1.ConvertibleTo(t2); ok != expectOK {
t.Errorf("(%s).ConvertibleTo(%s) = %v, want %v", t1, t2, ok, expectOK)
}
}
}
}
func TestConvertPanic(t *testing.T) {
s := make([]byte, 4)
p := new([8]byte)
v := ValueOf(s)
pt := TypeOf(p)
if !v.Type().ConvertibleTo(pt) {
t.Errorf("[]byte should be convertible to *[8]byte")
}
if v.CanConvert(pt) {
t.Errorf("slice with length 4 should not be convertible to *[8]byte")
}
shouldPanic("reflect: cannot convert slice with length 4 to pointer to array with length 8", func() {
_ = v.Convert(pt)
})
if v.CanConvert(pt.Elem()) {
t.Errorf("slice with length 4 should not be convertible to [8]byte")
}
shouldPanic("reflect: cannot convert slice with length 4 to array with length 8", func() {
_ = v.Convert(pt.Elem())
})
}
func TestConvertSlice2Array(t *testing.T) {
s := make([]int, 4)
p := [4]int{}
pt := TypeOf(p)
ov := ValueOf(s)
v := ov.Convert(pt)
// Converting a slice to non-empty array needs to return
// a non-addressable copy of the original memory.
if v.CanAddr() {
t.Fatalf("convert slice to non-empty array returns a addressable copy array")
}
for i := range s {
ov.Index(i).Set(ValueOf(i + 1))
}
for i := range s {
if v.Index(i).Int() != 0 {
t.Fatalf("slice (%v) mutation visible in converted result (%v)", ov, v)
}
}
}
var gFloat32 float32
const snan uint32 = 0x7f800001
func TestConvertNaNs(t *testing.T) {
// Test to see if a store followed by a load of a signaling NaN
// maintains the signaling bit. (This used to fail on the 387 port.)
gFloat32 = math.Float32frombits(snan)
runtime.Gosched() // make sure we don't optimize the store/load away
if got := math.Float32bits(gFloat32); got != snan {
t.Errorf("store/load of sNaN not faithful, got %x want %x", got, snan)
}
// Test reflect's conversion between float32s. See issue 36400.
type myFloat32 float32
x := V(myFloat32(math.Float32frombits(snan)))
y := x.Convert(TypeOf(float32(0)))
z := y.Interface().(float32)
if got := math.Float32bits(z); got != snan {
t.Errorf("signaling nan conversion got %x, want %x", got, snan)
}
}
*/
type ComparableStruct struct {
X int
}
type NonComparableStruct struct {
X int
Y map[string]int
}
var comparableTests = []struct {
typ Type
ok bool
}{
{TypeOf(1), true},
{TypeOf("hello"), true},
{TypeOf(new(byte)), true},
{TypeOf((func())(nil)), false},
{TypeOf([]byte{}), false},
{TypeOf(map[string]int{}), false},
{TypeOf(make(chan int)), true},
{TypeOf(1.5), true},
{TypeOf(false), true},
{TypeOf(1i), true},
{TypeOf(ComparableStruct{}), true},
{TypeOf(NonComparableStruct{}), false},
{TypeOf([10]map[string]int{}), false},
{TypeOf([10]string{}), true},
{TypeOf(new(any)).Elem(), true},
}
func TestComparable(t *testing.T) {
for _, tt := range comparableTests {
if ok := tt.typ.Comparable(); ok != tt.ok {
t.Errorf("TypeOf(%v).Comparable() = %v, want %v", tt.typ, ok, tt.ok)
}
}
}
func TestOverflow(t *testing.T) {
if ovf := V(float64(0)).OverflowFloat(1e300); ovf {
t.Errorf("%v wrongly overflows float64", 1e300)
}
maxFloat32 := float64((1<<24 - 1) << (127 - 23))
if ovf := V(float32(0)).OverflowFloat(maxFloat32); ovf {
t.Errorf("%v wrongly overflows float32", maxFloat32)
}
ovfFloat32 := float64((1<<24-1)<<(127-23) + 1<<(127-52))
if ovf := V(float32(0)).OverflowFloat(ovfFloat32); !ovf {
t.Errorf("%v should overflow float32", ovfFloat32)
}
if ovf := V(float32(0)).OverflowFloat(-ovfFloat32); !ovf {
t.Errorf("%v should overflow float32", -ovfFloat32)
}
maxInt32 := int64(0x7fffffff)
if ovf := V(int32(0)).OverflowInt(maxInt32); ovf {
t.Errorf("%v wrongly overflows int32", maxInt32)
}
if ovf := V(int32(0)).OverflowInt(-1 << 31); ovf {
t.Errorf("%v wrongly overflows int32", -int64(1)<<31)
}
ovfInt32 := int64(1 << 31)
if ovf := V(int32(0)).OverflowInt(ovfInt32); !ovf {
t.Errorf("%v should overflow int32", ovfInt32)
}
maxUint32 := uint64(0xffffffff)
if ovf := V(uint32(0)).OverflowUint(maxUint32); ovf {
t.Errorf("%v wrongly overflows uint32", maxUint32)
}
ovfUint32 := uint64(1 << 32)
if ovf := V(uint32(0)).OverflowUint(ovfUint32); !ovf {
t.Errorf("%v should overflow uint32", ovfUint32)
}
}
/*
func checkSameType(t *testing.T, x Type, y any) {
if x != TypeOf(y) || TypeOf(Zero(x).Interface()) != TypeOf(y) {
t.Errorf("did not find preexisting type for %s (vs %s)", TypeOf(x), TypeOf(y))
}
}
func TestArrayOf(t *testing.T) {
// check construction and use of type not in binary
tests := []struct {
n int
value func(i int) any
comparable bool
want string
}{
{
n: 0,
value: func(i int) any { type Tint int; return Tint(i) },
comparable: true,
want: "[]",
},
{
n: 10,
value: func(i int) any { type Tint int; return Tint(i) },
comparable: true,
want: "[0 1 2 3 4 5 6 7 8 9]",
},
{
n: 10,
value: func(i int) any { type Tfloat float64; return Tfloat(i) },
comparable: true,
want: "[0 1 2 3 4 5 6 7 8 9]",
},
{
n: 10,
value: func(i int) any { type Tstring string; return Tstring(strconv.Itoa(i)) },
comparable: true,
want: "[0 1 2 3 4 5 6 7 8 9]",
},
{
n: 10,
value: func(i int) any { type Tstruct struct{ V int }; return Tstruct{i} },
comparable: true,
want: "[{0} {1} {2} {3} {4} {5} {6} {7} {8} {9}]",
},
{
n: 10,
value: func(i int) any { type Tint int; return []Tint{Tint(i)} },
comparable: false,
want: "[[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]]",
},
{
n: 10,
value: func(i int) any { type Tint int; return [1]Tint{Tint(i)} },
comparable: true,
want: "[[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]]",
},
{
n: 10,
value: func(i int) any { type Tstruct struct{ V [1]int }; return Tstruct{[1]int{i}} },
comparable: true,
want: "[{[0]} {[1]} {[2]} {[3]} {[4]} {[5]} {[6]} {[7]} {[8]} {[9]}]",
},
{
n: 10,
value: func(i int) any { type Tstruct struct{ V []int }; return Tstruct{[]int{i}} },
comparable: false,
want: "[{[0]} {[1]} {[2]} {[3]} {[4]} {[5]} {[6]} {[7]} {[8]} {[9]}]",
},
{
n: 10,
value: func(i int) any { type TstructUV struct{ U, V int }; return TstructUV{i, i} },
comparable: true,
want: "[{0 0} {1 1} {2 2} {3 3} {4 4} {5 5} {6 6} {7 7} {8 8} {9 9}]",
},
{
n: 10,
value: func(i int) any {
type TstructUV struct {
U int
V float64
}
return TstructUV{i, float64(i)}
},
comparable: true,
want: "[{0 0} {1 1} {2 2} {3 3} {4 4} {5 5} {6 6} {7 7} {8 8} {9 9}]",
},
}
for _, table := range tests {
at := ArrayOf(table.n, TypeOf(table.value(0)))
v := New(at).Elem()
vok := New(at).Elem()
vnot := New(at).Elem()
for i := 0; i < v.Len(); i++ {
v.Index(i).Set(ValueOf(table.value(i)))
vok.Index(i).Set(ValueOf(table.value(i)))
j := i
if i+1 == v.Len() {
j = i + 1
}
vnot.Index(i).Set(ValueOf(table.value(j))) // make it differ only by last element
}
s := fmt.Sprint(v.Interface())
if s != table.want {
t.Errorf("constructed array = %s, want %s", s, table.want)
}
if table.comparable != at.Comparable() {
t.Errorf("constructed array (%#v) is comparable=%v, want=%v", v.Interface(), at.Comparable(), table.comparable)
}
if table.comparable {
if table.n > 0 {
if DeepEqual(vnot.Interface(), v.Interface()) {
t.Errorf(
"arrays (%#v) compare ok (but should not)",
v.Interface(),
)
}
}
if !DeepEqual(vok.Interface(), v.Interface()) {
t.Errorf(
"arrays (%#v) compare NOT-ok (but should)",
v.Interface(),
)
}
}
}
// check that type already in binary is found
type T int
checkSameType(t, ArrayOf(5, TypeOf(T(1))), [5]T{})
}
func TestArrayOfGC(t *testing.T) {
type T *uintptr
tt := TypeOf(T(nil))
const n = 100
var x []any
for i := 0; i < n; i++ {
v := New(ArrayOf(n, tt)).Elem()
for j := 0; j < v.Len(); j++ {
p := new(uintptr)
*p = uintptr(i*n + j)
v.Index(j).Set(ValueOf(p).Convert(tt))
}
x = append(x, v.Interface())
}
runtime.GC()
for i, xi := range x {
v := ValueOf(xi)
for j := 0; j < v.Len(); j++ {
k := v.Index(j).Elem().Interface()
if k != uintptr(i*n+j) {
t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j)
}
}
}
}
func TestArrayOfAlg(t *testing.T) {
at := ArrayOf(6, TypeOf(byte(0)))
v1 := New(at).Elem()
v2 := New(at).Elem()
if v1.Interface() != v1.Interface() {
t.Errorf("constructed array %v not equal to itself", v1.Interface())
}
v1.Index(5).Set(ValueOf(byte(1)))
if i1, i2 := v1.Interface(), v2.Interface(); i1 == i2 {
t.Errorf("constructed arrays %v and %v should not be equal", i1, i2)
}
at = ArrayOf(6, TypeOf([]int(nil)))
v1 = New(at).Elem()
shouldPanic("", func() { _ = v1.Interface() == v1.Interface() })
}
func TestArrayOfGenericAlg(t *testing.T) {
at1 := ArrayOf(5, TypeOf(string("")))
at := ArrayOf(6, at1)
v1 := New(at).Elem()
v2 := New(at).Elem()
if v1.Interface() != v1.Interface() {
t.Errorf("constructed array %v not equal to itself", v1.Interface())
}
v1.Index(0).Index(0).Set(ValueOf("abc"))
v2.Index(0).Index(0).Set(ValueOf("efg"))
if i1, i2 := v1.Interface(), v2.Interface(); i1 == i2 {
t.Errorf("constructed arrays %v and %v should not be equal", i1, i2)
}
v1.Index(0).Index(0).Set(ValueOf("abc"))
v2.Index(0).Index(0).Set(ValueOf((v1.Index(0).Index(0).String() + " ")[:3]))
if i1, i2 := v1.Interface(), v2.Interface(); i1 != i2 {
t.Errorf("constructed arrays %v and %v should be equal", i1, i2)
}
// Test hash
m := MakeMap(MapOf(at, TypeOf(int(0))))
m.SetMapIndex(v1, ValueOf(1))
if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() {
t.Errorf("constructed arrays %v and %v have different hashes", i1, i2)
}
}
func TestArrayOfDirectIface(t *testing.T) {
{
type T [1]*byte
i1 := Zero(TypeOf(T{})).Interface()
v1 := ValueOf(&i1).Elem()
p1 := v1.InterfaceData()[1]
i2 := Zero(ArrayOf(1, PointerTo(TypeOf(int8(0))))).Interface()
v2 := ValueOf(&i2).Elem()
p2 := v2.InterfaceData()[1]
if p1 != 0 {
t.Errorf("got p1=%v. want=%v", p1, nil)
}
if p2 != 0 {
t.Errorf("got p2=%v. want=%v", p2, nil)
}
}
{
type T [0]*byte
i1 := Zero(TypeOf(T{})).Interface()
v1 := ValueOf(&i1).Elem()
p1 := v1.InterfaceData()[1]
i2 := Zero(ArrayOf(0, PointerTo(TypeOf(int8(0))))).Interface()
v2 := ValueOf(&i2).Elem()
p2 := v2.InterfaceData()[1]
if p1 == 0 {
t.Errorf("got p1=%v. want=not-%v", p1, nil)
}
if p2 == 0 {
t.Errorf("got p2=%v. want=not-%v", p2, nil)
}
}
}
// Ensure passing in negative lengths panics.
// See https://golang.org/issue/43603
func TestArrayOfPanicOnNegativeLength(t *testing.T) {
shouldPanic("reflect: negative length passed to ArrayOf", func() {
ArrayOf(-1, TypeOf(byte(0)))
})
}
func TestSliceOf(t *testing.T) {
// check construction and use of type not in binary
type T int
st := SliceOf(TypeOf(T(1)))
if got, want := st.String(), "[]reflect_test.T"; got != want {
t.Errorf("SliceOf(T(1)).String()=%q, want %q", got, want)
}
v := MakeSlice(st, 10, 10)
runtime.GC()
for i := 0; i < v.Len(); i++ {
v.Index(i).Set(ValueOf(T(i)))
runtime.GC()
}
s := fmt.Sprint(v.Interface())
want := "[0 1 2 3 4 5 6 7 8 9]"
if s != want {
t.Errorf("constructed slice = %s, want %s", s, want)
}
// check that type already in binary is found
type T1 int
checkSameType(t, SliceOf(TypeOf(T1(1))), []T1{})
}
func TestSliceOverflow(t *testing.T) {
// check that MakeSlice panics when size of slice overflows uint
const S = 1e6
s := uint(S)
l := (1<<(unsafe.Sizeof((*byte)(nil))*8)-1)/s + 1
if l*s >= s {
t.Fatal("slice size does not overflow")
}
var x [S]byte
st := SliceOf(TypeOf(x))
defer func() {
err := recover()
if err == nil {
t.Fatal("slice overflow does not panic")
}
}()
MakeSlice(st, int(l), int(l))
}
func TestSliceOfGC(t *testing.T) {
type T *uintptr
tt := TypeOf(T(nil))
st := SliceOf(tt)
const n = 100
var x []any
for i := 0; i < n; i++ {
v := MakeSlice(st, n, n)
for j := 0; j < v.Len(); j++ {
p := new(uintptr)
*p = uintptr(i*n + j)
v.Index(j).Set(ValueOf(p).Convert(tt))
}
x = append(x, v.Interface())
}
runtime.GC()
for i, xi := range x {
v := ValueOf(xi)
for j := 0; j < v.Len(); j++ {
k := v.Index(j).Elem().Interface()
if k != uintptr(i*n+j) {
t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j)
}
}
}
}
func TestStructOfFieldName(t *testing.T) {
// invalid field name "1nvalid"
shouldPanic("has invalid name", func() {
StructOf([]StructField{
{Name: "Valid", Type: TypeOf("")},
{Name: "1nvalid", Type: TypeOf("")},
})
})
// invalid field name "+"
shouldPanic("has invalid name", func() {
StructOf([]StructField{
{Name: "Val1d", Type: TypeOf("")},
{Name: "+", Type: TypeOf("")},
})
})
// no field name
shouldPanic("has no name", func() {
StructOf([]StructField{
{Name: "", Type: TypeOf("")},
})
})
// verify creation of a struct with valid struct fields
validFields := []StructField{
{
Name: "φ",
Type: TypeOf(""),
},
{
Name: "ValidName",
Type: TypeOf(""),
},
{
Name: "Val1dNam5",
Type: TypeOf(""),
},
}
validStruct := StructOf(validFields)
const structStr = `struct { φ string; ValidName string; Val1dNam5 string }`
if got, want := validStruct.String(), structStr; got != want {
t.Errorf("StructOf(validFields).String()=%q, want %q", got, want)
}
}
func TestStructOf(t *testing.T) {
// check construction and use of type not in binary
fields := []StructField{
{
Name: "S",
Tag: "s",
Type: TypeOf(""),
},
{
Name: "X",
Tag: "x",
Type: TypeOf(byte(0)),
},
{
Name: "Y",
Type: TypeOf(uint64(0)),
},
{
Name: "Z",
Type: TypeOf([3]uint16{}),
},
}
st := StructOf(fields)
v := New(st).Elem()
runtime.GC()
v.FieldByName("X").Set(ValueOf(byte(2)))
v.FieldByIndex([]int{1}).Set(ValueOf(byte(1)))
runtime.GC()
s := fmt.Sprint(v.Interface())
want := `{ 1 0 [0 0 0]}`
if s != want {
t.Errorf("constructed struct = %s, want %s", s, want)
}
const stStr = `struct { S string "s"; X uint8 "x"; Y uint64; Z [3]uint16 }`
if got, want := st.String(), stStr; got != want {
t.Errorf("StructOf(fields).String()=%q, want %q", got, want)
}
// check the size, alignment and field offsets
stt := TypeOf(struct {
String string
X byte
Y uint64
Z [3]uint16
}{})
if st.Size() != stt.Size() {
t.Errorf("constructed struct size = %v, want %v", st.Size(), stt.Size())
}
if st.Align() != stt.Align() {
t.Errorf("constructed struct align = %v, want %v", st.Align(), stt.Align())
}
if st.FieldAlign() != stt.FieldAlign() {
t.Errorf("constructed struct field align = %v, want %v", st.FieldAlign(), stt.FieldAlign())
}
for i := 0; i < st.NumField(); i++ {
o1 := st.Field(i).Offset
o2 := stt.Field(i).Offset
if o1 != o2 {
t.Errorf("constructed struct field %v offset = %v, want %v", i, o1, o2)
}
}
// Check size and alignment with a trailing zero-sized field.
st = StructOf([]StructField{
{
Name: "F1",
Type: TypeOf(byte(0)),
},
{
Name: "F2",
Type: TypeOf([0]*byte{}),
},
})
stt = TypeOf(struct {
G1 byte
G2 [0]*byte
}{})
if st.Size() != stt.Size() {
t.Errorf("constructed zero-padded struct size = %v, want %v", st.Size(), stt.Size())
}
if st.Align() != stt.Align() {
t.Errorf("constructed zero-padded struct align = %v, want %v", st.Align(), stt.Align())
}
if st.FieldAlign() != stt.FieldAlign() {
t.Errorf("constructed zero-padded struct field align = %v, want %v", st.FieldAlign(), stt.FieldAlign())
}
for i := 0; i < st.NumField(); i++ {
o1 := st.Field(i).Offset
o2 := stt.Field(i).Offset
if o1 != o2 {
t.Errorf("constructed zero-padded struct field %v offset = %v, want %v", i, o1, o2)
}
}
// check duplicate names
shouldPanic("duplicate field", func() {
StructOf([]StructField{
{Name: "string", PkgPath: "p", Type: TypeOf("")},
{Name: "string", PkgPath: "p", Type: TypeOf("")},
})
})
shouldPanic("has no name", func() {
StructOf([]StructField{
{Type: TypeOf("")},
{Name: "string", PkgPath: "p", Type: TypeOf("")},
})
})
shouldPanic("has no name", func() {
StructOf([]StructField{
{Type: TypeOf("")},
{Type: TypeOf("")},
})
})
// check that type already in binary is found
checkSameType(t, StructOf(fields[2:3]), struct{ Y uint64 }{})
// gccgo used to fail this test.
type structFieldType any
checkSameType(t,
StructOf([]StructField{
{
Name: "F",
Type: TypeOf((*structFieldType)(nil)).Elem(),
},
}),
struct{ F structFieldType }{})
}
func TestStructOfExportRules(t *testing.T) {
type S1 struct{}
type s2 struct{}
type ΦType struct{}
type φType struct{}
testPanic := func(i int, mustPanic bool, f func()) {
defer func() {
err := recover()
if err == nil && mustPanic {
t.Errorf("test-%d did not panic", i)
}
if err != nil && !mustPanic {
t.Errorf("test-%d panicked: %v\n", i, err)
}
}()
f()
}
tests := []struct {
field StructField
mustPanic bool
exported bool
}{
{
field: StructField{Name: "S1", Anonymous: true, Type: TypeOf(S1{})},
exported: true,
},
{
field: StructField{Name: "S1", Anonymous: true, Type: TypeOf((*S1)(nil))},
exported: true,
},
{
field: StructField{Name: "s2", Anonymous: true, Type: TypeOf(s2{})},
mustPanic: true,
},
{
field: StructField{Name: "s2", Anonymous: true, Type: TypeOf((*s2)(nil))},
mustPanic: true,
},
{
field: StructField{Name: "Name", Type: nil, PkgPath: ""},
mustPanic: true,
},
{
field: StructField{Name: "", Type: TypeOf(S1{}), PkgPath: ""},
mustPanic: true,
},
{
field: StructField{Name: "S1", Anonymous: true, Type: TypeOf(S1{}), PkgPath: "other/pkg"},
mustPanic: true,
},
{
field: StructField{Name: "S1", Anonymous: true, Type: TypeOf((*S1)(nil)), PkgPath: "other/pkg"},
mustPanic: true,
},
{
field: StructField{Name: "s2", Anonymous: true, Type: TypeOf(s2{}), PkgPath: "other/pkg"},
mustPanic: true,
},
{
field: StructField{Name: "s2", Anonymous: true, Type: TypeOf((*s2)(nil)), PkgPath: "other/pkg"},
mustPanic: true,
},
{
field: StructField{Name: "s2", Type: TypeOf(int(0)), PkgPath: "other/pkg"},
},
{
field: StructField{Name: "s2", Type: TypeOf(int(0)), PkgPath: "other/pkg"},
},
{
field: StructField{Name: "S", Type: TypeOf(S1{})},
exported: true,
},
{
field: StructField{Name: "S", Type: TypeOf((*S1)(nil))},
exported: true,
},
{
field: StructField{Name: "S", Type: TypeOf(s2{})},
exported: true,
},
{
field: StructField{Name: "S", Type: TypeOf((*s2)(nil))},
exported: true,
},
{
field: StructField{Name: "s", Type: TypeOf(S1{})},
mustPanic: true,
},
{
field: StructField{Name: "s", Type: TypeOf((*S1)(nil))},
mustPanic: true,
},
{
field: StructField{Name: "s", Type: TypeOf(s2{})},
mustPanic: true,
},
{
field: StructField{Name: "s", Type: TypeOf((*s2)(nil))},
mustPanic: true,
},
{
field: StructField{Name: "s", Type: TypeOf(S1{}), PkgPath: "other/pkg"},
},
{
field: StructField{Name: "s", Type: TypeOf((*S1)(nil)), PkgPath: "other/pkg"},
},
{
field: StructField{Name: "s", Type: TypeOf(s2{}), PkgPath: "other/pkg"},
},
{
field: StructField{Name: "s", Type: TypeOf((*s2)(nil)), PkgPath: "other/pkg"},
},
{
field: StructField{Name: "", Type: TypeOf(ΦType{})},
mustPanic: true,
},
{
field: StructField{Name: "", Type: TypeOf(φType{})},
mustPanic: true,
},
{
field: StructField{Name: "Φ", Type: TypeOf(0)},
exported: true,
},
{
field: StructField{Name: "φ", Type: TypeOf(0)},
exported: false,
},
}
for i, test := range tests {
testPanic(i, test.mustPanic, func() {
typ := StructOf([]StructField{test.field})
if typ == nil {
t.Errorf("test-%d: error creating struct type", i)
return
}
field := typ.Field(0)
n := field.Name
if n == "" {
panic("field.Name must not be empty")
}
exported := token.IsExported(n)
if exported != test.exported {
t.Errorf("test-%d: got exported=%v want exported=%v", i, exported, test.exported)
}
if field.PkgPath != test.field.PkgPath {
t.Errorf("test-%d: got PkgPath=%q want pkgPath=%q", i, field.PkgPath, test.field.PkgPath)
}
})
}
}
func TestStructOfGC(t *testing.T) {
type T *uintptr
tt := TypeOf(T(nil))
fields := []StructField{
{Name: "X", Type: tt},
{Name: "Y", Type: tt},
}
st := StructOf(fields)
const n = 10000
var x []any
for i := 0; i < n; i++ {
v := New(st).Elem()
for j := 0; j < v.NumField(); j++ {
p := new(uintptr)
*p = uintptr(i*n + j)
v.Field(j).Set(ValueOf(p).Convert(tt))
}
x = append(x, v.Interface())
}
runtime.GC()
for i, xi := range x {
v := ValueOf(xi)
for j := 0; j < v.NumField(); j++ {
k := v.Field(j).Elem().Interface()
if k != uintptr(i*n+j) {
t.Errorf("lost x[%d].%c = %d, want %d", i, "XY"[j], k, i*n+j)
}
}
}
}
func TestStructOfAlg(t *testing.T) {
st := StructOf([]StructField{{Name: "X", Tag: "x", Type: TypeOf(int(0))}})
v1 := New(st).Elem()
v2 := New(st).Elem()
if !DeepEqual(v1.Interface(), v1.Interface()) {
t.Errorf("constructed struct %v not equal to itself", v1.Interface())
}
v1.FieldByName("X").Set(ValueOf(int(1)))
if i1, i2 := v1.Interface(), v2.Interface(); DeepEqual(i1, i2) {
t.Errorf("constructed structs %v and %v should not be equal", i1, i2)
}
st = StructOf([]StructField{{Name: "X", Tag: "x", Type: TypeOf([]int(nil))}})
v1 = New(st).Elem()
shouldPanic("", func() { _ = v1.Interface() == v1.Interface() })
}
func TestStructOfGenericAlg(t *testing.T) {
st1 := StructOf([]StructField{
{Name: "X", Tag: "x", Type: TypeOf(int64(0))},
{Name: "Y", Type: TypeOf(string(""))},
})
st := StructOf([]StructField{
{Name: "S0", Type: st1},
{Name: "S1", Type: st1},
})
tests := []struct {
rt Type
idx []int
}{
{
rt: st,
idx: []int{0, 1},
},
{
rt: st1,
idx: []int{1},
},
{
rt: StructOf(
[]StructField{
{Name: "XX", Type: TypeOf([0]int{})},
{Name: "YY", Type: TypeOf("")},
},
),
idx: []int{1},
},
{
rt: StructOf(
[]StructField{
{Name: "XX", Type: TypeOf([0]int{})},
{Name: "YY", Type: TypeOf("")},
{Name: "ZZ", Type: TypeOf([2]int{})},
},
),
idx: []int{1},
},
{
rt: StructOf(
[]StructField{
{Name: "XX", Type: TypeOf([1]int{})},
{Name: "YY", Type: TypeOf("")},
},
),
idx: []int{1},
},
{
rt: StructOf(
[]StructField{
{Name: "XX", Type: TypeOf([1]int{})},
{Name: "YY", Type: TypeOf("")},
{Name: "ZZ", Type: TypeOf([1]int{})},
},
),
idx: []int{1},
},
{
rt: StructOf(
[]StructField{
{Name: "XX", Type: TypeOf([2]int{})},
{Name: "YY", Type: TypeOf("")},
{Name: "ZZ", Type: TypeOf([2]int{})},
},
),
idx: []int{1},
},
{
rt: StructOf(
[]StructField{
{Name: "XX", Type: TypeOf(int64(0))},
{Name: "YY", Type: TypeOf(byte(0))},
{Name: "ZZ", Type: TypeOf("")},
},
),
idx: []int{2},
},
{
rt: StructOf(
[]StructField{
{Name: "XX", Type: TypeOf(int64(0))},
{Name: "YY", Type: TypeOf(int64(0))},
{Name: "ZZ", Type: TypeOf("")},
{Name: "AA", Type: TypeOf([1]int64{})},
},
),
idx: []int{2},
},
}
for _, table := range tests {
v1 := New(table.rt).Elem()
v2 := New(table.rt).Elem()
if !DeepEqual(v1.Interface(), v1.Interface()) {
t.Errorf("constructed struct %v not equal to itself", v1.Interface())
}
v1.FieldByIndex(table.idx).Set(ValueOf("abc"))
v2.FieldByIndex(table.idx).Set(ValueOf("def"))
if i1, i2 := v1.Interface(), v2.Interface(); DeepEqual(i1, i2) {
t.Errorf("constructed structs %v and %v should not be equal", i1, i2)
}
abc := "abc"
v1.FieldByIndex(table.idx).Set(ValueOf(abc))
val := "+" + abc + "-"
v2.FieldByIndex(table.idx).Set(ValueOf(val[1:4]))
if i1, i2 := v1.Interface(), v2.Interface(); !DeepEqual(i1, i2) {
t.Errorf("constructed structs %v and %v should be equal", i1, i2)
}
// Test hash
m := MakeMap(MapOf(table.rt, TypeOf(int(0))))
m.SetMapIndex(v1, ValueOf(1))
if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() {
t.Errorf("constructed structs %#v and %#v have different hashes", i1, i2)
}
v2.FieldByIndex(table.idx).Set(ValueOf("abc"))
if i1, i2 := v1.Interface(), v2.Interface(); !DeepEqual(i1, i2) {
t.Errorf("constructed structs %v and %v should be equal", i1, i2)
}
if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() {
t.Errorf("constructed structs %v and %v have different hashes", i1, i2)
}
}
}
func TestStructOfDirectIface(t *testing.T) {
{
type T struct{ X [1]*byte }
i1 := Zero(TypeOf(T{})).Interface()
v1 := ValueOf(&i1).Elem()
p1 := v1.InterfaceData()[1]
i2 := Zero(StructOf([]StructField{
{
Name: "X",
Type: ArrayOf(1, TypeOf((*int8)(nil))),
},
})).Interface()
v2 := ValueOf(&i2).Elem()
p2 := v2.InterfaceData()[1]
if p1 != 0 {
t.Errorf("got p1=%v. want=%v", p1, nil)
}
if p2 != 0 {
t.Errorf("got p2=%v. want=%v", p2, nil)
}
}
{
type T struct{ X [0]*byte }
i1 := Zero(TypeOf(T{})).Interface()
v1 := ValueOf(&i1).Elem()
p1 := v1.InterfaceData()[1]
i2 := Zero(StructOf([]StructField{
{
Name: "X",
Type: ArrayOf(0, TypeOf((*int8)(nil))),
},
})).Interface()
v2 := ValueOf(&i2).Elem()
p2 := v2.InterfaceData()[1]
if p1 == 0 {
t.Errorf("got p1=%v. want=not-%v", p1, nil)
}
if p2 == 0 {
t.Errorf("got p2=%v. want=not-%v", p2, nil)
}
}
}
type StructI int
func (i StructI) Get() int { return int(i) }
type StructIPtr int
func (i *StructIPtr) Get() int { return int(*i) }
func (i *StructIPtr) Set(v int) { *(*int)(i) = v }
type SettableStruct struct {
SettableField int
}
func (p *SettableStruct) Set(v int) { p.SettableField = v }
type SettablePointer struct {
SettableField *int
}
func (p *SettablePointer) Set(v int) { *p.SettableField = v }
func TestStructOfWithInterface(t *testing.T) {
const want = 42
type Iface interface {
Get() int
}
type IfaceSet interface {
Set(int)
}
tests := []struct {
name string
typ Type
val Value
impl bool
}{
{
name: "StructI",
typ: TypeOf(StructI(want)),
val: ValueOf(StructI(want)),
impl: true,
},
{
name: "StructI",
typ: PointerTo(TypeOf(StructI(want))),
val: ValueOf(func() any {
v := StructI(want)
return &v
}()),
impl: true,
},
{
name: "StructIPtr",
typ: PointerTo(TypeOf(StructIPtr(want))),
val: ValueOf(func() any {
v := StructIPtr(want)
return &v
}()),
impl: true,
},
{
name: "StructIPtr",
typ: TypeOf(StructIPtr(want)),
val: ValueOf(StructIPtr(want)),
impl: false,
},
// {
// typ: TypeOf((*Iface)(nil)).Elem(), // FIXME(sbinet): fix method.ifn/tfn
// val: ValueOf(StructI(want)),
// impl: true,
// },
}
for i, table := range tests {
for j := 0; j < 2; j++ {
var fields []StructField
if j == 1 {
fields = append(fields, StructField{
Name: "Dummy",
PkgPath: "",
Type: TypeOf(int(0)),
})
}
fields = append(fields, StructField{
Name: table.name,
Anonymous: true,
PkgPath: "",
Type: table.typ,
})
// We currently do not correctly implement methods
// for embedded fields other than the first.
// Therefore, for now, we expect those methods
// to not exist. See issues 15924 and 20824.
// When those issues are fixed, this test of panic
// should be removed.
if j == 1 && table.impl {
func() {
defer func() {
if err := recover(); err == nil {
t.Errorf("test-%d-%d did not panic", i, j)
}
}()
_ = StructOf(fields)
}()
continue
}
rt := StructOf(fields)
rv := New(rt).Elem()
rv.Field(j).Set(table.val)
if _, ok := rv.Interface().(Iface); ok != table.impl {
if table.impl {
t.Errorf("test-%d-%d: type=%v fails to implement Iface.\n", i, j, table.typ)
} else {
t.Errorf("test-%d-%d: type=%v should NOT implement Iface\n", i, j, table.typ)
}
continue
}
if !table.impl {
continue
}
v := rv.Interface().(Iface).Get()
if v != want {
t.Errorf("test-%d-%d: x.Get()=%v. want=%v\n", i, j, v, want)
}
fct := rv.MethodByName("Get")
out := fct.Call(nil)
if !DeepEqual(out[0].Interface(), want) {
t.Errorf("test-%d-%d: x.Get()=%v. want=%v\n", i, j, out[0].Interface(), want)
}
}
}
// Test an embedded nil pointer with pointer methods.
fields := []StructField{{
Name: "StructIPtr",
Anonymous: true,
Type: PointerTo(TypeOf(StructIPtr(want))),
}}
rt := StructOf(fields)
rv := New(rt).Elem()
// This should panic since the pointer is nil.
shouldPanic("", func() {
rv.Interface().(IfaceSet).Set(want)
})
// Test an embedded nil pointer to a struct with pointer methods.
fields = []StructField{{
Name: "SettableStruct",
Anonymous: true,
Type: PointerTo(TypeOf(SettableStruct{})),
}}
rt = StructOf(fields)
rv = New(rt).Elem()
// This should panic since the pointer is nil.
shouldPanic("", func() {
rv.Interface().(IfaceSet).Set(want)
})
// The behavior is different if there is a second field,
// since now an interface value holds a pointer to the struct
// rather than just holding a copy of the struct.
fields = []StructField{
{
Name: "SettableStruct",
Anonymous: true,
Type: PointerTo(TypeOf(SettableStruct{})),
},
{
Name: "EmptyStruct",
Anonymous: true,
Type: StructOf(nil),
},
}
// With the current implementation this is expected to panic.
// Ideally it should work and we should be able to see a panic
// if we call the Set method.
shouldPanic("", func() {
StructOf(fields)
})
// Embed a field that can be stored directly in an interface,
// with a second field.
fields = []StructField{
{
Name: "SettablePointer",
Anonymous: true,
Type: TypeOf(SettablePointer{}),
},
{
Name: "EmptyStruct",
Anonymous: true,
Type: StructOf(nil),
},
}
// With the current implementation this is expected to panic.
// Ideally it should work and we should be able to call the
// Set and Get methods.
shouldPanic("", func() {
StructOf(fields)
})
}
func TestStructOfTooManyFields(t *testing.T) {
// Bug Fix: #25402 - this should not panic
tt := StructOf([]StructField{
{Name: "Time", Type: TypeOf(time.Time{}), Anonymous: true},
})
if _, present := tt.MethodByName("After"); !present {
t.Errorf("Expected method `After` to be found")
}
}
func TestStructOfDifferentPkgPath(t *testing.T) {
fields := []StructField{
{
Name: "f1",
PkgPath: "p1",
Type: TypeOf(int(0)),
},
{
Name: "f2",
PkgPath: "p2",
Type: TypeOf(int(0)),
},
}
shouldPanic("different PkgPath", func() {
StructOf(fields)
})
}
func TestStructOfTooLarge(t *testing.T) {
t1 := TypeOf(byte(0))
t2 := TypeOf(int16(0))
t4 := TypeOf(int32(0))
t0 := ArrayOf(0, t1)
// 2^64-3 sized type (or 2^32-3 on 32-bit archs)
bigType := StructOf([]StructField{
{Name: "F1", Type: ArrayOf(int(^uintptr(0)>>1), t1)},
{Name: "F2", Type: ArrayOf(int(^uintptr(0)>>1-1), t1)},
})
type test struct {
shouldPanic bool
fields []StructField
}
tests := [...]test{
{
shouldPanic: false, // 2^64-1, ok
fields: []StructField{
{Name: "F1", Type: bigType},
{Name: "F2", Type: ArrayOf(2, t1)},
},
},
{
shouldPanic: true, // overflow in total size
fields: []StructField{
{Name: "F1", Type: bigType},
{Name: "F2", Type: ArrayOf(3, t1)},
},
},
{
shouldPanic: true, // overflow while aligning F2
fields: []StructField{
{Name: "F1", Type: bigType},
{Name: "F2", Type: t4},
},
},
{
shouldPanic: true, // overflow while adding trailing byte for zero-sized fields
fields: []StructField{
{Name: "F1", Type: bigType},
{Name: "F2", Type: ArrayOf(2, t1)},
{Name: "F3", Type: t0},
},
},
{
shouldPanic: true, // overflow while aligning total size
fields: []StructField{
{Name: "F1", Type: t2},
{Name: "F2", Type: bigType},
},
},
}
for i, tt := range tests {
func() {
defer func() {
err := recover()
if !tt.shouldPanic {
if err != nil {
t.Errorf("test %d should not panic, got %s", i, err)
}
return
}
if err == nil {
t.Errorf("test %d expected to panic", i)
return
}
s := fmt.Sprintf("%s", err)
if s != "reflect.StructOf: struct size would exceed virtual address space" {
t.Errorf("test %d wrong panic message: %s", i, s)
return
}
}()
_ = StructOf(tt.fields)
}()
}
}
func TestChanOf(t *testing.T) {
// check construction and use of type not in binary
type T string
ct := ChanOf(BothDir, TypeOf(T("")))
v := MakeChan(ct, 2)
runtime.GC()
v.Send(ValueOf(T("hello")))
runtime.GC()
v.Send(ValueOf(T("world")))
runtime.GC()
sv1, _ := v.Recv()
sv2, _ := v.Recv()
s1 := sv1.String()
s2 := sv2.String()
if s1 != "hello" || s2 != "world" {
t.Errorf("constructed chan: have %q, %q, want %q, %q", s1, s2, "hello", "world")
}
// check that type already in binary is found
type T1 int
checkSameType(t, ChanOf(BothDir, TypeOf(T1(1))), (chan T1)(nil))
// Check arrow token association in undefined chan types.
var left chan<- chan T
var right chan (<-chan T)
tLeft := ChanOf(SendDir, ChanOf(BothDir, TypeOf(T(""))))
tRight := ChanOf(BothDir, ChanOf(RecvDir, TypeOf(T(""))))
if tLeft != TypeOf(left) {
t.Errorf("chan<-chan: have %s, want %T", tLeft, left)
}
if tRight != TypeOf(right) {
t.Errorf("chan<-chan: have %s, want %T", tRight, right)
}
}
func TestChanOfDir(t *testing.T) {
// check construction and use of type not in binary
type T string
crt := ChanOf(RecvDir, TypeOf(T("")))
cst := ChanOf(SendDir, TypeOf(T("")))
// check that type already in binary is found
type T1 int
checkSameType(t, ChanOf(RecvDir, TypeOf(T1(1))), (<-chan T1)(nil))
checkSameType(t, ChanOf(SendDir, TypeOf(T1(1))), (chan<- T1)(nil))
// check String form of ChanDir
if crt.ChanDir().String() != "<-chan" {
t.Errorf("chan dir: have %q, want %q", crt.ChanDir().String(), "<-chan")
}
if cst.ChanDir().String() != "chan<-" {
t.Errorf("chan dir: have %q, want %q", cst.ChanDir().String(), "chan<-")
}
}
func TestChanOfGC(t *testing.T) {
done := make(chan bool, 1)
go func() {
select {
case <-done:
case <-time.After(5 * time.Second):
panic("deadlock in TestChanOfGC")
}
}()
defer func() {
done <- true
}()
type T *uintptr
tt := TypeOf(T(nil))
ct := ChanOf(BothDir, tt)
// NOTE: The garbage collector handles allocated channels specially,
// so we have to save pointers to channels in x; the pointer code will
// use the gc info in the newly constructed chan type.
const n = 100
var x []any
for i := 0; i < n; i++ {
v := MakeChan(ct, n)
for j := 0; j < n; j++ {
p := new(uintptr)
*p = uintptr(i*n + j)
v.Send(ValueOf(p).Convert(tt))
}
pv := New(ct)
pv.Elem().Set(v)
x = append(x, pv.Interface())
}
runtime.GC()
for i, xi := range x {
v := ValueOf(xi).Elem()
for j := 0; j < n; j++ {
pv, _ := v.Recv()
k := pv.Elem().Interface()
if k != uintptr(i*n+j) {
t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j)
}
}
}
}
func TestMapOf(t *testing.T) {
// check construction and use of type not in binary
type K string
type V float64
v := MakeMap(MapOf(TypeOf(K("")), TypeOf(V(0))))
runtime.GC()
v.SetMapIndex(ValueOf(K("a")), ValueOf(V(1)))
runtime.GC()
s := fmt.Sprint(v.Interface())
want := "map[a:1]"
if s != want {
t.Errorf("constructed map = %s, want %s", s, want)
}
// check that type already in binary is found
checkSameType(t, MapOf(TypeOf(V(0)), TypeOf(K(""))), map[V]K(nil))
// check that invalid key type panics
shouldPanic("invalid key type", func() { MapOf(TypeOf((func())(nil)), TypeOf(false)) })
}
func TestMapOfGCKeys(t *testing.T) {
type T *uintptr
tt := TypeOf(T(nil))
mt := MapOf(tt, TypeOf(false))
// NOTE: The garbage collector handles allocated maps specially,
// so we have to save pointers to maps in x; the pointer code will
// use the gc info in the newly constructed map type.
const n = 100
var x []any
for i := 0; i < n; i++ {
v := MakeMap(mt)
for j := 0; j < n; j++ {
p := new(uintptr)
*p = uintptr(i*n + j)
v.SetMapIndex(ValueOf(p).Convert(tt), ValueOf(true))
}
pv := New(mt)
pv.Elem().Set(v)
x = append(x, pv.Interface())
}
runtime.GC()
for i, xi := range x {
v := ValueOf(xi).Elem()
var out []int
for _, kv := range v.MapKeys() {
out = append(out, int(kv.Elem().Interface().(uintptr)))
}
sort.Ints(out)
for j, k := range out {
if k != i*n+j {
t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j)
}
}
}
}
func TestMapOfGCValues(t *testing.T) {
type T *uintptr
tt := TypeOf(T(nil))
mt := MapOf(TypeOf(1), tt)
// NOTE: The garbage collector handles allocated maps specially,
// so we have to save pointers to maps in x; the pointer code will
// use the gc info in the newly constructed map type.
const n = 100
var x []any
for i := 0; i < n; i++ {
v := MakeMap(mt)
for j := 0; j < n; j++ {
p := new(uintptr)
*p = uintptr(i*n + j)
v.SetMapIndex(ValueOf(j), ValueOf(p).Convert(tt))
}
pv := New(mt)
pv.Elem().Set(v)
x = append(x, pv.Interface())
}
runtime.GC()
for i, xi := range x {
v := ValueOf(xi).Elem()
for j := 0; j < n; j++ {
k := v.MapIndex(ValueOf(j)).Elem().Interface().(uintptr)
if k != uintptr(i*n+j) {
t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j)
}
}
}
}
func TestTypelinksSorted(t *testing.T) {
var last string
for i, n := range TypeLinks() {
if n < last {
t.Errorf("typelinks not sorted: %q [%d] > %q [%d]", last, i-1, n, i)
}
last = n
}
}
func TestFuncOf(t *testing.T) {
// check construction and use of type not in binary
type K string
type V float64
fn := func(args []Value) []Value {
if len(args) != 1 {
t.Errorf("args == %v, want exactly one arg", args)
} else if args[0].Type() != TypeOf(K("")) {
t.Errorf("args[0] is type %v, want %v", args[0].Type(), TypeOf(K("")))
} else if args[0].String() != "gopher" {
t.Errorf("args[0] = %q, want %q", args[0].String(), "gopher")
}
return []Value{ValueOf(V(3.14))}
}
v := MakeFunc(FuncOf([]Type{TypeOf(K(""))}, []Type{TypeOf(V(0))}, false), fn)
outs := v.Call([]Value{ValueOf(K("gopher"))})
if len(outs) != 1 {
t.Fatalf("v.Call returned %v, want exactly one result", outs)
} else if outs[0].Type() != TypeOf(V(0)) {
t.Fatalf("c.Call[0] is type %v, want %v", outs[0].Type(), TypeOf(V(0)))
}
f := outs[0].Float()
if f != 3.14 {
t.Errorf("constructed func returned %f, want %f", f, 3.14)
}
// check that types already in binary are found
type T1 int
testCases := []struct {
in, out []Type
variadic bool
want any
}{
{in: []Type{TypeOf(T1(0))}, want: (func(T1))(nil)},
{in: []Type{TypeOf(int(0))}, want: (func(int))(nil)},
{in: []Type{SliceOf(TypeOf(int(0)))}, variadic: true, want: (func(...int))(nil)},
{in: []Type{TypeOf(int(0))}, out: []Type{TypeOf(false)}, want: (func(int) bool)(nil)},
{in: []Type{TypeOf(int(0))}, out: []Type{TypeOf(false), TypeOf("")}, want: (func(int) (bool, string))(nil)},
}
for _, tt := range testCases {
checkSameType(t, FuncOf(tt.in, tt.out, tt.variadic), tt.want)
}
// check that variadic requires last element be a slice.
FuncOf([]Type{TypeOf(1), TypeOf(""), SliceOf(TypeOf(false))}, nil, true)
shouldPanic("must be slice", func() { FuncOf([]Type{TypeOf(0), TypeOf(""), TypeOf(false)}, nil, true) })
shouldPanic("must be slice", func() { FuncOf(nil, nil, true) })
//testcase for #54669
var in []Type
for i := 0; i < 51; i++ {
in = append(in, TypeOf(1))
}
FuncOf(in, nil, false)
}
*/
type R0 struct {
*R1
*R2
*R3
*R4
}
type R1 struct {
*R5
*R6
*R7
*R8
}
type R2 R1
type R3 R1
type R4 R1
type R5 struct {
*R9
*R10
*R11
*R12
}
type R6 R5
type R7 R5
type R8 R5
type R9 struct {
*R13
*R14
*R15
*R16
}
type R10 R9
type R11 R9
type R12 R9
type R13 struct {
*R17
*R18
*R19
*R20
}
type R14 R13
type R15 R13
type R16 R13
type R17 struct {
*R21
*R22
*R23
*R24
}
type R18 R17
type R19 R17
type R20 R17
type R21 struct {
X int
}
type R22 R21
type R23 R21
type R24 R21
func TestEmbed(t *testing.T) {
typ := TypeOf(R0{})
f, ok := typ.FieldByName("X")
if ok {
t.Fatalf(`FieldByName("X") should fail, returned %v`, f.Index)
}
}
/*
func TestAllocsInterfaceBig(t *testing.T) {
if testing.Short() {
t.Skip("skipping malloc count in short mode")
}
v := ValueOf(S{})
if allocs := testing.AllocsPerRun(100, func() { v.Interface() }); allocs > 0 {
t.Error("allocs:", allocs)
}
}
func TestAllocsInterfaceSmall(t *testing.T) {
if testing.Short() {
t.Skip("skipping malloc count in short mode")
}
v := ValueOf(int64(0))
if allocs := testing.AllocsPerRun(100, func() { v.Interface() }); allocs > 0 {
t.Error("allocs:", allocs)
}
}
// An exhaustive is a mechanism for writing exhaustive or stochastic tests.
// The basic usage is:
//
// for x.Next() {
// ... code using x.Maybe() or x.Choice(n) to create test cases ...
// }
//
// Each iteration of the loop returns a different set of results, until all
// possible result sets have been explored. It is okay for different code paths
// to make different method call sequences on x, but there must be no
// other source of non-determinism in the call sequences.
//
// When faced with a new decision, x chooses randomly. Future explorations
// of that path will choose successive values for the result. Thus, stopping
// the loop after a fixed number of iterations gives somewhat stochastic
// testing.
//
// Example:
//
// for x.Next() {
// v := make([]bool, x.Choose(4))
// for i := range v {
// v[i] = x.Maybe()
// }
// fmt.Println(v)
// }
//
// prints (in some order):
//
// []
// [false]
// [true]
// [false false]
// [false true]
// ...
// [true true]
// [false false false]
// ...
// [true true true]
// [false false false false]
// ...
// [true true true true]
type exhaustive struct {
r *rand.Rand
pos int
last []choice
}
type choice struct {
off int
n int
max int
}
func (x *exhaustive) Next() bool {
if x.r == nil {
x.r = rand.New(rand.NewSource(time.Now().UnixNano()))
}
x.pos = 0
if x.last == nil {
x.last = []choice{}
return true
}
for i := len(x.last) - 1; i >= 0; i-- {
c := &x.last[i]
if c.n+1 < c.max {
c.n++
x.last = x.last[:i+1]
return true
}
}
return false
}
func (x *exhaustive) Choose(max int) int {
if x.pos >= len(x.last) {
x.last = append(x.last, choice{x.r.Intn(max), 0, max})
}
c := &x.last[x.pos]
x.pos++
if c.max != max {
panic("inconsistent use of exhaustive tester")
}
return (c.n + c.off) % max
}
func (x *exhaustive) Maybe() bool {
return x.Choose(2) == 1
}
func GCFunc(args []Value) []Value {
runtime.GC()
return []Value{}
}
func TestReflectFuncTraceback(t *testing.T) {
f := MakeFunc(TypeOf(func() {}), GCFunc)
f.Call([]Value{})
}
func TestReflectMethodTraceback(t *testing.T) {
p := Point{3, 4}
m := ValueOf(p).MethodByName("GCMethod")
i := ValueOf(m.Interface()).Call([]Value{ValueOf(5)})[0].Int()
if i != 8 {
t.Errorf("Call returned %d; want 8", i)
}
}
func TestSmallZero(t *testing.T) {
type T [10]byte
typ := TypeOf(T{})
if allocs := testing.AllocsPerRun(100, func() { Zero(typ) }); allocs > 0 {
t.Errorf("Creating small zero values caused %f allocs, want 0", allocs)
}
}
func TestBigZero(t *testing.T) {
const size = 1 << 10
var v [size]byte
z := Zero(ValueOf(v).Type()).Interface().([size]byte)
for i := 0; i < size; i++ {
if z[i] != 0 {
t.Fatalf("Zero object not all zero, index %d", i)
}
}
}
func TestZeroSet(t *testing.T) {
type T [16]byte
type S struct {
a uint64
T T
b uint64
}
v := S{
a: 0xaaaaaaaaaaaaaaaa,
T: T{9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9},
b: 0xbbbbbbbbbbbbbbbb,
}
ValueOf(&v).Elem().Field(1).Set(Zero(TypeOf(T{})))
if v != (S{
a: 0xaaaaaaaaaaaaaaaa,
b: 0xbbbbbbbbbbbbbbbb,
}) {
t.Fatalf("Setting a field to a Zero value didn't work")
}
}
func TestFieldByIndexNil(t *testing.T) {
type P struct {
F int
}
type T struct {
*P
}
v := ValueOf(T{})
v.FieldByName("P") // should be fine
defer func() {
if err := recover(); err == nil {
t.Fatalf("no error")
} else if !strings.Contains(fmt.Sprint(err), "nil pointer to embedded struct") {
t.Fatalf(`err=%q, wanted error containing "nil pointer to embedded struct"`, err)
}
}()
v.FieldByName("F") // should panic
t.Fatalf("did not panic")
}
// Given
// type Outer struct {
// *Inner
// ...
// }
// the compiler generates the implementation of (*Outer).M dispatching to the embedded Inner.
// The implementation is logically:
// func (p *Outer) M() {
// (p.Inner).M()
// }
// but since the only change here is the replacement of one pointer receiver with another,
// the actual generated code overwrites the original receiver with the p.Inner pointer and
// then jumps to the M method expecting the *Inner receiver.
//
// During reflect.Value.Call, we create an argument frame and the associated data structures
// to describe it to the garbage collector, populate the frame, call reflect.call to
// run a function call using that frame, and then copy the results back out of the frame.
// The reflect.call function does a memmove of the frame structure onto the
// stack (to set up the inputs), runs the call, and the memmoves the stack back to
// the frame structure (to preserve the outputs).
//
// Originally reflect.call did not distinguish inputs from outputs: both memmoves
// were for the full stack frame. However, in the case where the called function was
// one of these wrappers, the rewritten receiver is almost certainly a different type
// than the original receiver. This is not a problem on the stack, where we use the
// program counter to determine the type information and understand that
// during (*Outer).M the receiver is an *Outer while during (*Inner).M the receiver in the same
// memory word is now an *Inner. But in the statically typed argument frame created
// by reflect, the receiver is always an *Outer. Copying the modified receiver pointer
// off the stack into the frame will store an *Inner there, and then if a garbage collection
// happens to scan that argument frame before it is discarded, it will scan the *Inner
// memory as if it were an *Outer. If the two have different memory layouts, the
// collection will interpret the memory incorrectly.
//
// One such possible incorrect interpretation is to treat two arbitrary memory words
// (Inner.P1 and Inner.P2 below) as an interface (Outer.R below). Because interpreting
// an interface requires dereferencing the itab word, the misinterpretation will try to
// deference Inner.P1, causing a crash during garbage collection.
//
// This came up in a real program in issue 7725.
type Outer struct {
*Inner
R io.Reader
}
type Inner struct {
X *Outer
P1 uintptr
P2 uintptr
}
func (pi *Inner) M() {
// Clear references to pi so that the only way the
// garbage collection will find the pointer is in the
// argument frame, typed as a *Outer.
pi.X.Inner = nil
// Set up an interface value that will cause a crash.
// P1 = 1 is a non-zero, so the interface looks non-nil.
// P2 = pi ensures that the data word points into the
// allocated heap; if not the collection skips the interface
// value as irrelevant, without dereferencing P1.
pi.P1 = 1
pi.P2 = uintptr(unsafe.Pointer(pi))
}
func TestCallMethodJump(t *testing.T) {
// In reflect.Value.Call, trigger a garbage collection after reflect.call
// returns but before the args frame has been discarded.
// This is a little clumsy but makes the failure repeatable.
*CallGC = true
p := &Outer{Inner: new(Inner)}
p.Inner.X = p
ValueOf(p).Method(0).Call(nil)
// Stop garbage collecting during reflect.call.
*CallGC = false
}
func TestCallArgLive(t *testing.T) {
type T struct{ X, Y *string } // pointerful aggregate
F := func(t T) { *t.X = "ok" }
// In reflect.Value.Call, trigger a garbage collection in reflect.call
// between marshaling argument and the actual call.
*CallGC = true
x := new(string)
runtime.SetFinalizer(x, func(p *string) {
if *p != "ok" {
t.Errorf("x dead prematurely")
}
})
v := T{x, nil}
ValueOf(F).Call([]Value{ValueOf(v)})
// Stop garbage collecting during reflect.call.
*CallGC = false
}
func TestMakeFuncStackCopy(t *testing.T) {
target := func(in []Value) []Value {
runtime.GC()
useStack(16)
return []Value{ValueOf(9)}
}
var concrete func(*int, int) int
fn := MakeFunc(ValueOf(concrete).Type(), target)
ValueOf(&concrete).Elem().Set(fn)
x := concrete(nil, 7)
if x != 9 {
t.Errorf("have %#q want 9", x)
}
}
// use about n KB of stack
func useStack(n int) {
if n == 0 {
return
}
var b [1024]byte // makes frame about 1KB
useStack(n - 1 + int(b[99]))
}
type Impl struct{}
func (Impl) F() {}
func TestValueString(t *testing.T) {
rv := ValueOf(Impl{})
if rv.String() != "<reflect_test.Impl Value>" {
t.Errorf("ValueOf(Impl{}).String() = %q, want %q", rv.String(), "<reflect_test.Impl Value>")
}
method := rv.Method(0)
if method.String() != "<func() Value>" {
t.Errorf("ValueOf(Impl{}).Method(0).String() = %q, want %q", method.String(), "<func() Value>")
}
}
*/
func TestInvalid(t *testing.T) {
// Used to have inconsistency between IsValid() and Kind() != Invalid.
type T struct{ v any }
v := ValueOf(T{}).Field(0)
if v.IsValid() != true || v.Kind() != Interface {
t.Errorf("field: IsValid=%v, Kind=%v, want true, Interface", v.IsValid(), v.Kind())
}
v = v.Elem()
if v.IsValid() != false || v.Kind() != Invalid {
t.Errorf("field elem: IsValid=%v, Kind=%v, want false, Invalid", v.IsValid(), v.Kind())
}
}
/*
// Issue 8917.
func TestLargeGCProg(t *testing.T) {
fv := ValueOf(func([256]*byte) {})
fv.Call([]Value{ValueOf([256]*byte{})})
}
func fieldIndexRecover(t Type, i int) (recovered any) {
defer func() {
recovered = recover()
}()
t.Field(i)
return
}
// Issue 15046.
func TestTypeFieldOutOfRangePanic(t *testing.T) {
typ := TypeOf(struct{ X int }{10})
testIndices := [...]struct {
i int
mustPanic bool
}{
0: {-2, true},
1: {0, false},
2: {1, true},
3: {1 << 10, true},
}
for i, tt := range testIndices {
recoveredErr := fieldIndexRecover(typ, tt.i)
if tt.mustPanic {
if recoveredErr == nil {
t.Errorf("#%d: fieldIndex %d expected to panic", i, tt.i)
}
} else {
if recoveredErr != nil {
t.Errorf("#%d: got err=%v, expected no panic", i, recoveredErr)
}
}
}
}
// Issue 9179.
func TestCallGC(t *testing.T) {
f := func(a, b, c, d, e string) {
}
g := func(in []Value) []Value {
runtime.GC()
return nil
}
typ := ValueOf(f).Type()
f2 := MakeFunc(typ, g).Interface().(func(string, string, string, string, string))
f2("four", "five5", "six666", "seven77", "eight888")
}
// Issue 18635 (function version).
func TestKeepFuncLive(t *testing.T) {
// Test that we keep makeFuncImpl live as long as it is
// referenced on the stack.
typ := TypeOf(func(i int) {})
var f, g func(in []Value) []Value
f = func(in []Value) []Value {
clobber()
i := int(in[0].Int())
if i > 0 {
// We can't use Value.Call here because
// runtime.call* will keep the makeFuncImpl
// alive. However, by converting it to an
// interface value and calling that,
// reflect.callReflect is the only thing that
// can keep the makeFuncImpl live.
//
// Alternate between f and g so that if we do
// reuse the memory prematurely it's more
// likely to get obviously corrupted.
MakeFunc(typ, g).Interface().(func(i int))(i - 1)
}
return nil
}
g = func(in []Value) []Value {
clobber()
i := int(in[0].Int())
MakeFunc(typ, f).Interface().(func(i int))(i)
return nil
}
MakeFunc(typ, f).Call([]Value{ValueOf(10)})
}
type UnExportedFirst int
func (i UnExportedFirst) ΦExported() {}
func (i UnExportedFirst) unexported() {}
// Issue 21177
func TestMethodByNameUnExportedFirst(t *testing.T) {
defer func() {
if recover() != nil {
t.Errorf("should not panic")
}
}()
typ := TypeOf(UnExportedFirst(0))
m, _ := typ.MethodByName("ΦExported")
if m.Name != "ΦExported" {
t.Errorf("got %s, expected ΦExported", m.Name)
}
}
// Issue 18635 (method version).
type KeepMethodLive struct{}
func (k KeepMethodLive) Method1(i int) {
clobber()
if i > 0 {
ValueOf(k).MethodByName("Method2").Interface().(func(i int))(i - 1)
}
}
func (k KeepMethodLive) Method2(i int) {
clobber()
ValueOf(k).MethodByName("Method1").Interface().(func(i int))(i)
}
func TestKeepMethodLive(t *testing.T) {
// Test that we keep methodValue live as long as it is
// referenced on the stack.
KeepMethodLive{}.Method1(10)
}
// clobber tries to clobber unreachable memory.
func clobber() {
runtime.GC()
for i := 1; i < 32; i++ {
for j := 0; j < 10; j++ {
obj := make([]*byte, i)
sink = obj
}
}
runtime.GC()
}
func TestFuncLayout(t *testing.T) {
align := func(x uintptr) uintptr {
return (x + goarch.PtrSize - 1) &^ (goarch.PtrSize - 1)
}
var r []byte
if goarch.PtrSize == 4 {
r = []byte{0, 0, 0, 1}
} else {
r = []byte{0, 0, 1}
}
type S struct {
a, b uintptr
c, d *byte
}
type test struct {
rcvr, typ Type
size, argsize, retOffset uintptr
stack, gc, inRegs, outRegs []byte // pointer bitmap: 1 is pointer, 0 is scalar
intRegs, floatRegs int
floatRegSize uintptr
}
tests := []test{
{
typ: ValueOf(func(a, b string) string { return "" }).Type(),
size: 6 * goarch.PtrSize,
argsize: 4 * goarch.PtrSize,
retOffset: 4 * goarch.PtrSize,
stack: []byte{1, 0, 1, 0, 1},
gc: []byte{1, 0, 1, 0, 1},
},
{
typ: ValueOf(func(a, b, c uint32, p *byte, d uint16) {}).Type(),
size: align(align(3*4) + goarch.PtrSize + 2),
argsize: align(3*4) + goarch.PtrSize + 2,
retOffset: align(align(3*4) + goarch.PtrSize + 2),
stack: r,
gc: r,
},
{
typ: ValueOf(func(a map[int]int, b uintptr, c any) {}).Type(),
size: 4 * goarch.PtrSize,
argsize: 4 * goarch.PtrSize,
retOffset: 4 * goarch.PtrSize,
stack: []byte{1, 0, 1, 1},
gc: []byte{1, 0, 1, 1},
},
{
typ: ValueOf(func(a S) {}).Type(),
size: 4 * goarch.PtrSize,
argsize: 4 * goarch.PtrSize,
retOffset: 4 * goarch.PtrSize,
stack: []byte{0, 0, 1, 1},
gc: []byte{0, 0, 1, 1},
},
{
rcvr: ValueOf((*byte)(nil)).Type(),
typ: ValueOf(func(a uintptr, b *int) {}).Type(),
size: 3 * goarch.PtrSize,
argsize: 3 * goarch.PtrSize,
retOffset: 3 * goarch.PtrSize,
stack: []byte{1, 0, 1},
gc: []byte{1, 0, 1},
},
{
typ: ValueOf(func(a uintptr) {}).Type(),
size: goarch.PtrSize,
argsize: goarch.PtrSize,
retOffset: goarch.PtrSize,
stack: []byte{},
gc: []byte{},
},
{
typ: ValueOf(func() uintptr { return 0 }).Type(),
size: goarch.PtrSize,
argsize: 0,
retOffset: 0,
stack: []byte{},
gc: []byte{},
},
{
rcvr: ValueOf(uintptr(0)).Type(),
typ: ValueOf(func(a uintptr) {}).Type(),
size: 2 * goarch.PtrSize,
argsize: 2 * goarch.PtrSize,
retOffset: 2 * goarch.PtrSize,
stack: []byte{1},
gc: []byte{1},
// Note: this one is tricky, as the receiver is not a pointer. But we
// pass the receiver by reference to the autogenerated pointer-receiver
// version of the function.
},
// TODO(mknyszek): Add tests for non-zero register count.
}
for _, lt := range tests {
name := lt.typ.String()
if lt.rcvr != nil {
name = lt.rcvr.String() + "." + name
}
t.Run(name, func(t *testing.T) {
defer SetArgRegs(SetArgRegs(lt.intRegs, lt.floatRegs, lt.floatRegSize))
typ, argsize, retOffset, stack, gc, inRegs, outRegs, ptrs := FuncLayout(lt.typ, lt.rcvr)
if typ.Size() != lt.size {
t.Errorf("funcLayout(%v, %v).size=%d, want %d", lt.typ, lt.rcvr, typ.Size(), lt.size)
}
if argsize != lt.argsize {
t.Errorf("funcLayout(%v, %v).argsize=%d, want %d", lt.typ, lt.rcvr, argsize, lt.argsize)
}
if retOffset != lt.retOffset {
t.Errorf("funcLayout(%v, %v).retOffset=%d, want %d", lt.typ, lt.rcvr, retOffset, lt.retOffset)
}
if !bytes.Equal(stack, lt.stack) {
t.Errorf("funcLayout(%v, %v).stack=%v, want %v", lt.typ, lt.rcvr, stack, lt.stack)
}
if !bytes.Equal(gc, lt.gc) {
t.Errorf("funcLayout(%v, %v).gc=%v, want %v", lt.typ, lt.rcvr, gc, lt.gc)
}
if !bytes.Equal(inRegs, lt.inRegs) {
t.Errorf("funcLayout(%v, %v).inRegs=%v, want %v", lt.typ, lt.rcvr, inRegs, lt.inRegs)
}
if !bytes.Equal(outRegs, lt.outRegs) {
t.Errorf("funcLayout(%v, %v).outRegs=%v, want %v", lt.typ, lt.rcvr, outRegs, lt.outRegs)
}
if ptrs && len(stack) == 0 || !ptrs && len(stack) > 0 {
t.Errorf("funcLayout(%v, %v) pointers flag=%v, want %v", lt.typ, lt.rcvr, ptrs, !ptrs)
}
})
}
}
// trimBitmap removes trailing 0 elements from b and returns the result.
func trimBitmap(b []byte) []byte {
for len(b) > 0 && b[len(b)-1] == 0 {
b = b[:len(b)-1]
}
return b
}
func verifyGCBits(t *testing.T, typ Type, bits []byte) {
heapBits := GCBits(New(typ).Interface())
// Trim scalars at the end, as bits might end in zero,
// e.g. with rep(2, lit(1, 0)).
bits = trimBitmap(bits)
if !bytes.Equal(heapBits, bits) {
_, _, line, _ := runtime.Caller(1)
t.Errorf("line %d: heapBits incorrect for %v\nhave %v\nwant %v", line, typ, heapBits, bits)
}
}
func verifyGCBitsSlice(t *testing.T, typ Type, cap int, bits []byte) {
// Creating a slice causes the runtime to repeat a bitmap,
// which exercises a different path from making the compiler
// repeat a bitmap for a small array or executing a repeat in
// a GC program.
val := MakeSlice(typ, 0, cap)
data := NewAt(ArrayOf(cap, typ), val.UnsafePointer())
heapBits := GCBits(data.Interface())
// Repeat the bitmap for the slice size, trimming scalars in
// the last element.
bits = trimBitmap(rep(cap, bits))
if !bytes.Equal(heapBits, bits) {
_, _, line, _ := runtime.Caller(1)
t.Errorf("line %d: heapBits incorrect for make(%v, 0, %v)\nhave %v\nwant %v", line, typ, cap, heapBits, bits)
}
}
func TestGCBits(t *testing.T) {
verifyGCBits(t, TypeOf((*byte)(nil)), []byte{1})
// Building blocks for types seen by the compiler (like [2]Xscalar).
// The compiler will create the type structures for the derived types,
// including their GC metadata.
type Xscalar struct{ x uintptr }
type Xptr struct{ x *byte }
type Xptrscalar struct {
*byte
uintptr
}
type Xscalarptr struct {
uintptr
*byte
}
type Xbigptrscalar struct {
_ [100]*byte
_ [100]uintptr
}
var Tscalar, Tint64, Tptr, Tscalarptr, Tptrscalar, Tbigptrscalar Type
{
// Building blocks for types constructed by reflect.
// This code is in a separate block so that code below
// cannot accidentally refer to these.
// The compiler must NOT see types derived from these
// (for example, [2]Scalar must NOT appear in the program),
// or else reflect will use it instead of having to construct one.
// The goal is to test the construction.
type Scalar struct{ x uintptr }
type Ptr struct{ x *byte }
type Ptrscalar struct {
*byte
uintptr
}
type Scalarptr struct {
uintptr
*byte
}
type Bigptrscalar struct {
_ [100]*byte
_ [100]uintptr
}
type Int64 int64
Tscalar = TypeOf(Scalar{})
Tint64 = TypeOf(Int64(0))
Tptr = TypeOf(Ptr{})
Tscalarptr = TypeOf(Scalarptr{})
Tptrscalar = TypeOf(Ptrscalar{})
Tbigptrscalar = TypeOf(Bigptrscalar{})
}
empty := []byte{}
verifyGCBits(t, TypeOf(Xscalar{}), empty)
verifyGCBits(t, Tscalar, empty)
verifyGCBits(t, TypeOf(Xptr{}), lit(1))
verifyGCBits(t, Tptr, lit(1))
verifyGCBits(t, TypeOf(Xscalarptr{}), lit(0, 1))
verifyGCBits(t, Tscalarptr, lit(0, 1))
verifyGCBits(t, TypeOf(Xptrscalar{}), lit(1))
verifyGCBits(t, Tptrscalar, lit(1))
verifyGCBits(t, TypeOf([0]Xptr{}), empty)
verifyGCBits(t, ArrayOf(0, Tptr), empty)
verifyGCBits(t, TypeOf([1]Xptrscalar{}), lit(1))
verifyGCBits(t, ArrayOf(1, Tptrscalar), lit(1))
verifyGCBits(t, TypeOf([2]Xscalar{}), empty)
verifyGCBits(t, ArrayOf(2, Tscalar), empty)
verifyGCBits(t, TypeOf([10000]Xscalar{}), empty)
verifyGCBits(t, ArrayOf(10000, Tscalar), empty)
verifyGCBits(t, TypeOf([2]Xptr{}), lit(1, 1))
verifyGCBits(t, ArrayOf(2, Tptr), lit(1, 1))
verifyGCBits(t, TypeOf([10000]Xptr{}), rep(10000, lit(1)))
verifyGCBits(t, ArrayOf(10000, Tptr), rep(10000, lit(1)))
verifyGCBits(t, TypeOf([2]Xscalarptr{}), lit(0, 1, 0, 1))
verifyGCBits(t, ArrayOf(2, Tscalarptr), lit(0, 1, 0, 1))
verifyGCBits(t, TypeOf([10000]Xscalarptr{}), rep(10000, lit(0, 1)))
verifyGCBits(t, ArrayOf(10000, Tscalarptr), rep(10000, lit(0, 1)))
verifyGCBits(t, TypeOf([2]Xptrscalar{}), lit(1, 0, 1))
verifyGCBits(t, ArrayOf(2, Tptrscalar), lit(1, 0, 1))
verifyGCBits(t, TypeOf([10000]Xptrscalar{}), rep(10000, lit(1, 0)))
verifyGCBits(t, ArrayOf(10000, Tptrscalar), rep(10000, lit(1, 0)))
verifyGCBits(t, TypeOf([1][10000]Xptrscalar{}), rep(10000, lit(1, 0)))
verifyGCBits(t, ArrayOf(1, ArrayOf(10000, Tptrscalar)), rep(10000, lit(1, 0)))
verifyGCBits(t, TypeOf([2][10000]Xptrscalar{}), rep(2*10000, lit(1, 0)))
verifyGCBits(t, ArrayOf(2, ArrayOf(10000, Tptrscalar)), rep(2*10000, lit(1, 0)))
verifyGCBits(t, TypeOf([4]Xbigptrscalar{}), join(rep(3, join(rep(100, lit(1)), rep(100, lit(0)))), rep(100, lit(1))))
verifyGCBits(t, ArrayOf(4, Tbigptrscalar), join(rep(3, join(rep(100, lit(1)), rep(100, lit(0)))), rep(100, lit(1))))
verifyGCBitsSlice(t, TypeOf([]Xptr{}), 0, empty)
verifyGCBitsSlice(t, SliceOf(Tptr), 0, empty)
verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 1, lit(1))
verifyGCBitsSlice(t, SliceOf(Tptrscalar), 1, lit(1))
verifyGCBitsSlice(t, TypeOf([]Xscalar{}), 2, lit(0))
verifyGCBitsSlice(t, SliceOf(Tscalar), 2, lit(0))
verifyGCBitsSlice(t, TypeOf([]Xscalar{}), 10000, lit(0))
verifyGCBitsSlice(t, SliceOf(Tscalar), 10000, lit(0))
verifyGCBitsSlice(t, TypeOf([]Xptr{}), 2, lit(1))
verifyGCBitsSlice(t, SliceOf(Tptr), 2, lit(1))
verifyGCBitsSlice(t, TypeOf([]Xptr{}), 10000, lit(1))
verifyGCBitsSlice(t, SliceOf(Tptr), 10000, lit(1))
verifyGCBitsSlice(t, TypeOf([]Xscalarptr{}), 2, lit(0, 1))
verifyGCBitsSlice(t, SliceOf(Tscalarptr), 2, lit(0, 1))
verifyGCBitsSlice(t, TypeOf([]Xscalarptr{}), 10000, lit(0, 1))
verifyGCBitsSlice(t, SliceOf(Tscalarptr), 10000, lit(0, 1))
verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 2, lit(1, 0))
verifyGCBitsSlice(t, SliceOf(Tptrscalar), 2, lit(1, 0))
verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 10000, lit(1, 0))
verifyGCBitsSlice(t, SliceOf(Tptrscalar), 10000, lit(1, 0))
verifyGCBitsSlice(t, TypeOf([][10000]Xptrscalar{}), 1, rep(10000, lit(1, 0)))
verifyGCBitsSlice(t, SliceOf(ArrayOf(10000, Tptrscalar)), 1, rep(10000, lit(1, 0)))
verifyGCBitsSlice(t, TypeOf([][10000]Xptrscalar{}), 2, rep(10000, lit(1, 0)))
verifyGCBitsSlice(t, SliceOf(ArrayOf(10000, Tptrscalar)), 2, rep(10000, lit(1, 0)))
verifyGCBitsSlice(t, TypeOf([]Xbigptrscalar{}), 4, join(rep(100, lit(1)), rep(100, lit(0))))
verifyGCBitsSlice(t, SliceOf(Tbigptrscalar), 4, join(rep(100, lit(1)), rep(100, lit(0))))
verifyGCBits(t, TypeOf((chan [100]Xscalar)(nil)), lit(1))
verifyGCBits(t, ChanOf(BothDir, ArrayOf(100, Tscalar)), lit(1))
verifyGCBits(t, TypeOf((func([10000]Xscalarptr))(nil)), lit(1))
verifyGCBits(t, FuncOf([]Type{ArrayOf(10000, Tscalarptr)}, nil, false), lit(1))
verifyGCBits(t, TypeOf((map[[10000]Xscalarptr]Xscalar)(nil)), lit(1))
verifyGCBits(t, MapOf(ArrayOf(10000, Tscalarptr), Tscalar), lit(1))
verifyGCBits(t, TypeOf((*[10000]Xscalar)(nil)), lit(1))
verifyGCBits(t, PointerTo(ArrayOf(10000, Tscalar)), lit(1))
verifyGCBits(t, TypeOf(([][10000]Xscalar)(nil)), lit(1))
verifyGCBits(t, SliceOf(ArrayOf(10000, Tscalar)), lit(1))
hdr := make([]byte, 8/goarch.PtrSize)
verifyMapBucket := func(t *testing.T, k, e Type, m any, want []byte) {
verifyGCBits(t, MapBucketOf(k, e), want)
verifyGCBits(t, CachedBucketOf(TypeOf(m)), want)
}
verifyMapBucket(t,
Tscalar, Tptr,
map[Xscalar]Xptr(nil),
join(hdr, rep(8, lit(0)), rep(8, lit(1)), lit(1)))
verifyMapBucket(t,
Tscalarptr, Tptr,
map[Xscalarptr]Xptr(nil),
join(hdr, rep(8, lit(0, 1)), rep(8, lit(1)), lit(1)))
verifyMapBucket(t, Tint64, Tptr,
map[int64]Xptr(nil),
join(hdr, rep(8, rep(8/goarch.PtrSize, lit(0))), rep(8, lit(1)), lit(1)))
verifyMapBucket(t,
Tscalar, Tscalar,
map[Xscalar]Xscalar(nil),
empty)
verifyMapBucket(t,
ArrayOf(2, Tscalarptr), ArrayOf(3, Tptrscalar),
map[[2]Xscalarptr][3]Xptrscalar(nil),
join(hdr, rep(8*2, lit(0, 1)), rep(8*3, lit(1, 0)), lit(1)))
verifyMapBucket(t,
ArrayOf(64/goarch.PtrSize, Tscalarptr), ArrayOf(64/goarch.PtrSize, Tptrscalar),
map[[64 / goarch.PtrSize]Xscalarptr][64 / goarch.PtrSize]Xptrscalar(nil),
join(hdr, rep(8*64/goarch.PtrSize, lit(0, 1)), rep(8*64/goarch.PtrSize, lit(1, 0)), lit(1)))
verifyMapBucket(t,
ArrayOf(64/goarch.PtrSize+1, Tscalarptr), ArrayOf(64/goarch.PtrSize, Tptrscalar),
map[[64/goarch.PtrSize + 1]Xscalarptr][64 / goarch.PtrSize]Xptrscalar(nil),
join(hdr, rep(8, lit(1)), rep(8*64/goarch.PtrSize, lit(1, 0)), lit(1)))
verifyMapBucket(t,
ArrayOf(64/goarch.PtrSize, Tscalarptr), ArrayOf(64/goarch.PtrSize+1, Tptrscalar),
map[[64 / goarch.PtrSize]Xscalarptr][64/goarch.PtrSize + 1]Xptrscalar(nil),
join(hdr, rep(8*64/goarch.PtrSize, lit(0, 1)), rep(8, lit(1)), lit(1)))
verifyMapBucket(t,
ArrayOf(64/goarch.PtrSize+1, Tscalarptr), ArrayOf(64/goarch.PtrSize+1, Tptrscalar),
map[[64/goarch.PtrSize + 1]Xscalarptr][64/goarch.PtrSize + 1]Xptrscalar(nil),
join(hdr, rep(8, lit(1)), rep(8, lit(1)), lit(1)))
}
func rep(n int, b []byte) []byte { return bytes.Repeat(b, n) }
func join(b ...[]byte) []byte { return bytes.Join(b, nil) }
func lit(x ...byte) []byte { return x }
func TestTypeOfTypeOf(t *testing.T) {
// Check that all the type constructors return concrete *rtype implementations.
// It's difficult to test directly because the reflect package is only at arm's length.
// The easiest thing to do is just call a function that crashes if it doesn't get an *rtype.
check := func(name string, typ Type) {
if underlying := TypeOf(typ).String(); underlying != "*reflect.rtype" {
t.Errorf("%v returned %v, not *reflect.rtype", name, underlying)
}
}
type T struct{ int }
check("TypeOf", TypeOf(T{}))
check("ArrayOf", ArrayOf(10, TypeOf(T{})))
check("ChanOf", ChanOf(BothDir, TypeOf(T{})))
check("FuncOf", FuncOf([]Type{TypeOf(T{})}, nil, false))
check("MapOf", MapOf(TypeOf(T{}), TypeOf(T{})))
check("PtrTo", PointerTo(TypeOf(T{})))
check("SliceOf", SliceOf(TypeOf(T{})))
}
type XM struct{ _ bool }
func (*XM) String() string { return "" }
func TestPtrToMethods(t *testing.T) {
var y struct{ XM }
yp := New(TypeOf(y)).Interface()
_, ok := yp.(fmt.Stringer)
if !ok {
t.Fatal("does not implement Stringer, but should")
}
}
func TestMapAlloc(t *testing.T) {
m := ValueOf(make(map[int]int, 10))
k := ValueOf(5)
v := ValueOf(7)
allocs := testing.AllocsPerRun(100, func() {
m.SetMapIndex(k, v)
})
if allocs > 0.5 {
t.Errorf("allocs per map assignment: want 0 got %f", allocs)
}
const size = 1000
tmp := 0
val := ValueOf(&tmp).Elem()
allocs = testing.AllocsPerRun(100, func() {
mv := MakeMapWithSize(TypeOf(map[int]int{}), size)
// Only adding half of the capacity to not trigger re-allocations due too many overloaded buckets.
for i := 0; i < size/2; i++ {
val.SetInt(int64(i))
mv.SetMapIndex(val, val)
}
})
if allocs > 10 {
t.Errorf("allocs per map assignment: want at most 10 got %f", allocs)
}
// Empirical testing shows that with capacity hint single run will trigger 3 allocations and without 91. I set
// the threshold to 10, to not make it overly brittle if something changes in the initial allocation of the
// map, but to still catch a regression where we keep re-allocating in the hashmap as new entries are added.
}
func TestChanAlloc(t *testing.T) {
// Note: for a chan int, the return Value must be allocated, so we
// use a chan *int instead.
c := ValueOf(make(chan *int, 1))
v := ValueOf(new(int))
allocs := testing.AllocsPerRun(100, func() {
c.Send(v)
_, _ = c.Recv()
})
if allocs < 0.5 || allocs > 1.5 {
t.Errorf("allocs per chan send/recv: want 1 got %f", allocs)
}
// Note: there is one allocation in reflect.recv which seems to be
// a limitation of escape analysis. If that is ever fixed the
// allocs < 0.5 condition will trigger and this test should be fixed.
}
*/
type TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678 int
type nameTest struct {
v any
want string
}
var nameTests = []nameTest{
{(*int32)(nil), "int32"},
{(*D1)(nil), "D1"},
{(*[]D1)(nil), ""},
{(*chan D1)(nil), ""},
{(*func() D1)(nil), ""},
{(*<-chan D1)(nil), ""},
{(*chan<- D1)(nil), ""},
{(*any)(nil), ""},
{(*interface {
F()
})(nil), ""},
{(*TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678)(nil), "TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678"},
}
func TestNames(t *testing.T) {
for _, test := range nameTests {
typ := TypeOf(test.v).Elem()
if got := typ.Name(); got != test.want {
t.Errorf("%v Name()=%q, want %q", typ, got, test.want)
}
}
}
/*
func TestExported(t *testing.T) {
type ΦExported struct{}
type φUnexported struct{}
type BigP *big
type P int
type p *P
type P2 p
type p3 p
type exportTest struct {
v any
want bool
}
exportTests := []exportTest{
{D1{}, true},
{(*D1)(nil), true},
{big{}, false},
{(*big)(nil), false},
{(BigP)(nil), true},
{(*BigP)(nil), true},
{ΦExported{}, true},
{φUnexported{}, false},
{P(0), true},
{(p)(nil), false},
{(P2)(nil), true},
{(p3)(nil), false},
}
for i, test := range exportTests {
typ := TypeOf(test.v)
if got := IsExported(typ); got != test.want {
t.Errorf("%d: %s exported=%v, want %v", i, typ.Name(), got, test.want)
}
}
}
func TestTypeStrings(t *testing.T) {
type stringTest struct {
typ Type
want string
}
stringTests := []stringTest{
{TypeOf(func(int) {}), "func(int)"},
{FuncOf([]Type{TypeOf(int(0))}, nil, false), "func(int)"},
{TypeOf(XM{}), "reflect_test.XM"},
{TypeOf(new(XM)), "*reflect_test.XM"},
{TypeOf(new(XM).String), "func() string"},
{TypeOf(new(XM)).Method(0).Type, "func(*reflect_test.XM) string"},
{ChanOf(3, TypeOf(XM{})), "chan reflect_test.XM"},
{MapOf(TypeOf(int(0)), TypeOf(XM{})), "map[int]reflect_test.XM"},
{ArrayOf(3, TypeOf(XM{})), "[3]reflect_test.XM"},
{ArrayOf(3, TypeOf(struct{}{})), "[3]struct {}"},
}
for i, test := range stringTests {
if got, want := test.typ.String(), test.want; got != want {
t.Errorf("type %d String()=%q, want %q", i, got, want)
}
}
}
func TestOffsetLock(t *testing.T) {
var wg sync.WaitGroup
for i := 0; i < 4; i++ {
i := i
wg.Add(1)
go func() {
for j := 0; j < 50; j++ {
ResolveReflectName(fmt.Sprintf("OffsetLockName:%d:%d", i, j))
}
wg.Done()
}()
}
wg.Wait()
}
*/
func TestSwapper(t *testing.T) {
type I int
var a, b, c I
type pair struct {
x, y int
}
type pairPtr struct {
x, y int
p *I
}
type S string
tests := []struct {
in any
i, j int
want any
}{
{
in: []int{1, 20, 300},
i: 0,
j: 2,
want: []int{300, 20, 1},
},
{
in: []uintptr{1, 20, 300},
i: 0,
j: 2,
want: []uintptr{300, 20, 1},
},
{
in: []int16{1, 20, 300},
i: 0,
j: 2,
want: []int16{300, 20, 1},
},
{
in: []int8{1, 20, 100},
i: 0,
j: 2,
want: []int8{100, 20, 1},
},
{
in: []*I{&a, &b, &c},
i: 0,
j: 2,
want: []*I{&c, &b, &a},
},
{
in: []string{"eric", "sergey", "larry"},
i: 0,
j: 2,
want: []string{"larry", "sergey", "eric"},
},
{
in: []S{"eric", "sergey", "larry"},
i: 0,
j: 2,
want: []S{"larry", "sergey", "eric"},
},
{
in: []pair{{1, 2}, {3, 4}, {5, 6}},
i: 0,
j: 2,
want: []pair{{5, 6}, {3, 4}, {1, 2}},
},
{
in: []pairPtr{{1, 2, &a}, {3, 4, &b}, {5, 6, &c}},
i: 0,
j: 2,
want: []pairPtr{{5, 6, &c}, {3, 4, &b}, {1, 2, &a}},
},
}
for i, tt := range tests {
inStr := fmt.Sprint(tt.in)
Swapper(tt.in)(tt.i, tt.j)
if !DeepEqual(tt.in, tt.want) {
t.Errorf("%d. swapping %v and %v of %v = %v; want %v", i, tt.i, tt.j, inStr, tt.in, tt.want)
}
}
}
/*
// TestUnaddressableField tests that the reflect package will not allow
// a type from another package to be used as a named type with an
// unexported field.
//
// This ensures that unexported fields cannot be modified by other packages.
func TestUnaddressableField(t *testing.T) {
var b Buffer // type defined in reflect, a different package
var localBuffer struct {
buf []byte
}
lv := ValueOf(&localBuffer).Elem()
rv := ValueOf(b)
shouldPanic("Set", func() {
lv.Set(rv)
})
}
*/
type Tint int
type Tint2 = Tint
type Talias1 struct {
byte
uint8
int
int32
rune
}
type Talias2 struct {
Tint
Tint2
}
func TestAliasNames(t *testing.T) {
t1 := Talias1{byte: 1, uint8: 2, int: 3, int32: 4, rune: 5}
out := fmt.Sprintf("%#v", t1)
want := "reflect_test.Talias1{byte:0x1, uint8:0x2, int:3, int32:4, rune:5}"
if out != want {
t.Errorf("Talias1 print:\nhave: %s\nwant: %s", out, want)
}
t2 := Talias2{Tint: 1, Tint2: 2}
out = fmt.Sprintf("%#v", t2)
want = "reflect_test.Talias2{Tint:1, Tint2:2}"
if out != want {
t.Errorf("Talias2 print:\nhave: %s\nwant: %s", out, want)
}
}
func TestIssue22031(t *testing.T) {
type s []struct{ C int }
type t1 struct{ s }
type t2 struct{ f s }
tests := []Value{
ValueOf(t1{s{{}}}).Field(0).Index(0).Field(0),
ValueOf(t2{s{{}}}).Field(0).Index(0).Field(0),
}
for i, test := range tests {
if test.CanSet() {
t.Errorf("%d: CanSet: got true, want false", i)
}
}
}
/*
type NonExportedFirst int
func (i NonExportedFirst) ΦExported() {}
func (i NonExportedFirst) nonexported() int { panic("wrong") }
func TestIssue22073(t *testing.T) {
m := ValueOf(NonExportedFirst(0)).Method(0)
if got := m.Type().NumOut(); got != 0 {
t.Errorf("NumOut: got %v, want 0", got)
}
// Shouldn't panic.
m.Call(nil)
}
*/
func TestMapIterNonEmptyMap(t *testing.T) {
m := map[string]int{"one": 1, "two": 2, "three": 3}
iter := ValueOf(m).MapRange()
if got, want := iterateToString(iter), `[one: 1, three: 3, two: 2]`; got != want {
t.Errorf("iterator returned %s (after sorting), want %s", got, want)
}
}
func TestMapIterNilMap(t *testing.T) {
var m map[string]int
iter := ValueOf(m).MapRange()
if got, want := iterateToString(iter), `[]`; got != want {
t.Errorf("non-empty result iteratoring nil map: %s", got)
}
}
/*
func TestMapIterReset(t *testing.T) {
iter := new(MapIter)
// Use of zero iterator should panic.
func() {
defer func() { recover() }()
iter.Next()
t.Error("Next did not panic")
}()
// Reset to new Map should work.
m := map[string]int{"one": 1, "two": 2, "three": 3}
iter.Reset(ValueOf(m))
if got, want := iterateToString(iter), `[one: 1, three: 3, two: 2]`; got != want {
t.Errorf("iterator returned %s (after sorting), want %s", got, want)
}
// Reset to Zero value should work, but iterating over it should panic.
iter.Reset(Value{})
func() {
defer func() { recover() }()
iter.Next()
t.Error("Next did not panic")
}()
// Reset to a different Map with different types should work.
m2 := map[int]string{1: "one", 2: "two", 3: "three"}
iter.Reset(ValueOf(m2))
if got, want := iterateToString(iter), `[1: one, 2: two, 3: three]`; got != want {
t.Errorf("iterator returned %s (after sorting), want %s", got, want)
}
// Check that Reset, Next, and SetKey/SetValue play nicely together.
m3 := map[uint64]uint64{
1 << 0: 1 << 1,
1 << 1: 1 << 2,
1 << 2: 1 << 3,
}
kv := New(TypeOf(uint64(0))).Elem()
for i := 0; i < 5; i++ {
var seenk, seenv uint64
iter.Reset(ValueOf(m3))
for iter.Next() {
kv.SetIterKey(iter)
seenk ^= kv.Uint()
kv.SetIterValue(iter)
seenv ^= kv.Uint()
}
if seenk != 0b111 {
t.Errorf("iteration yielded keys %b, want %b", seenk, 0b111)
}
if seenv != 0b1110 {
t.Errorf("iteration yielded values %b, want %b", seenv, 0b1110)
}
}
// Reset should not allocate.
n := int(testing.AllocsPerRun(10, func() {
iter.Reset(ValueOf(m2))
iter.Reset(Value{})
}))
if n > 0 {
t.Errorf("MapIter.Reset allocated %d times", n)
}
}
func TestMapIterSafety(t *testing.T) {
// Using a zero MapIter causes a panic, but not a crash.
func() {
defer func() { recover() }()
new(MapIter).Key()
t.Fatal("Key did not panic")
}()
func() {
defer func() { recover() }()
new(MapIter).Value()
t.Fatal("Value did not panic")
}()
func() {
defer func() { recover() }()
new(MapIter).Next()
t.Fatal("Next did not panic")
}()
// Calling Key/Value on a MapIter before Next
// causes a panic, but not a crash.
var m map[string]int
iter := ValueOf(m).MapRange()
func() {
defer func() { recover() }()
iter.Key()
t.Fatal("Key did not panic")
}()
func() {
defer func() { recover() }()
iter.Value()
t.Fatal("Value did not panic")
}()
// Calling Next, Key, or Value on an exhausted iterator
// causes a panic, but not a crash.
iter.Next() // -> false
func() {
defer func() { recover() }()
iter.Key()
t.Fatal("Key did not panic")
}()
func() {
defer func() { recover() }()
iter.Value()
t.Fatal("Value did not panic")
}()
func() {
defer func() { recover() }()
iter.Next()
t.Fatal("Next did not panic")
}()
}
*/
func TestMapIterNext(t *testing.T) {
// The first call to Next should reflect any
// insertions to the map since the iterator was created.
m := map[string]int{}
iter := ValueOf(m).MapRange()
m["one"] = 1
if got, want := iterateToString(iter), `[one: 1]`; got != want {
t.Errorf("iterator returned deleted elements: got %s, want %s", got, want)
}
}
func TestMapIterDelete0(t *testing.T) {
// Delete all elements before first iteration.
m := map[string]int{"one": 1, "two": 2, "three": 3}
iter := ValueOf(m).MapRange()
delete(m, "one")
delete(m, "two")
delete(m, "three")
if got, want := iterateToString(iter), `[]`; got != want {
t.Errorf("iterator returned deleted elements: got %s, want %s", got, want)
}
}
func TestMapIterDelete1(t *testing.T) {
// Delete all elements after first iteration.
m := map[string]int{"one": 1, "two": 2, "three": 3}
iter := ValueOf(m).MapRange()
var got []string
for iter.Next() {
got = append(got, fmt.Sprint(iter.Key(), iter.Value()))
delete(m, "one")
delete(m, "two")
delete(m, "three")
}
if len(got) != 1 {
t.Errorf("iterator returned wrong number of elements: got %d, want 1", len(got))
}
}
// iterateToString returns the set of elements
// returned by an iterator in readable form.
func iterateToString(it *MapIter) string {
var got []string
for it.Next() {
line := fmt.Sprintf("%v: %v", it.Key(), it.Value())
got = append(got, line)
}
sort.Strings(got)
return "[" + strings.Join(got, ", ") + "]"
}
/*
func TestConvertibleTo(t *testing.T) {
t1 := ValueOf(example1.MyStruct{}).Type()
t2 := ValueOf(example2.MyStruct{}).Type()
// Shouldn't raise stack overflow
if t1.ConvertibleTo(t2) {
t.Fatalf("(%s).ConvertibleTo(%s) = true, want false", t1, t2)
}
t3 := ValueOf([]example1.MyStruct{}).Type()
t4 := ValueOf([]example2.MyStruct{}).Type()
if t3.ConvertibleTo(t4) {
t.Fatalf("(%s).ConvertibleTo(%s) = true, want false", t3, t4)
}
}
func TestSetIter(t *testing.T) {
data := map[string]int{
"foo": 1,
"bar": 2,
"baz": 3,
}
m := ValueOf(data)
i := m.MapRange()
k := New(TypeOf("")).Elem()
v := New(TypeOf(0)).Elem()
shouldPanic("Value.SetIterKey called before Next", func() {
k.SetIterKey(i)
})
shouldPanic("Value.SetIterValue called before Next", func() {
v.SetIterValue(i)
})
data2 := map[string]int{}
for i.Next() {
k.SetIterKey(i)
v.SetIterValue(i)
data2[k.Interface().(string)] = v.Interface().(int)
}
if !DeepEqual(data, data2) {
t.Errorf("maps not equal, got %v want %v", data2, data)
}
shouldPanic("Value.SetIterKey called on exhausted iterator", func() {
k.SetIterKey(i)
})
shouldPanic("Value.SetIterValue called on exhausted iterator", func() {
v.SetIterValue(i)
})
i.Reset(m)
i.Next()
shouldPanic("Value.SetIterKey using unaddressable value", func() {
ValueOf("").SetIterKey(i)
})
shouldPanic("Value.SetIterValue using unaddressable value", func() {
ValueOf(0).SetIterValue(i)
})
shouldPanic("value of type string is not assignable to type int", func() {
New(TypeOf(0)).Elem().SetIterKey(i)
})
shouldPanic("value of type int is not assignable to type string", func() {
New(TypeOf("")).Elem().SetIterValue(i)
})
// Make sure assignment conversion works.
var x any
y := ValueOf(&x).Elem()
y.SetIterKey(i)
if _, ok := data[x.(string)]; !ok {
t.Errorf("got key %s which is not in map", x)
}
y.SetIterValue(i)
if x.(int) < 1 || x.(int) > 3 {
t.Errorf("got value %d which is not in map", x)
}
// Try some key/value types which are direct interfaces.
a := 88
b := 99
pp := map[*int]*int{
&a: &b,
}
i = ValueOf(pp).MapRange()
i.Next()
y.SetIterKey(i)
if got := *y.Interface().(*int); got != a {
t.Errorf("pointer incorrect: got %d want %d", got, a)
}
y.SetIterValue(i)
if got := *y.Interface().(*int); got != b {
t.Errorf("pointer incorrect: got %d want %d", got, b)
}
// Make sure we panic assigning from an unexported field.
m = ValueOf(struct{ m map[string]int }{data}).Field(0)
for iter := m.MapRange(); iter.Next(); {
shouldPanic("using value obtained using unexported field", func() {
k.SetIterKey(iter)
})
shouldPanic("using value obtained using unexported field", func() {
v.SetIterValue(iter)
})
}
}
func TestMethodCallValueCodePtr(t *testing.T) {
m := ValueOf(Point{}).Method(1)
want := MethodValueCallCodePtr()
if got := uintptr(m.UnsafePointer()); got != want {
t.Errorf("methodValueCall code pointer mismatched, want: %v, got: %v", want, got)
}
if got := m.Pointer(); got != want {
t.Errorf("methodValueCall code pointer mismatched, want: %v, got: %v", want, got)
}
}
type A struct{}
type B[T any] struct{}
func TestIssue50208(t *testing.T) {
want1 := "B[reflect_test.A]"
if got := TypeOf(new(B[A])).Elem().Name(); got != want1 {
t.Errorf("name of type parameter mismatched, want:%s, got:%s", want1, got)
}
want2 := "B[reflect_test.B[reflect_test.A]]"
if got := TypeOf(new(B[B[A]])).Elem().Name(); got != want2 {
t.Errorf("name of type parameter mismatched, want:%s, got:%s", want2, got)
}
}
*/
func TestNegativeKindString(t *testing.T) {
x := -1
s := Kind(x).String()
want := "kind-1"
if s != want {
t.Fatalf("Kind(-1).String() = %q, want %q", s, want)
}
}
type (
namedBool bool
namedBytes []byte
)
/*
func TestValue_Cap(t *testing.T) {
a := &[3]int{1, 2, 3}
v := ValueOf(a)
if v.Cap() != cap(a) {
t.Errorf("Cap = %d want %d", v.Cap(), cap(a))
}
a = nil
v = ValueOf(a)
if v.Cap() != cap(a) {
t.Errorf("Cap = %d want %d", v.Cap(), cap(a))
}
getError := func(f func()) (errorStr string) {
defer func() {
e := recover()
if str, ok := e.(string); ok {
errorStr = str
}
}()
f()
return
}
e := getError(func() {
var ptr *int
ValueOf(ptr).Cap()
})
wantStr := "reflect: call of reflect.Value.Cap on ptr to non-array Value"
if e != wantStr {
t.Errorf("error is %q, want %q", e, wantStr)
}
}
func TestValue_Len(t *testing.T) {
a := &[3]int{1, 2, 3}
v := ValueOf(a)
if v.Len() != len(a) {
t.Errorf("Len = %d want %d", v.Len(), len(a))
}
a = nil
v = ValueOf(a)
if v.Len() != len(a) {
t.Errorf("Len = %d want %d", v.Len(), len(a))
}
getError := func(f func()) (errorStr string) {
defer func() {
e := recover()
if str, ok := e.(string); ok {
errorStr = str
}
}()
f()
return
}
e := getError(func() {
var ptr *int
ValueOf(ptr).Len()
})
wantStr := "reflect: call of reflect.Value.Len on ptr to non-array Value"
if e != wantStr {
t.Errorf("error is %q, want %q", e, wantStr)
}
}
*/
func TestValue_Comparable(t *testing.T) {
var a int
var s []int
var i interface{} = a
var iSlice interface{} = s
var iArrayFalse interface{} = [2]interface{}{1, map[int]int{}}
var iArrayTrue interface{} = [2]interface{}{1, struct{ I interface{} }{1}}
var testcases = []struct {
value Value
comparable bool
deref bool
}{
{
ValueOf(32),
true,
false,
},
{
ValueOf(int8(1)),
true,
false,
},
{
ValueOf(int16(1)),
true,
false,
},
{
ValueOf(int32(1)),
true,
false,
},
{
ValueOf(int64(1)),
true,
false,
},
{
ValueOf(uint8(1)),
true,
false,
},
{
ValueOf(uint16(1)),
true,
false,
},
{
ValueOf(uint32(1)),
true,
false,
},
{
ValueOf(uint64(1)),
true,
false,
},
{
ValueOf(float32(1)),
true,
false,
},
{
ValueOf(float64(1)),
true,
false,
},
{
ValueOf(complex(float32(1), float32(1))),
true,
false,
},
{
ValueOf(complex(float64(1), float64(1))),
true,
false,
},
{
ValueOf("abc"),
true,
false,
},
{
ValueOf(true),
true,
false,
},
{
ValueOf(map[int]int{}),
false,
false,
},
{
ValueOf([]int{}),
false,
false,
},
{
Value{},
false,
false,
},
{
ValueOf(&a),
true,
false,
},
{
ValueOf(&s),
true,
false,
},
{
ValueOf(&i),
true,
true,
},
{
ValueOf(&iSlice),
false,
true,
},
{
ValueOf([2]int{}),
true,
false,
},
{
ValueOf([2]map[int]int{}),
false,
false,
},
{
ValueOf([0]func(){}),
false,
false,
},
{
ValueOf([2]struct{ I interface{} }{{1}, {1}}),
true,
false,
},
{
ValueOf([2]struct{ I interface{} }{{[]int{}}, {1}}),
false,
false,
},
{
ValueOf([2]interface{}{1, struct{ I int }{1}}),
true,
false,
},
{
ValueOf([2]interface{}{[1]interface{}{map[int]int{}}, struct{ I int }{1}}),
false,
false,
},
{
ValueOf(&iArrayFalse),
false,
true,
},
{
ValueOf(&iArrayTrue),
true,
true,
},
}
for _, cas := range testcases {
v := cas.value
if cas.deref {
v = v.Elem()
}
got := v.Comparable()
if got != cas.comparable {
t.Errorf("%T.Comparable = %t, want %t", v, got, cas.comparable)
}
}
}
/*
type ValueEqualTest struct {
v, u any
eq bool
vDeref, uDeref bool
}
var equalI interface{} = 1
var equalSlice interface{} = []int{1}
var nilInterface interface{}
var mapInterface interface{} = map[int]int{}
var valueEqualTests = []ValueEqualTest{
{
Value{}, Value{},
true,
false, false,
},
{
true, true,
true,
false, false,
},
{
1, 1,
true,
false, false,
},
{
int8(1), int8(1),
true,
false, false,
},
{
int16(1), int16(1),
true,
false, false,
},
{
int32(1), int32(1),
true,
false, false,
},
{
int64(1), int64(1),
true,
false, false,
},
{
uint(1), uint(1),
true,
false, false,
},
{
uint8(1), uint8(1),
true,
false, false,
},
{
uint16(1), uint16(1),
true,
false, false,
},
{
uint32(1), uint32(1),
true,
false, false,
},
{
uint64(1), uint64(1),
true,
false, false,
},
{
float32(1), float32(1),
true,
false, false,
},
{
float64(1), float64(1),
true,
false, false,
},
{
complex(1, 1), complex(1, 1),
true,
false, false,
},
{
complex128(1 + 1i), complex128(1 + 1i),
true,
false, false,
},
{
func() {}, nil,
false,
false, false,
},
{
&equalI, 1,
true,
true, false,
},
{
(chan int)(nil), nil,
false,
false, false,
},
{
(chan int)(nil), (chan int)(nil),
true,
false, false,
},
{
&equalI, &equalI,
true,
false, false,
},
{
struct{ i int }{1}, struct{ i int }{1},
true,
false, false,
},
{
struct{ i int }{1}, struct{ i int }{2},
false,
false, false,
},
{
&nilInterface, &nilInterface,
true,
true, true,
},
{
1, ValueOf(struct{ i int }{1}).Field(0),
true,
false, false,
},
}
func TestValue_Equal(t *testing.T) {
for _, test := range valueEqualTests {
var v, u Value
if vv, ok := test.v.(Value); ok {
v = vv
} else {
v = ValueOf(test.v)
}
if uu, ok := test.u.(Value); ok {
u = uu
} else {
u = ValueOf(test.u)
}
if test.vDeref {
v = v.Elem()
}
if test.uDeref {
u = u.Elem()
}
if r := v.Equal(u); r != test.eq {
t.Errorf("%s == %s got %t, want %t", v.Type(), u.Type(), r, test.eq)
}
}
}
func TestValue_EqualNonComparable(t *testing.T) {
var invalid = Value{} // ValueOf(nil)
var values = []Value{
// Value of slice is non-comparable.
ValueOf([]int(nil)),
ValueOf(([]int{})),
// Value of map is non-comparable.
ValueOf(map[int]int(nil)),
ValueOf((map[int]int{})),
// Value of func is non-comparable.
ValueOf(((func())(nil))),
ValueOf(func() {}),
// Value of struct is non-comparable because of non-comparable elements.
ValueOf((NonComparableStruct{})),
// Value of array is non-comparable because of non-comparable elements.
ValueOf([0]map[int]int{}),
ValueOf([0]func(){}),
ValueOf(([1]struct{ I interface{} }{{[]int{}}})),
ValueOf(([1]interface{}{[1]interface{}{map[int]int{}}})),
}
for _, value := range values {
// Panic when reflect.Value.Equal using two valid non-comparable values.
shouldPanic("are not comparable", func() { value.Equal(value) })
// If one is non-comparable and the other is invalid, the expected result is always false.
if r := value.Equal(invalid); r != false {
t.Errorf("%s == invalid got %t, want false", value.Type(), r)
}
}
}
func TestInitFuncTypes(t *testing.T) {
n := 100
var wg sync.WaitGroup
wg.Add(n)
for i := 0; i < n; i++ {
go func() {
defer wg.Done()
ipT := TypeOf(net.IP{})
for i := 0; i < ipT.NumMethod(); i++ {
_ = ipT.Method(i)
}
}()
}
wg.Wait()
}
*/