tinygo/src/machine/machine_atsamd21.go
2021-03-19 17:34:49 +01:00

2483 строки
67 КиБ
Go

// +build sam,atsamd21
// Peripheral abstraction layer for the atsamd21.
//
// Datasheet:
// http://ww1.microchip.com/downloads/en/DeviceDoc/SAMD21-Family-DataSheet-DS40001882D.pdf
//
package machine
import (
"device/arm"
"device/sam"
"errors"
"runtime/interrupt"
"runtime/volatile"
"unsafe"
)
type PinMode uint8
const (
PinAnalog PinMode = 1
PinSERCOM PinMode = 2
PinSERCOMAlt PinMode = 3
PinTimer PinMode = 4
PinTimerAlt PinMode = 5
PinCom PinMode = 6
//PinAC_CLK PinMode = 7
PinDigital PinMode = 8
PinInput PinMode = 9
PinInputPullup PinMode = 10
PinOutput PinMode = 11
PinPWM PinMode = PinTimer
PinPWMAlt PinMode = PinTimerAlt
PinInputPulldown PinMode = 12
)
type PinChange uint8
// Pin change interrupt constants for SetInterrupt.
const (
PinRising PinChange = sam.EIC_CONFIG_SENSE0_RISE
PinFalling PinChange = sam.EIC_CONFIG_SENSE0_FALL
PinToggle PinChange = sam.EIC_CONFIG_SENSE0_BOTH
)
// Callbacks to be called for pins configured with SetInterrupt. Unfortunately,
// we also need to keep track of which interrupt channel is used by which pin,
// as the only alternative would be iterating through all pins.
//
// We're using the magic constant 16 here because the SAM D21 has 16 interrupt
// channels configurable for pins.
var (
interruptPins [16]Pin // warning: the value is invalid when pinCallbacks[i] is not set!
pinCallbacks [16]func(Pin)
)
const (
pinPadMapSERCOM0Pad0 byte = (0x10 << 1) | 0x00
pinPadMapSERCOM1Pad0 byte = (0x20 << 1) | 0x00
pinPadMapSERCOM2Pad0 byte = (0x30 << 1) | 0x00
pinPadMapSERCOM3Pad0 byte = (0x40 << 1) | 0x00
pinPadMapSERCOM4Pad0 byte = (0x50 << 1) | 0x00
pinPadMapSERCOM5Pad0 byte = (0x60 << 1) | 0x00
pinPadMapSERCOM0Pad2 byte = (0x10 << 1) | 0x10
pinPadMapSERCOM1Pad2 byte = (0x20 << 1) | 0x10
pinPadMapSERCOM2Pad2 byte = (0x30 << 1) | 0x10
pinPadMapSERCOM3Pad2 byte = (0x40 << 1) | 0x10
pinPadMapSERCOM4Pad2 byte = (0x50 << 1) | 0x10
pinPadMapSERCOM5Pad2 byte = (0x60 << 1) | 0x10
pinPadMapSERCOM0AltPad0 byte = (0x01 << 1) | 0x00
pinPadMapSERCOM1AltPad0 byte = (0x02 << 1) | 0x00
pinPadMapSERCOM2AltPad0 byte = (0x03 << 1) | 0x00
pinPadMapSERCOM3AltPad0 byte = (0x04 << 1) | 0x00
pinPadMapSERCOM4AltPad0 byte = (0x05 << 1) | 0x00
pinPadMapSERCOM5AltPad0 byte = (0x06 << 1) | 0x00
pinPadMapSERCOM0AltPad2 byte = (0x01 << 1) | 0x01
pinPadMapSERCOM1AltPad2 byte = (0x02 << 1) | 0x01
pinPadMapSERCOM2AltPad2 byte = (0x03 << 1) | 0x01
pinPadMapSERCOM3AltPad2 byte = (0x04 << 1) | 0x01
pinPadMapSERCOM4AltPad2 byte = (0x05 << 1) | 0x01
pinPadMapSERCOM5AltPad2 byte = (0x06 << 1) | 0x01
)
// pinPadMapping lists which pins have which SERCOMs attached to them.
// The encoding is rather dense, with each byte encoding two pins and both
// SERCOM and SERCOM-ALT.
//
// Observations:
// * There are six SERCOMs. Those SERCOM numbers can be encoded in 3 bits.
// * Even pad numbers are always on even pins, and odd pad numbers are always on
// odd pins.
// * Pin pads come in pairs. If PA00 has pad 0, then PA01 has pad 1.
// With this information, we can encode SERCOM pin/pad numbers much more
// efficiently. First of all, due to pads coming in pairs, we can ignore half
// the pins: the information for an odd pin can be calculated easily from the
// preceding even pin. And second, if odd pads are always on odd pins and even
// pads on even pins, we can drop a single bit from the pad number.
//
// Each byte below is split in two nibbles. The 4 high bits are for SERCOM and
// the 4 low bits are for SERCOM-ALT. Of each nibble, the 3 high bits encode the
// SERCOM + 1 while the low bit encodes whether this is PAD0 or PAD2 (0 means
// PAD0, 1 means PAD2). It encodes SERCOM + 1 instead of just the SERCOM number,
// to make it easy to check whether a nibble is set at all.
var pinPadMapping = [32]byte{
// page 21
PA00 / 2: 0 | pinPadMapSERCOM1AltPad0,
PB08 / 2: 0 | pinPadMapSERCOM4AltPad0,
PA04 / 2: 0 | pinPadMapSERCOM0AltPad0,
PA06 / 2: 0 | pinPadMapSERCOM0AltPad2,
PA08 / 2: pinPadMapSERCOM0Pad0 | pinPadMapSERCOM2AltPad0,
PA10 / 2: pinPadMapSERCOM0Pad2 | pinPadMapSERCOM2AltPad2,
// page 22
PB10 / 2: 0 | pinPadMapSERCOM4AltPad2,
PB12 / 2: pinPadMapSERCOM4Pad0 | 0,
PB14 / 2: pinPadMapSERCOM4Pad2 | 0,
PA12 / 2: pinPadMapSERCOM2Pad0 | pinPadMapSERCOM4AltPad0,
PA14 / 2: pinPadMapSERCOM2Pad2 | pinPadMapSERCOM4AltPad2,
PA16 / 2: pinPadMapSERCOM1Pad0 | pinPadMapSERCOM3AltPad0,
PA18 / 2: pinPadMapSERCOM1Pad2 | pinPadMapSERCOM3AltPad2,
PB16 / 2: pinPadMapSERCOM5Pad0 | 0,
PA20 / 2: pinPadMapSERCOM5Pad2 | pinPadMapSERCOM3AltPad2,
PA22 / 2: pinPadMapSERCOM3Pad0 | pinPadMapSERCOM5AltPad0,
PA24 / 2: pinPadMapSERCOM3Pad2 | pinPadMapSERCOM5AltPad2,
// page 23
PB22 / 2: 0 | pinPadMapSERCOM5AltPad2,
PA30 / 2: 0 | pinPadMapSERCOM1AltPad2,
PB30 / 2: 0 | pinPadMapSERCOM5AltPad0,
PB00 / 2: 0 | pinPadMapSERCOM5AltPad2,
PB02 / 2: 0 | pinPadMapSERCOM5AltPad0,
}
// findPinPadMapping looks up the pad number and the pinmode for a given pin,
// given a SERCOM number. The result can either be SERCOM, SERCOM-ALT, or "not
// found" (indicated by returning ok=false). The pad number is returned to
// calculate the DOPO/DIPO bitfields of the various serial peripherals.
func findPinPadMapping(sercom uint8, pin Pin) (pinMode PinMode, pad uint32, ok bool) {
if int(pin)/2 >= len(pinPadMapping) {
// This is probably NoPin, for which no mapping is available.
return
}
nibbles := pinPadMapping[pin/2]
upper := nibbles >> 4
lower := nibbles & 0xf
if upper != 0 {
// SERCOM
if (upper>>1)-1 == sercom {
pinMode = PinSERCOM
pad |= uint32((upper & 1) << 1)
ok = true
}
}
if lower != 0 {
// SERCOM-ALT
if (lower>>1)-1 == sercom {
pinMode = PinSERCOMAlt
pad |= uint32((lower & 1) << 1)
ok = true
}
}
if ok {
// The lower bit of the pad is the same as the lower bit of the pin number.
pad |= uint32(pin & 1)
}
return
}
// SetInterrupt sets an interrupt to be executed when a particular pin changes
// state. The pin should already be configured as an input, including a pull up
// or down if no external pull is provided.
//
// This call will replace a previously set callback on this pin. You can pass a
// nil func to unset the pin change interrupt. If you do so, the change
// parameter is ignored and can be set to any value (such as 0).
func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error {
// Most pins follow a common pattern where the EXTINT value is the pin
// number modulo 16. However, there are a few exceptions, as you can see
// below.
extint := uint8(0)
switch p {
case PA08:
// Connected to NMI. This is not currently supported.
return ErrInvalidInputPin
case PA24:
extint = 12
case PA25:
extint = 13
case PA27:
extint = 15
case PA28:
extint = 8
case PA30:
extint = 10
case PA31:
extint = 11
default:
// All other pins follow a normal pattern.
extint = uint8(p) % 16
}
if callback == nil {
// Disable this pin interrupt (if it was enabled).
sam.EIC.INTENCLR.Set(1 << extint)
if pinCallbacks[extint] != nil {
pinCallbacks[extint] = nil
}
return nil
}
if pinCallbacks[extint] != nil {
// The pin was already configured.
// To properly re-configure a pin, unset it first and set a new
// configuration.
return ErrNoPinChangeChannel
}
pinCallbacks[extint] = callback
interruptPins[extint] = p
if sam.EIC.CTRL.Get() == 0 {
// EIC peripheral has not yet been initialized. Initialize it now.
// The EIC needs two clocks: CLK_EIC_APB and GCLK_EIC. CLK_EIC_APB is
// enabled by default, so doesn't have to be re-enabled. The other is
// required for detecting edges and must be enabled manually.
sam.GCLK.CLKCTRL.Set(sam.GCLK_CLKCTRL_ID_EIC<<sam.GCLK_CLKCTRL_ID_Pos |
sam.GCLK_CLKCTRL_GEN_GCLK0<<sam.GCLK_CLKCTRL_GEN_Pos |
sam.GCLK_CLKCTRL_CLKEN)
// should not be necessary (CLKCTRL is not synchronized)
for sam.GCLK.STATUS.HasBits(sam.GCLK_STATUS_SYNCBUSY) {
}
sam.EIC.CTRL.Set(sam.EIC_CTRL_ENABLE)
for sam.EIC.STATUS.HasBits(sam.EIC_STATUS_SYNCBUSY) {
}
}
// Configure this pin. Set the 4 bits of the EIC.CONFIGx register to the
// sense value (filter bit set to 0, sense bits set to the change value).
addr := &sam.EIC.CONFIG0
if extint >= 8 {
addr = &sam.EIC.CONFIG1
}
pos := (extint % 8) * 4 // bit position in register
addr.ReplaceBits(uint32(change), 0xf, pos)
// Enable external interrupt for this pin.
sam.EIC.INTENSET.Set(1 << extint)
// Set the PMUXEN flag, while keeping the INEN and PULLEN flags (if they
// were set before). This avoids clearing the pin pull mode while
// configuring the pin interrupt.
p.setPinCfg(sam.PORT_PINCFG0_PMUXEN | (p.getPinCfg() & (sam.PORT_PINCFG0_INEN | sam.PORT_PINCFG0_PULLEN)))
if p&1 > 0 {
// odd pin, so save the even pins
val := p.getPMux() & sam.PORT_PMUX0_PMUXE_Msk
p.setPMux(val | (sam.PORT_PMUX0_PMUXO_A << sam.PORT_PMUX0_PMUXO_Pos))
} else {
// even pin, so save the odd pins
val := p.getPMux() & sam.PORT_PMUX0_PMUXO_Msk
p.setPMux(val | (sam.PORT_PMUX0_PMUXE_A << sam.PORT_PMUX0_PMUXE_Pos))
}
interrupt.New(sam.IRQ_EIC, func(interrupt.Interrupt) {
flags := sam.EIC.INTFLAG.Get()
sam.EIC.INTFLAG.Set(flags) // clear interrupt
for i := uint(0); i < 16; i++ { // there are 16 channels
if flags&(1<<i) != 0 {
pinCallbacks[i](interruptPins[i])
}
}
}).Enable()
return nil
}
// InitADC initializes the ADC.
func InitADC() {
// ADC Bias Calibration
// #define ADC_FUSES_BIASCAL_ADDR (NVMCTRL_OTP4 + 4)
// #define ADC_FUSES_BIASCAL_Pos 3 /**< \brief (NVMCTRL_OTP4) ADC Bias Calibration */
// #define ADC_FUSES_BIASCAL_Msk (0x7u << ADC_FUSES_BIASCAL_Pos)
// #define ADC_FUSES_BIASCAL(value) ((ADC_FUSES_BIASCAL_Msk & ((value) << ADC_FUSES_BIASCAL_Pos)))
// #define ADC_FUSES_LINEARITY_0_ADDR NVMCTRL_OTP4
// #define ADC_FUSES_LINEARITY_0_Pos 27 /**< \brief (NVMCTRL_OTP4) ADC Linearity bits 4:0 */
// #define ADC_FUSES_LINEARITY_0_Msk (0x1Fu << ADC_FUSES_LINEARITY_0_Pos)
// #define ADC_FUSES_LINEARITY_0(value) ((ADC_FUSES_LINEARITY_0_Msk & ((value) << ADC_FUSES_LINEARITY_0_Pos)))
// #define ADC_FUSES_LINEARITY_1_ADDR (NVMCTRL_OTP4 + 4)
// #define ADC_FUSES_LINEARITY_1_Pos 0 /**< \brief (NVMCTRL_OTP4) ADC Linearity bits 7:5 */
// #define ADC_FUSES_LINEARITY_1_Msk (0x7u << ADC_FUSES_LINEARITY_1_Pos)
// #define ADC_FUSES_LINEARITY_1(value) ((ADC_FUSES_LINEARITY_1_Msk & ((value) << ADC_FUSES_LINEARITY_1_Pos)))
biasFuse := *(*uint32)(unsafe.Pointer(uintptr(0x00806020) + 4))
bias := uint16(biasFuse>>3) & uint16(0x7)
// ADC Linearity bits 4:0
linearity0Fuse := *(*uint32)(unsafe.Pointer(uintptr(0x00806020)))
linearity := uint16(linearity0Fuse>>27) & uint16(0x1f)
// ADC Linearity bits 7:5
linearity1Fuse := *(*uint32)(unsafe.Pointer(uintptr(0x00806020) + 4))
linearity |= uint16(linearity1Fuse) & uint16(0x7) << 5
// set calibration
sam.ADC.CALIB.Set((bias << 8) | linearity)
}
// Configure configures a ADC pin to be able to be used to read data.
func (a ADC) Configure(config ADCConfig) {
// Wait for synchronization
waitADCSync()
var resolution uint32
switch config.Resolution {
case 8:
resolution = sam.ADC_CTRLB_RESSEL_8BIT
case 10:
resolution = sam.ADC_CTRLB_RESSEL_10BIT
case 12:
resolution = sam.ADC_CTRLB_RESSEL_12BIT
case 16:
resolution = sam.ADC_CTRLB_RESSEL_16BIT
default:
resolution = sam.ADC_CTRLB_RESSEL_12BIT
}
// Divide Clock by 32 with 12 bits resolution as default
sam.ADC.CTRLB.Set((sam.ADC_CTRLB_PRESCALER_DIV32 << sam.ADC_CTRLB_PRESCALER_Pos) |
uint16(resolution<<sam.ADC_CTRLB_RESSEL_Pos))
// Sampling Time Length
sam.ADC.SAMPCTRL.Set(5)
// Wait for synchronization
waitADCSync()
// Use internal ground
sam.ADC.INPUTCTRL.Set(sam.ADC_INPUTCTRL_MUXNEG_GND << sam.ADC_INPUTCTRL_MUXNEG_Pos)
// Averaging (see datasheet table in AVGCTRL register description)
var samples uint32
switch config.Samples {
case 1:
samples = sam.ADC_AVGCTRL_SAMPLENUM_1
case 2:
samples = sam.ADC_AVGCTRL_SAMPLENUM_2
case 4:
samples = sam.ADC_AVGCTRL_SAMPLENUM_4
case 8:
samples = sam.ADC_AVGCTRL_SAMPLENUM_8
case 16:
samples = sam.ADC_AVGCTRL_SAMPLENUM_16
case 32:
samples = sam.ADC_AVGCTRL_SAMPLENUM_32
case 64:
samples = sam.ADC_AVGCTRL_SAMPLENUM_64
case 128:
samples = sam.ADC_AVGCTRL_SAMPLENUM_128
case 256:
samples = sam.ADC_AVGCTRL_SAMPLENUM_256
case 512:
samples = sam.ADC_AVGCTRL_SAMPLENUM_512
case 1024:
samples = sam.ADC_AVGCTRL_SAMPLENUM_1024
default:
samples = sam.ADC_AVGCTRL_SAMPLENUM_1
}
sam.ADC.AVGCTRL.Set(uint8(samples<<sam.ADC_AVGCTRL_SAMPLENUM_Pos) |
(0x0 << sam.ADC_AVGCTRL_ADJRES_Pos))
// TODO: use config.Reference to set AREF level
// Analog Reference is AREF pin (3.3v)
sam.ADC.INPUTCTRL.SetBits(sam.ADC_INPUTCTRL_GAIN_DIV2 << sam.ADC_INPUTCTRL_GAIN_Pos)
// 1/2 VDDANA = 0.5 * 3V3 = 1.65V
sam.ADC.REFCTRL.SetBits(sam.ADC_REFCTRL_REFSEL_INTVCC1 << sam.ADC_REFCTRL_REFSEL_Pos)
a.Pin.Configure(PinConfig{Mode: PinAnalog})
return
}
// Get returns the current value of a ADC pin, in the range 0..0xffff.
func (a ADC) Get() uint16 {
ch := a.getADCChannel()
// Selection for the positive ADC input
sam.ADC.INPUTCTRL.ClearBits(sam.ADC_INPUTCTRL_MUXPOS_Msk)
waitADCSync()
sam.ADC.INPUTCTRL.SetBits(uint32(ch << sam.ADC_INPUTCTRL_MUXPOS_Pos))
waitADCSync()
// Select internal ground for ADC input
sam.ADC.INPUTCTRL.ClearBits(sam.ADC_INPUTCTRL_MUXNEG_Msk)
waitADCSync()
sam.ADC.INPUTCTRL.SetBits(sam.ADC_INPUTCTRL_MUXNEG_GND << sam.ADC_INPUTCTRL_MUXNEG_Pos)
waitADCSync()
// Enable ADC
sam.ADC.CTRLA.SetBits(sam.ADC_CTRLA_ENABLE)
waitADCSync()
// Start conversion
sam.ADC.SWTRIG.SetBits(sam.ADC_SWTRIG_START)
waitADCSync()
// wait for first conversion to finish to fix same issue as
// https://github.com/arduino/ArduinoCore-samd/issues/446
for !sam.ADC.INTFLAG.HasBits(sam.ADC_INTFLAG_RESRDY) {
}
// Clear the Data Ready flag
sam.ADC.INTFLAG.SetBits(sam.ADC_INTFLAG_RESRDY)
waitADCSync()
// Start conversion again, since first conversion after reference voltage changed is invalid.
sam.ADC.SWTRIG.SetBits(sam.ADC_SWTRIG_START)
waitADCSync()
// Waiting for conversion to complete
for !sam.ADC.INTFLAG.HasBits(sam.ADC_INTFLAG_RESRDY) {
}
val := sam.ADC.RESULT.Get()
// Disable ADC
sam.ADC.CTRLA.ClearBits(sam.ADC_CTRLA_ENABLE)
waitADCSync()
return uint16(val) << 4 // scales from 12 to 16-bit result
}
func (a ADC) getADCChannel() uint8 {
switch a.Pin {
case PA02:
return 0
case PA03:
return 1
case PB04:
return 12
case PB05:
return 13
case PB06:
return 14
case PB07:
return 15
case PB08:
return 2
case PB09:
return 3
case PA04:
return 4
case PA05:
return 5
case PA06:
return 6
case PA07:
return 7
case PA08:
return 16
case PA09:
return 17
case PA10:
return 18
case PA11:
return 19
case PB00:
return 8
case PB01:
return 9
case PB02:
return 10
case PB03:
return 11
default:
return 0
}
}
func waitADCSync() {
for sam.ADC.STATUS.HasBits(sam.ADC_STATUS_SYNCBUSY) {
}
}
// UART on the SAMD21.
type UART struct {
Buffer *RingBuffer
Bus *sam.SERCOM_USART_Type
SERCOM uint8
Interrupt interrupt.Interrupt
}
var (
// UART0 is actually a USB CDC interface.
UART0 = USBCDC{Buffer: NewRingBuffer()}
)
const (
sampleRate16X = 16
lsbFirst = 1
)
// Configure the UART.
func (uart UART) Configure(config UARTConfig) error {
// Default baud rate to 115200.
if config.BaudRate == 0 {
config.BaudRate = 115200
}
// Use default pins if pins are not set.
if config.TX == 0 && config.RX == 0 {
// use default pins
config.TX = UART_TX_PIN
config.RX = UART_RX_PIN
}
// Determine transmit pinout.
txPinMode, txPad, ok := findPinPadMapping(uart.SERCOM, config.TX)
if !ok {
return ErrInvalidOutputPin
}
var txPinOut uint32
// See table 25-9 of the datasheet (page 459) for how pads are mapped to
// pinout values.
switch txPad {
case 0:
txPinOut = 0
case 2:
txPinOut = 1
default:
// TODO: flow control (RTS/CTS)
return ErrInvalidOutputPin
}
// Determine receive pinout.
rxPinMode, rxPad, ok := findPinPadMapping(uart.SERCOM, config.RX)
if !ok {
return ErrInvalidInputPin
}
// As you can see in table 25-8 on page 459 of the datasheet, input pins
// are mapped directly.
rxPinOut := rxPad
// configure pins
config.TX.Configure(PinConfig{Mode: txPinMode})
config.RX.Configure(PinConfig{Mode: rxPinMode})
// reset SERCOM0
uart.Bus.CTRLA.SetBits(sam.SERCOM_USART_CTRLA_SWRST)
for uart.Bus.CTRLA.HasBits(sam.SERCOM_USART_CTRLA_SWRST) ||
uart.Bus.SYNCBUSY.HasBits(sam.SERCOM_USART_SYNCBUSY_SWRST) {
}
// set UART mode/sample rate
// SERCOM_USART_CTRLA_MODE(mode) |
// SERCOM_USART_CTRLA_SAMPR(sampleRate);
uart.Bus.CTRLA.Set((sam.SERCOM_USART_CTRLA_MODE_USART_INT_CLK << sam.SERCOM_USART_CTRLA_MODE_Pos) |
(1 << sam.SERCOM_USART_CTRLA_SAMPR_Pos)) // sample rate of 16x
// Set baud rate
uart.SetBaudRate(config.BaudRate)
// setup UART frame
// SERCOM_USART_CTRLA_FORM( (parityMode == SERCOM_NO_PARITY ? 0 : 1) ) |
// dataOrder << SERCOM_USART_CTRLA_DORD_Pos;
uart.Bus.CTRLA.SetBits((0 << sam.SERCOM_USART_CTRLA_FORM_Pos) | // no parity
(lsbFirst << sam.SERCOM_USART_CTRLA_DORD_Pos)) // data order
// set UART stop bits/parity
// SERCOM_USART_CTRLB_CHSIZE(charSize) |
// nbStopBits << SERCOM_USART_CTRLB_SBMODE_Pos |
// (parityMode == SERCOM_NO_PARITY ? 0 : parityMode) << SERCOM_USART_CTRLB_PMODE_Pos; //If no parity use default value
uart.Bus.CTRLB.SetBits((0 << sam.SERCOM_USART_CTRLB_CHSIZE_Pos) | // 8 bits is 0
(0 << sam.SERCOM_USART_CTRLB_SBMODE_Pos) | // 1 stop bit is zero
(0 << sam.SERCOM_USART_CTRLB_PMODE_Pos)) // no parity
// set UART pads. This is not same as pins...
// SERCOM_USART_CTRLA_TXPO(txPad) |
// SERCOM_USART_CTRLA_RXPO(rxPad);
uart.Bus.CTRLA.SetBits((txPinOut << sam.SERCOM_USART_CTRLA_TXPO_Pos) |
(rxPinOut << sam.SERCOM_USART_CTRLA_RXPO_Pos))
// Enable Transceiver and Receiver
//sercom->USART.CTRLB.reg |= SERCOM_USART_CTRLB_TXEN | SERCOM_USART_CTRLB_RXEN ;
uart.Bus.CTRLB.SetBits(sam.SERCOM_USART_CTRLB_TXEN | sam.SERCOM_USART_CTRLB_RXEN)
// Enable USART1 port.
// sercom->USART.CTRLA.bit.ENABLE = 0x1u;
uart.Bus.CTRLA.SetBits(sam.SERCOM_USART_CTRLA_ENABLE)
for uart.Bus.SYNCBUSY.HasBits(sam.SERCOM_USART_SYNCBUSY_ENABLE) {
}
// setup interrupt on receive
uart.Bus.INTENSET.Set(sam.SERCOM_USART_INTENSET_RXC)
// Enable RX IRQ.
uart.Interrupt.Enable()
return nil
}
// SetBaudRate sets the communication speed for the UART.
func (uart UART) SetBaudRate(br uint32) {
// Asynchronous fractional mode (Table 24-2 in datasheet)
// BAUD = fref / (sampleRateValue * fbaud)
// (multiply by 8, to calculate fractional piece)
// uint32_t baudTimes8 = (SystemCoreClock * 8) / (16 * baudrate);
baud := (CPUFrequency() * 8) / (sampleRate16X * br)
// sercom->USART.BAUD.FRAC.FP = (baudTimes8 % 8);
// sercom->USART.BAUD.FRAC.BAUD = (baudTimes8 / 8);
uart.Bus.BAUD.Set(uint16(((baud % 8) << sam.SERCOM_USART_BAUD_FRAC_MODE_FP_Pos) |
((baud / 8) << sam.SERCOM_USART_BAUD_FRAC_MODE_BAUD_Pos)))
}
// WriteByte writes a byte of data to the UART.
func (uart UART) WriteByte(c byte) error {
// wait until ready to receive
for !uart.Bus.INTFLAG.HasBits(sam.SERCOM_USART_INTFLAG_DRE) {
}
uart.Bus.DATA.Set(uint16(c))
return nil
}
// handleInterrupt should be called from the appropriate interrupt handler for
// this UART instance.
func (uart *UART) handleInterrupt(interrupt.Interrupt) {
// should reset IRQ
uart.Receive(byte((uart.Bus.DATA.Get() & 0xFF)))
uart.Bus.INTFLAG.SetBits(sam.SERCOM_USART_INTFLAG_RXC)
}
// I2C on the SAMD21.
type I2C struct {
Bus *sam.SERCOM_I2CM_Type
SERCOM uint8
}
// I2CConfig is used to store config info for I2C.
type I2CConfig struct {
Frequency uint32
SCL Pin
SDA Pin
}
const (
// Default rise time in nanoseconds, based on 4.7K ohm pull up resistors
riseTimeNanoseconds = 125
// wire bus states
wireUnknownState = 0
wireIdleState = 1
wireOwnerState = 2
wireBusyState = 3
// wire commands
wireCmdNoAction = 0
wireCmdRepeatStart = 1
wireCmdRead = 2
wireCmdStop = 3
)
const i2cTimeout = 1000
// Configure is intended to setup the I2C interface.
func (i2c I2C) Configure(config I2CConfig) error {
// Default I2C bus speed is 100 kHz.
if config.Frequency == 0 {
config.Frequency = TWI_FREQ_100KHZ
}
if config.SDA == 0 && config.SCL == 0 {
config.SDA = SDA_PIN
config.SCL = SCL_PIN
}
sclPinMode, sclPad, ok := findPinPadMapping(i2c.SERCOM, config.SCL)
if !ok || sclPad != 1 {
// SCL must be on pad 1, according to section 27.5 of the datasheet.
// Note: this is not an exhaustive test for I2C support on the pin: not
// all pins support I2C.
return ErrInvalidClockPin
}
sdaPinMode, sdaPad, ok := findPinPadMapping(i2c.SERCOM, config.SDA)
if !ok || sdaPad != 0 {
// SDA must be on pad 0, according to section 27.5 of the datasheet.
// Note: this is not an exhaustive test for I2C support on the pin: not
// all pins support I2C.
return ErrInvalidDataPin
}
// reset SERCOM
i2c.Bus.CTRLA.SetBits(sam.SERCOM_I2CM_CTRLA_SWRST)
for i2c.Bus.CTRLA.HasBits(sam.SERCOM_I2CM_CTRLA_SWRST) ||
i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SWRST) {
}
// Set i2c controller mode
//SERCOM_I2CM_CTRLA_MODE( I2C_MASTER_OPERATION )
i2c.Bus.CTRLA.Set(sam.SERCOM_I2CM_CTRLA_MODE_I2C_MASTER << sam.SERCOM_I2CM_CTRLA_MODE_Pos) // |
i2c.SetBaudRate(config.Frequency)
// Enable I2CM port.
// sercom->USART.CTRLA.bit.ENABLE = 0x1u;
i2c.Bus.CTRLA.SetBits(sam.SERCOM_I2CM_CTRLA_ENABLE)
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_ENABLE) {
}
// set bus idle mode
i2c.Bus.STATUS.SetBits(wireIdleState << sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos)
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
}
// enable pins
config.SDA.Configure(PinConfig{Mode: sdaPinMode})
config.SCL.Configure(PinConfig{Mode: sclPinMode})
return nil
}
// SetBaudRate sets the communication speed for the I2C.
func (i2c I2C) SetBaudRate(br uint32) {
// Synchronous arithmetic baudrate, via Arduino SAMD implementation:
// SystemCoreClock / ( 2 * baudrate) - 5 - (((SystemCoreClock / 1000000) * WIRE_RISE_TIME_NANOSECONDS) / (2 * 1000));
baud := CPUFrequency()/(2*br) - 5 - (((CPUFrequency() / 1000000) * riseTimeNanoseconds) / (2 * 1000))
i2c.Bus.BAUD.Set(baud)
}
// Tx does a single I2C transaction at the specified address.
// It clocks out the given address, writes the bytes in w, reads back len(r)
// bytes and stores them in r, and generates a stop condition on the bus.
func (i2c I2C) Tx(addr uint16, w, r []byte) error {
var err error
if len(w) != 0 {
// send start/address for write
i2c.sendAddress(addr, true)
// wait until transmission complete
timeout := i2cTimeout
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
// ACK received (0: ACK, 1: NACK)
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
return errI2CAckExpected
}
// write data
for _, b := range w {
err = i2c.WriteByte(b)
if err != nil {
return err
}
}
err = i2c.signalStop()
if err != nil {
return err
}
}
if len(r) != 0 {
// send start/address for read
i2c.sendAddress(addr, false)
// wait transmission complete
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_SB) {
// If the peripheral NACKS the address, the MB bit will be set.
// In that case, send a stop condition and return error.
if i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
i2c.Bus.CTRLB.SetBits(wireCmdStop << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Stop condition
return errI2CAckExpected
}
}
// ACK received (0: ACK, 1: NACK)
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
return errI2CAckExpected
}
// read first byte
r[0] = i2c.readByte()
for i := 1; i < len(r); i++ {
// Send an ACK
i2c.Bus.CTRLB.ClearBits(sam.SERCOM_I2CM_CTRLB_ACKACT)
i2c.signalRead()
// Read data and send the ACK
r[i] = i2c.readByte()
}
// Send NACK to end transmission
i2c.Bus.CTRLB.SetBits(sam.SERCOM_I2CM_CTRLB_ACKACT)
err = i2c.signalStop()
if err != nil {
return err
}
}
return nil
}
// WriteByte writes a single byte to the I2C bus.
func (i2c I2C) WriteByte(data byte) error {
// Send data byte
i2c.Bus.DATA.Set(data)
// wait until transmission successful
timeout := i2cTimeout
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
// check for bus error
if sam.SERCOM3_I2CM.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_BUSERR) {
return errI2CBusError
}
timeout--
if timeout == 0 {
return errI2CWriteTimeout
}
}
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
return errI2CAckExpected
}
return nil
}
// sendAddress sends the address and start signal
func (i2c I2C) sendAddress(address uint16, write bool) error {
data := (address << 1)
if !write {
data |= 1 // set read flag
}
// wait until bus ready
timeout := i2cTimeout
for !i2c.Bus.STATUS.HasBits(wireIdleState<<sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos) &&
!i2c.Bus.STATUS.HasBits(wireOwnerState<<sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos) {
timeout--
if timeout == 0 {
return errI2CBusReadyTimeout
}
}
i2c.Bus.ADDR.Set(uint32(data))
return nil
}
func (i2c I2C) signalStop() error {
i2c.Bus.CTRLB.SetBits(wireCmdStop << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Stop command
timeout := i2cTimeout
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
timeout--
if timeout == 0 {
return errI2CSignalStopTimeout
}
}
return nil
}
func (i2c I2C) signalRead() error {
i2c.Bus.CTRLB.SetBits(wireCmdRead << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Read command
timeout := i2cTimeout
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
timeout--
if timeout == 0 {
return errI2CSignalReadTimeout
}
}
return nil
}
func (i2c I2C) readByte() byte {
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_SB) {
}
return byte(i2c.Bus.DATA.Get())
}
// I2S on the SAMD21.
// I2S
type I2S struct {
Bus *sam.I2S_Type
}
// Configure is used to configure the I2S interface. You must call this
// before you can use the I2S bus.
func (i2s I2S) Configure(config I2SConfig) {
// handle defaults
if config.SCK == 0 {
config.SCK = I2S_SCK_PIN
config.WS = I2S_WS_PIN
config.SD = I2S_SD_PIN
}
if config.AudioFrequency == 0 {
config.AudioFrequency = 48000
}
if config.DataFormat == I2SDataFormatDefault {
if config.Stereo {
config.DataFormat = I2SDataFormat16bit
} else {
config.DataFormat = I2SDataFormat32bit
}
}
// Turn on clock for I2S
sam.PM.APBCMASK.SetBits(sam.PM_APBCMASK_I2S_)
// setting clock rate for sample.
division_factor := CPUFrequency() / (config.AudioFrequency * uint32(config.DataFormat))
// Switch Generic Clock Generator 3 to DFLL48M.
sam.GCLK.GENDIV.Set((sam.GCLK_CLKCTRL_GEN_GCLK3 << sam.GCLK_GENDIV_ID_Pos) |
(division_factor << sam.GCLK_GENDIV_DIV_Pos))
waitForSync()
sam.GCLK.GENCTRL.Set((sam.GCLK_CLKCTRL_GEN_GCLK3 << sam.GCLK_GENCTRL_ID_Pos) |
(sam.GCLK_GENCTRL_SRC_DFLL48M << sam.GCLK_GENCTRL_SRC_Pos) |
sam.GCLK_GENCTRL_IDC |
sam.GCLK_GENCTRL_GENEN)
waitForSync()
// Use Generic Clock Generator 3 as source for I2S.
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_I2S_0 << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK3 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
waitForSync()
// reset the device
i2s.Bus.CTRLA.SetBits(sam.I2S_CTRLA_SWRST)
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_SWRST) {
}
// disable device before continuing
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_ENABLE) {
}
i2s.Bus.CTRLA.ClearBits(sam.I2S_CTRLA_ENABLE)
// setup clock
if config.ClockSource == I2SClockSourceInternal {
// TODO: make sure correct for I2S output
// set serial clock select pin
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_SCKSEL)
// set frame select pin
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_FSSEL)
} else {
// Configure FS generation from SCK clock.
i2s.Bus.CLKCTRL0.ClearBits(sam.I2S_CLKCTRL_FSSEL)
}
if config.Standard == I2StandardPhilips {
// set 1-bit delay
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_BITDELAY)
} else {
// set 0-bit delay
i2s.Bus.CLKCTRL0.ClearBits(sam.I2S_CLKCTRL_BITDELAY)
}
// set number of slots.
if config.Stereo {
i2s.Bus.CLKCTRL0.SetBits(1 << sam.I2S_CLKCTRL_NBSLOTS_Pos)
} else {
i2s.Bus.CLKCTRL0.ClearBits(1 << sam.I2S_CLKCTRL_NBSLOTS_Pos)
}
// set slot size
switch config.DataFormat {
case I2SDataFormat8bit:
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_SLOTSIZE_8)
case I2SDataFormat16bit:
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_SLOTSIZE_16)
case I2SDataFormat24bit:
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_SLOTSIZE_24)
case I2SDataFormat32bit:
i2s.Bus.CLKCTRL0.SetBits(sam.I2S_CLKCTRL_SLOTSIZE_32)
}
// configure pin for clock
config.SCK.Configure(PinConfig{Mode: PinCom})
// configure pin for WS, if needed
if config.WS != NoPin {
config.WS.Configure(PinConfig{Mode: PinCom})
}
// now set serializer data size.
switch config.DataFormat {
case I2SDataFormat8bit:
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_DATASIZE_8 << sam.I2S_SERCTRL_DATASIZE_Pos)
case I2SDataFormat16bit:
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_DATASIZE_16 << sam.I2S_SERCTRL_DATASIZE_Pos)
case I2SDataFormat24bit:
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_DATASIZE_24 << sam.I2S_SERCTRL_DATASIZE_Pos)
case I2SDataFormat32bit:
case I2SDataFormatDefault:
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_DATASIZE_32 << sam.I2S_SERCTRL_DATASIZE_Pos)
}
// set serializer slot adjustment
if config.Standard == I2SStandardLSB {
// adjust right
i2s.Bus.SERCTRL1.ClearBits(sam.I2S_SERCTRL_SLOTADJ)
// transfer LSB first
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_BITREV)
} else {
// adjust left
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_SLOTADJ)
}
// set serializer mode.
if config.Mode == I2SModePDM {
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_SERMODE_PDM2)
} else {
i2s.Bus.SERCTRL1.SetBits(sam.I2S_SERCTRL_SERMODE_RX)
}
// configure data pin
config.SD.Configure(PinConfig{Mode: PinCom})
// re-enable
i2s.Bus.CTRLA.SetBits(sam.I2S_CTRLA_ENABLE)
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_ENABLE) {
}
// enable i2s clock
i2s.Bus.CTRLA.SetBits(sam.I2S_CTRLA_CKEN0)
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_CKEN0) {
}
// enable i2s serializer
i2s.Bus.CTRLA.SetBits(sam.I2S_CTRLA_SEREN1)
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_SEREN1) {
}
}
// Read data from the I2S bus into the provided slice.
// The I2S bus must already have been configured correctly.
func (i2s I2S) Read(p []uint32) (n int, err error) {
i := 0
for i = 0; i < len(p); i++ {
// Wait until ready
for !i2s.Bus.INTFLAG.HasBits(sam.I2S_INTFLAG_RXRDY1) {
}
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_DATA1) {
}
// read data
p[i] = i2s.Bus.DATA1.Get()
// indicate read complete
i2s.Bus.INTFLAG.Set(sam.I2S_INTFLAG_RXRDY1)
}
return i, nil
}
// Write data to the I2S bus from the provided slice.
// The I2S bus must already have been configured correctly.
func (i2s I2S) Write(p []uint32) (n int, err error) {
i := 0
for i = 0; i < len(p); i++ {
// Wait until ready
for !i2s.Bus.INTFLAG.HasBits(sam.I2S_INTFLAG_TXRDY1) {
}
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_DATA1) {
}
// write data
i2s.Bus.DATA1.Set(p[i])
// indicate write complete
i2s.Bus.INTFLAG.Set(sam.I2S_INTFLAG_TXRDY1)
}
return i, nil
}
// Close the I2S bus.
func (i2s I2S) Close() error {
// Sync wait
for i2s.Bus.SYNCBUSY.HasBits(sam.I2S_SYNCBUSY_ENABLE) {
}
// disable I2S
i2s.Bus.CTRLA.ClearBits(sam.I2S_CTRLA_ENABLE)
return nil
}
func waitForSync() {
for sam.GCLK.STATUS.HasBits(sam.GCLK_STATUS_SYNCBUSY) {
}
}
// SPI
type SPI struct {
Bus *sam.SERCOM_SPI_Type
SERCOM uint8
}
// SPIConfig is used to store config info for SPI.
type SPIConfig struct {
Frequency uint32
SCK Pin
SDO Pin
SDI Pin
LSBFirst bool
Mode uint8
}
// Configure is intended to setup the SPI interface.
func (spi SPI) Configure(config SPIConfig) error {
// Use default pins if not set.
if config.SCK == 0 && config.SDO == 0 && config.SDI == 0 {
config.SCK = SPI0_SCK_PIN
config.SDO = SPI0_SDO_PIN
config.SDI = SPI0_SDI_PIN
}
// set default frequency
if config.Frequency == 0 {
config.Frequency = 4000000
}
// Determine the input pinout (for SDI).
SDIPinMode, SDIPad, ok := findPinPadMapping(spi.SERCOM, config.SDI)
if !ok {
return ErrInvalidInputPin
}
dataInPinout := SDIPad // mapped directly
// Determine the output pinout (for SDO/SCK).
// See table 26-7 on page 494 of the datasheet.
var dataOutPinout uint32
sckPinMode, sckPad, ok := findPinPadMapping(spi.SERCOM, config.SCK)
if !ok {
return ErrInvalidOutputPin
}
SDOPinMode, SDOPad, ok := findPinPadMapping(spi.SERCOM, config.SDO)
if !ok {
return ErrInvalidOutputPin
}
switch sckPad {
case 1:
switch SDOPad {
case 0:
dataOutPinout = 0x0
case 3:
dataOutPinout = 0x2
default:
return ErrInvalidOutputPin
}
case 3:
switch SDOPad {
case 2:
dataOutPinout = 0x1
case 0:
dataOutPinout = 0x3
default:
return ErrInvalidOutputPin
}
default:
return ErrInvalidOutputPin
}
// Disable SPI port.
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_ENABLE)
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPI_SYNCBUSY_ENABLE) {
}
// enable pins
config.SCK.Configure(PinConfig{Mode: sckPinMode})
config.SDO.Configure(PinConfig{Mode: SDOPinMode})
config.SDI.Configure(PinConfig{Mode: SDIPinMode})
// reset SERCOM
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPI_CTRLA_SWRST)
for spi.Bus.CTRLA.HasBits(sam.SERCOM_SPI_CTRLA_SWRST) ||
spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPI_SYNCBUSY_SWRST) {
}
// set bit transfer order
dataOrder := uint32(0)
if config.LSBFirst {
dataOrder = 1
}
// Set SPI mode to controller
spi.Bus.CTRLA.Set((sam.SERCOM_SPI_CTRLA_MODE_SPI_MASTER << sam.SERCOM_SPI_CTRLA_MODE_Pos) |
(dataOutPinout << sam.SERCOM_SPI_CTRLA_DOPO_Pos) |
(dataInPinout << sam.SERCOM_SPI_CTRLA_DIPO_Pos) |
(dataOrder << sam.SERCOM_SPI_CTRLA_DORD_Pos))
spi.Bus.CTRLB.SetBits((0 << sam.SERCOM_SPI_CTRLB_CHSIZE_Pos) | // 8bit char size
sam.SERCOM_SPI_CTRLB_RXEN) // receive enable
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPI_SYNCBUSY_CTRLB) {
}
// set mode
switch config.Mode {
case 0:
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPHA)
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPOL)
case 1:
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPI_CTRLA_CPHA)
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPOL)
case 2:
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPHA)
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPI_CTRLA_CPOL)
case 3:
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPI_CTRLA_CPHA | sam.SERCOM_SPI_CTRLA_CPOL)
default: // to mode 0
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPHA)
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPI_CTRLA_CPOL)
}
// Set synch speed for SPI
baudRate := CPUFrequency() / (2 * config.Frequency)
if baudRate > 0 {
baudRate--
}
spi.Bus.BAUD.Set(uint8(baudRate))
// Enable SPI port.
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPI_CTRLA_ENABLE)
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPI_SYNCBUSY_ENABLE) {
}
return nil
}
// Transfer writes/reads a single byte using the SPI interface.
func (spi SPI) Transfer(w byte) (byte, error) {
// write data
spi.Bus.DATA.Set(uint32(w))
// wait for receive
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
}
// return data
return byte(spi.Bus.DATA.Get()), nil
}
var (
ErrTxInvalidSliceSize = errors.New("SPI write and read slices must be same size")
)
// Tx handles read/write operation for SPI interface. Since SPI is a syncronous write/read
// interface, there must always be the same number of bytes written as bytes read.
// The Tx method knows about this, and offers a few different ways of calling it.
//
// This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer.
// Note that the tx and rx buffers must be the same size:
//
// spi.Tx(tx, rx)
//
// This form sends the tx buffer, ignoring the result. Useful for sending "commands" that return zeros
// until all the bytes in the command packet have been received:
//
// spi.Tx(tx, nil)
//
// This form sends zeros, putting the result into the rx buffer. Good for reading a "result packet":
//
// spi.Tx(nil, rx)
//
func (spi SPI) Tx(w, r []byte) error {
switch {
case w == nil:
// read only, so write zero and read a result.
spi.rx(r)
case r == nil:
// write only
spi.tx(w)
default:
// write/read
if len(w) != len(r) {
return ErrTxInvalidSliceSize
}
spi.txrx(w, r)
}
return nil
}
func (spi SPI) tx(tx []byte) {
for i := 0; i < len(tx); i++ {
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_DRE) {
}
spi.Bus.DATA.Set(uint32(tx[i]))
}
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_TXC) {
}
// read to clear RXC register
for spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
spi.Bus.DATA.Get()
}
}
func (spi SPI) rx(rx []byte) {
spi.Bus.DATA.Set(0)
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_DRE) {
}
for i := 1; i < len(rx); i++ {
spi.Bus.DATA.Set(0)
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
}
rx[i-1] = byte(spi.Bus.DATA.Get())
}
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
}
rx[len(rx)-1] = byte(spi.Bus.DATA.Get())
}
func (spi SPI) txrx(tx, rx []byte) {
spi.Bus.DATA.Set(uint32(tx[0]))
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_DRE) {
}
for i := 1; i < len(rx); i++ {
spi.Bus.DATA.Set(uint32(tx[i]))
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
}
rx[i-1] = byte(spi.Bus.DATA.Get())
}
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPI_INTFLAG_RXC) {
}
rx[len(rx)-1] = byte(spi.Bus.DATA.Get())
}
// PWM
const period = 0xFFFF
// InitPWM initializes the PWM interface.
func InitPWM() {
// turn on timer clocks used for PWM
sam.PM.APBCMASK.SetBits(sam.PM_APBCMASK_TCC0_ | sam.PM_APBCMASK_TCC1_ | sam.PM_APBCMASK_TCC2_)
// Use GCLK0 for TCC0/TCC1
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_TCC0_TCC1 << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK0 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
for sam.GCLK.STATUS.HasBits(sam.GCLK_STATUS_SYNCBUSY) {
}
// Use GCLK0 for TCC2/TC3
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_TCC2_TC3 << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK0 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
for sam.GCLK.STATUS.HasBits(sam.GCLK_STATUS_SYNCBUSY) {
}
}
// Configure configures a PWM pin for output.
func (pwm PWM) Configure() error {
// figure out which TCCX timer for this pin
timer := pwm.getTimer()
if timer == nil {
return ErrInvalidOutputPin
}
// disable timer
timer.CTRLA.ClearBits(sam.TCC_CTRLA_ENABLE)
// Wait for synchronization
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_ENABLE) {
}
// Use "Normal PWM" (single-slope PWM)
timer.WAVE.SetBits(sam.TCC_WAVE_WAVEGEN_NPWM)
// Wait for synchronization
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_WAVE) {
}
// Set the period (the number to count to (TOP) before resetting timer)
//TCC0->PER.reg = period;
timer.PER.Set(period)
// Wait for synchronization
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_PER) {
}
// Set pin as output
sam.PORT.DIRSET0.Set(1 << uint8(pwm.Pin))
// Set pin to low
sam.PORT.OUTCLR0.Set(1 << uint8(pwm.Pin))
// Enable the port multiplexer for pin
pwm.setPinCfg(sam.PORT_PINCFG0_PMUXEN)
// Connect TCCX timer to pin.
// we normally use the F channel aka ALT
pwmConfig := PinPWMAlt
// in the case of PA6 or PA7 we have to use E channel
if pwm.Pin == 6 || pwm.Pin == 7 {
pwmConfig = PinPWM
}
if pwm.Pin&1 > 0 {
// odd pin, so save the even pins
val := pwm.getPMux() & sam.PORT_PMUX0_PMUXE_Msk
pwm.setPMux(val | uint8(pwmConfig<<sam.PORT_PMUX0_PMUXO_Pos))
} else {
// even pin, so save the odd pins
val := pwm.getPMux() & sam.PORT_PMUX0_PMUXO_Msk
pwm.setPMux(val | uint8(pwmConfig<<sam.PORT_PMUX0_PMUXE_Pos))
}
return nil
}
// Set turns on the duty cycle for a PWM pin using the provided value.
func (pwm PWM) Set(value uint16) {
// figure out which TCCX timer for this pin
timer := pwm.getTimer()
if timer == nil {
// The Configure call above cannot have succeeded, so simply ignore this
// error.
return
}
// disable output
timer.CTRLA.ClearBits(sam.TCC_CTRLA_ENABLE)
// Wait for synchronization
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_ENABLE) {
}
// Set PWM signal to output duty cycle
pwm.setChannel(timer, uint32(value))
// Wait for synchronization on all channels
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_CC0 |
sam.TCC_SYNCBUSY_CC1 |
sam.TCC_SYNCBUSY_CC2 |
sam.TCC_SYNCBUSY_CC3) {
}
// enable
timer.CTRLA.SetBits(sam.TCC_CTRLA_ENABLE)
// Wait for synchronization
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_ENABLE) {
}
}
// getPMux returns the value for the correct PMUX register for this pin.
func (pwm PWM) getPMux() uint8 {
return pwm.Pin.getPMux()
}
// setPMux sets the value for the correct PMUX register for this pin.
func (pwm PWM) setPMux(val uint8) {
pwm.Pin.setPMux(val)
}
// getPinCfg returns the value for the correct PINCFG register for this pin.
func (pwm PWM) getPinCfg() uint8 {
return pwm.Pin.getPinCfg()
}
// setPinCfg sets the value for the correct PINCFG register for this pin.
func (pwm PWM) setPinCfg(val uint8) {
pwm.Pin.setPinCfg(val)
}
// getTimer returns the timer to be used for PWM on this pin
func (pwm PWM) getTimer() *sam.TCC_Type {
switch pwm.Pin {
case 6:
return sam.TCC1
case 7:
return sam.TCC1
case 8:
return sam.TCC1
case 9:
return sam.TCC1
case 14:
return sam.TCC0
case 15:
return sam.TCC0
case 16:
return sam.TCC0
case 17:
return sam.TCC0
case 18:
return sam.TCC0
case 19:
return sam.TCC0
case 20:
return sam.TCC0
case 21:
return sam.TCC0
default:
return nil // not supported on this pin
}
}
// setChannel sets the value for the correct channel for PWM on this pin
func (pwm PWM) setChannel(timer *sam.TCC_Type, val uint32) {
switch pwm.Pin {
case 6:
timer.CC0.Set(val)
case 7:
timer.CC1.Set(val)
case 8:
timer.CC0.Set(val)
case 9:
timer.CC1.Set(val)
case 14:
timer.CC0.Set(val)
case 15:
timer.CC1.Set(val)
case 16:
timer.CC2.Set(val)
case 17:
timer.CC3.Set(val)
case 18:
timer.CC2.Set(val)
case 19:
timer.CC3.Set(val)
case 20:
timer.CC2.Set(val)
case 21:
timer.CC3.Set(val)
default:
return // not supported on this pin
}
}
// USBCDC is the USB CDC aka serial over USB interface on the SAMD21.
type USBCDC struct {
Buffer *RingBuffer
TxIdx volatile.Register8
waitTxc bool
waitTxcRetryCount uint8
sent bool
}
const (
usbcdcTxSizeMask uint8 = 0x3F
usbcdcTxBankMask uint8 = ^usbcdcTxSizeMask
usbcdcTxBank1st uint8 = 0x00
usbcdcTxBank2nd uint8 = usbcdcTxSizeMask + 1
usbcdcTxMaxRetriesAllowed uint8 = 5
)
// Flush flushes buffered data.
func (usbcdc *USBCDC) Flush() error {
if usbLineInfo.lineState > 0 {
idx := usbcdc.TxIdx.Get()
sz := idx & usbcdcTxSizeMask
bk := idx & usbcdcTxBankMask
if 0 < sz {
if usbcdc.waitTxc {
// waiting for the next flush(), because the transmission is not complete
return nil
}
usbcdc.waitTxc = true
usbcdc.waitTxcRetryCount = 0
// set the data
usbEndpointDescriptors[usb_CDC_ENDPOINT_IN].DeviceDescBank[1].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_in_cache_buffer[usb_CDC_ENDPOINT_IN][bk]))))
if bk == usbcdcTxBank1st {
usbcdc.TxIdx.Set(usbcdcTxBank2nd)
} else {
usbcdc.TxIdx.Set(usbcdcTxBank1st)
}
// clean multi packet size of bytes already sent
usbEndpointDescriptors[usb_CDC_ENDPOINT_IN].DeviceDescBank[1].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Mask << usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos)
// set count of bytes to be sent
usbEndpointDescriptors[usb_CDC_ENDPOINT_IN].DeviceDescBank[1].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
usbEndpointDescriptors[usb_CDC_ENDPOINT_IN].DeviceDescBank[1].PCKSIZE.SetBits((uint32(sz) & usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask) << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
// clear transfer complete flag
setEPINTFLAG(usb_CDC_ENDPOINT_IN, sam.USB_DEVICE_EPINTFLAG_TRCPT1)
// send data by setting bank ready
setEPSTATUSSET(usb_CDC_ENDPOINT_IN, sam.USB_DEVICE_EPSTATUSSET_BK1RDY)
UART0.sent = true
}
}
return nil
}
// WriteByte writes a byte of data to the USB CDC interface.
func (usbcdc *USBCDC) WriteByte(c byte) error {
// Supposedly to handle problem with Windows USB serial ports?
if usbLineInfo.lineState > 0 {
ok := false
for {
mask := interrupt.Disable()
idx := UART0.TxIdx.Get()
if (idx & usbcdcTxSizeMask) < usbcdcTxSizeMask {
udd_ep_in_cache_buffer[usb_CDC_ENDPOINT_IN][idx] = c
UART0.TxIdx.Set(idx + 1)
ok = true
}
interrupt.Restore(mask)
if ok {
break
} else if usbcdcTxMaxRetriesAllowed < UART0.waitTxcRetryCount {
mask := interrupt.Disable()
UART0.waitTxc = false
UART0.waitTxcRetryCount = 0
usbcdc.TxIdx.Set(0)
usbLineInfo.lineState = 0
interrupt.Restore(mask)
break
} else {
mask := interrupt.Disable()
if UART0.sent {
if UART0.waitTxc {
if (getEPINTFLAG(usb_CDC_ENDPOINT_IN) & sam.USB_DEVICE_EPINTFLAG_TRCPT1) != 0 {
setEPSTATUSCLR(usb_CDC_ENDPOINT_IN, sam.USB_DEVICE_EPSTATUSCLR_BK1RDY)
setEPINTFLAG(usb_CDC_ENDPOINT_IN, sam.USB_DEVICE_EPINTFLAG_TRCPT1)
UART0.waitTxc = false
UART0.Flush()
}
} else {
UART0.Flush()
}
}
interrupt.Restore(mask)
}
}
}
return nil
}
func (usbcdc USBCDC) DTR() bool {
return (usbLineInfo.lineState & usb_CDC_LINESTATE_DTR) > 0
}
func (usbcdc USBCDC) RTS() bool {
return (usbLineInfo.lineState & usb_CDC_LINESTATE_RTS) > 0
}
const (
// these are SAMD21 specific.
usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos = 0
usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask = 0x3FFF
usb_DEVICE_PCKSIZE_SIZE_Pos = 28
usb_DEVICE_PCKSIZE_SIZE_Mask = 0x7
usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos = 14
usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Mask = 0x3FFF
)
var (
usbEndpointDescriptors [8]usbDeviceDescriptor
udd_ep_in_cache_buffer [7][128]uint8
udd_ep_out_cache_buffer [7][128]uint8
isEndpointHalt = false
isRemoteWakeUpEnabled = false
endPoints = []uint32{usb_ENDPOINT_TYPE_CONTROL,
(usb_ENDPOINT_TYPE_INTERRUPT | usbEndpointIn),
(usb_ENDPOINT_TYPE_BULK | usbEndpointOut),
(usb_ENDPOINT_TYPE_BULK | usbEndpointIn)}
usbConfiguration uint8
usbSetInterface uint8
usbLineInfo = cdcLineInfo{115200, 0x00, 0x00, 0x08, 0x00}
)
// Configure the USB CDC interface. The config is here for compatibility with the UART interface.
func (usbcdc USBCDC) Configure(config UARTConfig) {
// reset USB interface
sam.USB_DEVICE.CTRLA.SetBits(sam.USB_DEVICE_CTRLA_SWRST)
for sam.USB_DEVICE.SYNCBUSY.HasBits(sam.USB_DEVICE_SYNCBUSY_SWRST) ||
sam.USB_DEVICE.SYNCBUSY.HasBits(sam.USB_DEVICE_SYNCBUSY_ENABLE) {
}
sam.USB_DEVICE.DESCADD.Set(uint32(uintptr(unsafe.Pointer(&usbEndpointDescriptors))))
// configure pins
USBCDC_DM_PIN.Configure(PinConfig{Mode: PinCom})
USBCDC_DP_PIN.Configure(PinConfig{Mode: PinCom})
// performs pad calibration from store fuses
handlePadCalibration()
// run in standby
sam.USB_DEVICE.CTRLA.SetBits(sam.USB_DEVICE_CTRLA_RUNSTDBY)
// set full speed
sam.USB_DEVICE.CTRLB.SetBits(sam.USB_DEVICE_CTRLB_SPDCONF_FS << sam.USB_DEVICE_CTRLB_SPDCONF_Pos)
// attach
sam.USB_DEVICE.CTRLB.ClearBits(sam.USB_DEVICE_CTRLB_DETACH)
// enable interrupt for end of reset
sam.USB_DEVICE.INTENSET.SetBits(sam.USB_DEVICE_INTENSET_EORST)
// enable interrupt for start of frame
sam.USB_DEVICE.INTENSET.SetBits(sam.USB_DEVICE_INTENSET_SOF)
// enable USB
sam.USB_DEVICE.CTRLA.SetBits(sam.USB_DEVICE_CTRLA_ENABLE)
// enable IRQ
intr := interrupt.New(sam.IRQ_USB, handleUSB)
intr.Enable()
}
func handlePadCalibration() {
// Load Pad Calibration data from non-volatile memory
// This requires registers that are not included in the SVD file.
// Modeled after defines from samd21g18a.h and nvmctrl.h:
//
// #define NVMCTRL_OTP4 0x00806020
//
// #define USB_FUSES_TRANSN_ADDR (NVMCTRL_OTP4 + 4)
// #define USB_FUSES_TRANSN_Pos 13 /**< \brief (NVMCTRL_OTP4) USB pad Transn calibration */
// #define USB_FUSES_TRANSN_Msk (0x1Fu << USB_FUSES_TRANSN_Pos)
// #define USB_FUSES_TRANSN(value) ((USB_FUSES_TRANSN_Msk & ((value) << USB_FUSES_TRANSN_Pos)))
// #define USB_FUSES_TRANSP_ADDR (NVMCTRL_OTP4 + 4)
// #define USB_FUSES_TRANSP_Pos 18 /**< \brief (NVMCTRL_OTP4) USB pad Transp calibration */
// #define USB_FUSES_TRANSP_Msk (0x1Fu << USB_FUSES_TRANSP_Pos)
// #define USB_FUSES_TRANSP(value) ((USB_FUSES_TRANSP_Msk & ((value) << USB_FUSES_TRANSP_Pos)))
// #define USB_FUSES_TRIM_ADDR (NVMCTRL_OTP4 + 4)
// #define USB_FUSES_TRIM_Pos 23 /**< \brief (NVMCTRL_OTP4) USB pad Trim calibration */
// #define USB_FUSES_TRIM_Msk (0x7u << USB_FUSES_TRIM_Pos)
// #define USB_FUSES_TRIM(value) ((USB_FUSES_TRIM_Msk & ((value) << USB_FUSES_TRIM_Pos)))
//
fuse := *(*uint32)(unsafe.Pointer(uintptr(0x00806020) + 4))
calibTransN := uint16(fuse>>13) & uint16(0x1f)
calibTransP := uint16(fuse>>18) & uint16(0x1f)
calibTrim := uint16(fuse>>23) & uint16(0x7)
if calibTransN == 0x1f {
calibTransN = 5
}
sam.USB_DEVICE.PADCAL.SetBits(calibTransN << sam.USB_DEVICE_PADCAL_TRANSN_Pos)
if calibTransP == 0x1f {
calibTransP = 29
}
sam.USB_DEVICE.PADCAL.SetBits(calibTransP << sam.USB_DEVICE_PADCAL_TRANSP_Pos)
if calibTrim == 0x7 {
calibTransN = 3
}
sam.USB_DEVICE.PADCAL.SetBits(calibTrim << sam.USB_DEVICE_PADCAL_TRIM_Pos)
}
func handleUSB(intr interrupt.Interrupt) {
// reset all interrupt flags
flags := sam.USB_DEVICE.INTFLAG.Get()
sam.USB_DEVICE.INTFLAG.Set(flags)
// End of reset
if (flags & sam.USB_DEVICE_INTFLAG_EORST) > 0 {
// Configure control endpoint
initEndpoint(0, usb_ENDPOINT_TYPE_CONTROL)
// Enable Setup-Received interrupt
setEPINTENSET(0, sam.USB_DEVICE_EPINTENSET_RXSTP)
usbConfiguration = 0
// ack the End-Of-Reset interrupt
sam.USB_DEVICE.INTFLAG.Set(sam.USB_DEVICE_INTFLAG_EORST)
}
// Start of frame
if (flags & sam.USB_DEVICE_INTFLAG_SOF) > 0 {
// if you want to blink LED showing traffic, this would be the place...
}
// Endpoint 0 Setup interrupt
if getEPINTFLAG(0)&sam.USB_DEVICE_EPINTFLAG_RXSTP > 0 {
// ack setup received
setEPINTFLAG(0, sam.USB_DEVICE_EPINTFLAG_RXSTP)
// parse setup
setup := newUSBSetup(udd_ep_out_cache_buffer[0][:])
// Clear the Bank 0 ready flag on Control OUT
setEPSTATUSCLR(0, sam.USB_DEVICE_EPSTATUSCLR_BK0RDY)
usbEndpointDescriptors[0].DeviceDescBank[0].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
ok := false
if (setup.bmRequestType & usb_REQUEST_TYPE) == usb_REQUEST_STANDARD {
// Standard Requests
ok = handleStandardSetup(setup)
} else {
// Class Interface Requests
if setup.wIndex == usb_CDC_ACM_INTERFACE {
ok = cdcSetup(setup)
}
}
if ok {
// set Bank1 ready
setEPSTATUSSET(0, sam.USB_DEVICE_EPSTATUSSET_BK1RDY)
} else {
// Stall endpoint
setEPSTATUSSET(0, sam.USB_DEVICE_EPINTFLAG_STALL1)
}
if getEPINTFLAG(0)&sam.USB_DEVICE_EPINTFLAG_STALL1 > 0 {
// ack the stall
setEPINTFLAG(0, sam.USB_DEVICE_EPINTFLAG_STALL1)
// clear stall request
setEPINTENCLR(0, sam.USB_DEVICE_EPINTENCLR_STALL1)
}
}
// Now the actual transfer handlers, ignore endpoint number 0 (setup)
var i uint32
for i = 1; i < uint32(len(endPoints)); i++ {
// Check if endpoint has a pending interrupt
epFlags := getEPINTFLAG(i)
if (epFlags&sam.USB_DEVICE_EPINTFLAG_TRCPT0) > 0 ||
(epFlags&sam.USB_DEVICE_EPINTFLAG_TRCPT1) > 0 {
switch i {
case usb_CDC_ENDPOINT_OUT:
handleEndpoint(i)
setEPINTFLAG(i, epFlags)
case usb_CDC_ENDPOINT_IN, usb_CDC_ENDPOINT_ACM:
setEPSTATUSCLR(i, sam.USB_DEVICE_EPSTATUSCLR_BK1RDY)
setEPINTFLAG(i, sam.USB_DEVICE_EPINTFLAG_TRCPT1)
if i == usb_CDC_ENDPOINT_IN {
UART0.waitTxc = false
}
}
}
if i == usb_CDC_ENDPOINT_IN && UART0.waitTxc {
UART0.waitTxcRetryCount++
}
}
UART0.Flush()
}
func initEndpoint(ep, config uint32) {
switch config {
case usb_ENDPOINT_TYPE_INTERRUPT | usbEndpointIn:
// set packet size
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.SetBits(epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos)
// set data buffer address
usbEndpointDescriptors[ep].DeviceDescBank[1].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_in_cache_buffer[ep]))))
// set endpoint type
setEPCFG(ep, ((usb_ENDPOINT_TYPE_INTERRUPT + 1) << sam.USB_DEVICE_EPCFG_EPTYPE1_Pos))
case usb_ENDPOINT_TYPE_BULK | usbEndpointOut:
// set packet size
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.SetBits(epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos)
// set data buffer address
usbEndpointDescriptors[ep].DeviceDescBank[0].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_out_cache_buffer[ep]))))
// set endpoint type
setEPCFG(ep, ((usb_ENDPOINT_TYPE_BULK + 1) << sam.USB_DEVICE_EPCFG_EPTYPE0_Pos))
// receive interrupts when current transfer complete
setEPINTENSET(ep, sam.USB_DEVICE_EPINTENSET_TRCPT0)
// set byte count to zero, we have not received anything yet
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
// ready for next transfer
setEPSTATUSCLR(ep, sam.USB_DEVICE_EPSTATUSCLR_BK0RDY)
case usb_ENDPOINT_TYPE_INTERRUPT | usbEndpointOut:
// TODO: not really anything, seems like...
case usb_ENDPOINT_TYPE_BULK | usbEndpointIn:
// set packet size
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.SetBits(epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos)
// set data buffer address
usbEndpointDescriptors[ep].DeviceDescBank[1].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_in_cache_buffer[ep]))))
// set endpoint type
setEPCFG(ep, ((usb_ENDPOINT_TYPE_BULK + 1) << sam.USB_DEVICE_EPCFG_EPTYPE1_Pos))
// NAK on endpoint IN, the bank is not yet filled in.
setEPSTATUSCLR(ep, sam.USB_DEVICE_EPSTATUSCLR_BK1RDY)
case usb_ENDPOINT_TYPE_CONTROL:
// Control OUT
// set packet size
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.SetBits(epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos)
// set data buffer address
usbEndpointDescriptors[ep].DeviceDescBank[0].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_out_cache_buffer[ep]))))
// set endpoint type
setEPCFG(ep, getEPCFG(ep)|((usb_ENDPOINT_TYPE_CONTROL+1)<<sam.USB_DEVICE_EPCFG_EPTYPE0_Pos))
// Control IN
// set packet size
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.SetBits(epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos)
// set data buffer address
usbEndpointDescriptors[ep].DeviceDescBank[1].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_in_cache_buffer[ep]))))
// set endpoint type
setEPCFG(ep, getEPCFG(ep)|((usb_ENDPOINT_TYPE_CONTROL+1)<<sam.USB_DEVICE_EPCFG_EPTYPE1_Pos))
// Prepare OUT endpoint for receive
// set multi packet size for expected number of receive bytes on control OUT
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.SetBits(64 << usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos)
// set byte count to zero, we have not received anything yet
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
// NAK on endpoint OUT to show we are ready to receive control data
setEPSTATUSSET(ep, sam.USB_DEVICE_EPSTATUSSET_BK0RDY)
}
}
func handleStandardSetup(setup usbSetup) bool {
switch setup.bRequest {
case usb_GET_STATUS:
buf := []byte{0, 0}
if setup.bmRequestType != 0 { // endpoint
// TODO: actually check if the endpoint in question is currently halted
if isEndpointHalt {
buf[0] = 1
}
}
sendUSBPacket(0, buf)
return true
case usb_CLEAR_FEATURE:
if setup.wValueL == 1 { // DEVICEREMOTEWAKEUP
isRemoteWakeUpEnabled = false
} else if setup.wValueL == 0 { // ENDPOINTHALT
isEndpointHalt = false
}
sendZlp()
return true
case usb_SET_FEATURE:
if setup.wValueL == 1 { // DEVICEREMOTEWAKEUP
isRemoteWakeUpEnabled = true
} else if setup.wValueL == 0 { // ENDPOINTHALT
isEndpointHalt = true
}
sendZlp()
return true
case usb_SET_ADDRESS:
// set packet size 64 with auto Zlp after transfer
usbEndpointDescriptors[0].DeviceDescBank[1].PCKSIZE.Set((epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos) |
uint32(1<<31)) // autozlp
// ack the transfer is complete from the request
setEPINTFLAG(0, sam.USB_DEVICE_EPINTFLAG_TRCPT1)
// set bank ready for data
setEPSTATUSSET(0, sam.USB_DEVICE_EPSTATUSSET_BK1RDY)
// wait for transfer to complete
timeout := 3000
for (getEPINTFLAG(0) & sam.USB_DEVICE_EPINTFLAG_TRCPT1) == 0 {
timeout--
if timeout == 0 {
return true
}
}
// last, set the device address to that requested by host
sam.USB_DEVICE.DADD.SetBits(setup.wValueL)
sam.USB_DEVICE.DADD.SetBits(sam.USB_DEVICE_DADD_ADDEN)
return true
case usb_GET_DESCRIPTOR:
sendDescriptor(setup)
return true
case usb_SET_DESCRIPTOR:
return false
case usb_GET_CONFIGURATION:
buff := []byte{usbConfiguration}
sendUSBPacket(0, buff)
return true
case usb_SET_CONFIGURATION:
if setup.bmRequestType&usb_REQUEST_RECIPIENT == usb_REQUEST_DEVICE {
for i := 1; i < len(endPoints); i++ {
initEndpoint(uint32(i), endPoints[i])
}
usbConfiguration = setup.wValueL
// Enable interrupt for CDC control messages from host (OUT packet)
setEPINTENSET(usb_CDC_ENDPOINT_ACM, sam.USB_DEVICE_EPINTENSET_TRCPT1)
// Enable interrupt for CDC data messages from host
setEPINTENSET(usb_CDC_ENDPOINT_OUT, sam.USB_DEVICE_EPINTENSET_TRCPT0)
sendZlp()
return true
} else {
return false
}
case usb_GET_INTERFACE:
buff := []byte{usbSetInterface}
sendUSBPacket(0, buff)
return true
case usb_SET_INTERFACE:
usbSetInterface = setup.wValueL
sendZlp()
return true
default:
return true
}
}
func cdcSetup(setup usbSetup) bool {
if setup.bmRequestType == usb_REQUEST_DEVICETOHOST_CLASS_INTERFACE {
if setup.bRequest == usb_CDC_GET_LINE_CODING {
b := make([]byte, 7)
b[0] = byte(usbLineInfo.dwDTERate)
b[1] = byte(usbLineInfo.dwDTERate >> 8)
b[2] = byte(usbLineInfo.dwDTERate >> 16)
b[3] = byte(usbLineInfo.dwDTERate >> 24)
b[4] = byte(usbLineInfo.bCharFormat)
b[5] = byte(usbLineInfo.bParityType)
b[6] = byte(usbLineInfo.bDataBits)
sendUSBPacket(0, b)
return true
}
}
if setup.bmRequestType == usb_REQUEST_HOSTTODEVICE_CLASS_INTERFACE {
if setup.bRequest == usb_CDC_SET_LINE_CODING {
b := receiveUSBControlPacket()
usbLineInfo.dwDTERate = uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
usbLineInfo.bCharFormat = b[4]
usbLineInfo.bParityType = b[5]
usbLineInfo.bDataBits = b[6]
}
if setup.bRequest == usb_CDC_SET_CONTROL_LINE_STATE {
usbLineInfo.lineState = setup.wValueL
}
if setup.bRequest == usb_CDC_SET_LINE_CODING || setup.bRequest == usb_CDC_SET_CONTROL_LINE_STATE {
// auto-reset into the bootloader
if usbLineInfo.dwDTERate == 1200 && usbLineInfo.lineState&usb_CDC_LINESTATE_DTR == 0 {
ResetProcessor()
} else {
// TODO: cancel any reset
}
sendZlp()
}
if setup.bRequest == usb_CDC_SEND_BREAK {
// TODO: something with this value?
// breakValue = ((uint16_t)setup.wValueH << 8) | setup.wValueL;
// return false;
sendZlp()
}
return true
}
return false
}
//go:noinline
func sendUSBPacket(ep uint32, data []byte) {
copy(udd_ep_in_cache_buffer[ep][:], data)
// Set endpoint address for sending data
usbEndpointDescriptors[ep].DeviceDescBank[1].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_in_cache_buffer[ep]))))
// clear multi-packet size which is total bytes already sent
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Mask << usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos)
// set byte count, which is total number of bytes to be sent
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.SetBits(uint32((len(data) & usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask) << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos))
}
func receiveUSBControlPacket() []byte {
// address
usbEndpointDescriptors[0].DeviceDescBank[0].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_out_cache_buffer[0]))))
// set byte count to zero
usbEndpointDescriptors[0].DeviceDescBank[0].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
// set ready for next data
setEPSTATUSCLR(0, sam.USB_DEVICE_EPSTATUSCLR_BK0RDY)
// Wait until OUT transfer is ready.
timeout := 300000
for (getEPSTATUS(0) & sam.USB_DEVICE_EPSTATUS_BK0RDY) == 0 {
timeout--
if timeout == 0 {
return []byte{}
}
}
// Wait until OUT transfer is completed.
timeout = 300000
for (getEPINTFLAG(0) & sam.USB_DEVICE_EPINTFLAG_TRCPT0) == 0 {
timeout--
if timeout == 0 {
return []byte{}
}
}
// get data
bytesread := uint32((usbEndpointDescriptors[0].DeviceDescBank[0].PCKSIZE.Get() >>
usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos) & usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask)
data := make([]byte, bytesread)
copy(data, udd_ep_out_cache_buffer[0][:])
return data
}
func handleEndpoint(ep uint32) {
// get data
count := int((usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.Get() >>
usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos) & usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask)
// move to ring buffer
for i := 0; i < count; i++ {
UART0.Receive(byte((udd_ep_out_cache_buffer[ep][i] & 0xFF)))
}
// set byte count to zero
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
// set multi packet size to 64
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.SetBits(64 << usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos)
// set ready for next data
setEPSTATUSCLR(ep, sam.USB_DEVICE_EPSTATUSCLR_BK0RDY)
}
func sendZlp() {
usbEndpointDescriptors[0].DeviceDescBank[1].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
}
func epPacketSize(size uint16) uint32 {
switch size {
case 8:
return 0
case 16:
return 1
case 32:
return 2
case 64:
return 3
case 128:
return 4
case 256:
return 5
case 512:
return 6
case 1023:
return 7
default:
return 0
}
}
func getEPCFG(ep uint32) uint8 {
switch ep {
case 0:
return sam.USB_DEVICE.EPCFG0.Get()
case 1:
return sam.USB_DEVICE.EPCFG1.Get()
case 2:
return sam.USB_DEVICE.EPCFG2.Get()
case 3:
return sam.USB_DEVICE.EPCFG3.Get()
case 4:
return sam.USB_DEVICE.EPCFG4.Get()
case 5:
return sam.USB_DEVICE.EPCFG5.Get()
case 6:
return sam.USB_DEVICE.EPCFG6.Get()
case 7:
return sam.USB_DEVICE.EPCFG7.Get()
default:
return 0
}
}
func setEPCFG(ep uint32, val uint8) {
switch ep {
case 0:
sam.USB_DEVICE.EPCFG0.Set(val)
case 1:
sam.USB_DEVICE.EPCFG1.Set(val)
case 2:
sam.USB_DEVICE.EPCFG2.Set(val)
case 3:
sam.USB_DEVICE.EPCFG3.Set(val)
case 4:
sam.USB_DEVICE.EPCFG4.Set(val)
case 5:
sam.USB_DEVICE.EPCFG5.Set(val)
case 6:
sam.USB_DEVICE.EPCFG6.Set(val)
case 7:
sam.USB_DEVICE.EPCFG7.Set(val)
default:
return
}
}
func setEPSTATUSCLR(ep uint32, val uint8) {
switch ep {
case 0:
sam.USB_DEVICE.EPSTATUSCLR0.Set(val)
case 1:
sam.USB_DEVICE.EPSTATUSCLR1.Set(val)
case 2:
sam.USB_DEVICE.EPSTATUSCLR2.Set(val)
case 3:
sam.USB_DEVICE.EPSTATUSCLR3.Set(val)
case 4:
sam.USB_DEVICE.EPSTATUSCLR4.Set(val)
case 5:
sam.USB_DEVICE.EPSTATUSCLR5.Set(val)
case 6:
sam.USB_DEVICE.EPSTATUSCLR6.Set(val)
case 7:
sam.USB_DEVICE.EPSTATUSCLR7.Set(val)
default:
return
}
}
func setEPSTATUSSET(ep uint32, val uint8) {
switch ep {
case 0:
sam.USB_DEVICE.EPSTATUSSET0.Set(val)
case 1:
sam.USB_DEVICE.EPSTATUSSET1.Set(val)
case 2:
sam.USB_DEVICE.EPSTATUSSET2.Set(val)
case 3:
sam.USB_DEVICE.EPSTATUSSET3.Set(val)
case 4:
sam.USB_DEVICE.EPSTATUSSET4.Set(val)
case 5:
sam.USB_DEVICE.EPSTATUSSET5.Set(val)
case 6:
sam.USB_DEVICE.EPSTATUSSET6.Set(val)
case 7:
sam.USB_DEVICE.EPSTATUSSET7.Set(val)
default:
return
}
}
func getEPSTATUS(ep uint32) uint8 {
switch ep {
case 0:
return sam.USB_DEVICE.EPSTATUS0.Get()
case 1:
return sam.USB_DEVICE.EPSTATUS1.Get()
case 2:
return sam.USB_DEVICE.EPSTATUS2.Get()
case 3:
return sam.USB_DEVICE.EPSTATUS3.Get()
case 4:
return sam.USB_DEVICE.EPSTATUS4.Get()
case 5:
return sam.USB_DEVICE.EPSTATUS5.Get()
case 6:
return sam.USB_DEVICE.EPSTATUS6.Get()
case 7:
return sam.USB_DEVICE.EPSTATUS7.Get()
default:
return 0
}
}
func getEPINTFLAG(ep uint32) uint8 {
switch ep {
case 0:
return sam.USB_DEVICE.EPINTFLAG0.Get()
case 1:
return sam.USB_DEVICE.EPINTFLAG1.Get()
case 2:
return sam.USB_DEVICE.EPINTFLAG2.Get()
case 3:
return sam.USB_DEVICE.EPINTFLAG3.Get()
case 4:
return sam.USB_DEVICE.EPINTFLAG4.Get()
case 5:
return sam.USB_DEVICE.EPINTFLAG5.Get()
case 6:
return sam.USB_DEVICE.EPINTFLAG6.Get()
case 7:
return sam.USB_DEVICE.EPINTFLAG7.Get()
default:
return 0
}
}
func setEPINTFLAG(ep uint32, val uint8) {
switch ep {
case 0:
sam.USB_DEVICE.EPINTFLAG0.Set(val)
case 1:
sam.USB_DEVICE.EPINTFLAG1.Set(val)
case 2:
sam.USB_DEVICE.EPINTFLAG2.Set(val)
case 3:
sam.USB_DEVICE.EPINTFLAG3.Set(val)
case 4:
sam.USB_DEVICE.EPINTFLAG4.Set(val)
case 5:
sam.USB_DEVICE.EPINTFLAG5.Set(val)
case 6:
sam.USB_DEVICE.EPINTFLAG6.Set(val)
case 7:
sam.USB_DEVICE.EPINTFLAG7.Set(val)
default:
return
}
}
func setEPINTENCLR(ep uint32, val uint8) {
switch ep {
case 0:
sam.USB_DEVICE.EPINTENCLR0.Set(val)
case 1:
sam.USB_DEVICE.EPINTENCLR1.Set(val)
case 2:
sam.USB_DEVICE.EPINTENCLR2.Set(val)
case 3:
sam.USB_DEVICE.EPINTENCLR3.Set(val)
case 4:
sam.USB_DEVICE.EPINTENCLR4.Set(val)
case 5:
sam.USB_DEVICE.EPINTENCLR5.Set(val)
case 6:
sam.USB_DEVICE.EPINTENCLR6.Set(val)
case 7:
sam.USB_DEVICE.EPINTENCLR7.Set(val)
default:
return
}
}
func setEPINTENSET(ep uint32, val uint8) {
switch ep {
case 0:
sam.USB_DEVICE.EPINTENSET0.Set(val)
case 1:
sam.USB_DEVICE.EPINTENSET1.Set(val)
case 2:
sam.USB_DEVICE.EPINTENSET2.Set(val)
case 3:
sam.USB_DEVICE.EPINTENSET3.Set(val)
case 4:
sam.USB_DEVICE.EPINTENSET4.Set(val)
case 5:
sam.USB_DEVICE.EPINTENSET5.Set(val)
case 6:
sam.USB_DEVICE.EPINTENSET6.Set(val)
case 7:
sam.USB_DEVICE.EPINTENSET7.Set(val)
default:
return
}
}
// ResetProcessor should perform a system reset in preperation
// to switch to the bootloader to flash new firmware.
func ResetProcessor() {
arm.DisableInterrupts()
// Perform magic reset into bootloader, as mentioned in
// https://github.com/arduino/ArduinoCore-samd/issues/197
*(*uint32)(unsafe.Pointer(uintptr(0x20007FFC))) = RESET_MAGIC_VALUE
arm.SystemReset()
}
// DAC on the SAMD21.
type DAC struct {
}
var (
DAC0 = DAC{}
)
// DACConfig placeholder for future expansion.
type DACConfig struct {
}
// Configure the DAC.
// output pin must already be configured.
func (dac DAC) Configure(config DACConfig) {
// Turn on clock for DAC
sam.PM.APBCMASK.SetBits(sam.PM_APBCMASK_DAC_)
// Use Generic Clock Generator 0 as source for DAC.
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_DAC << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK0 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
waitForSync()
// reset DAC
sam.DAC.CTRLA.Set(sam.DAC_CTRLA_SWRST)
syncDAC()
// wait for reset complete
for sam.DAC.CTRLA.HasBits(sam.DAC_CTRLA_SWRST) {
}
// enable
sam.DAC.CTRLB.Set(sam.DAC_CTRLB_EOEN | sam.DAC_CTRLB_REFSEL_AVCC)
sam.DAC.CTRLA.Set(sam.DAC_CTRLA_ENABLE)
}
// Set writes a single 16-bit value to the DAC.
// Since the ATSAMD21 only has a 10-bit DAC, the passed-in value will be scaled down.
func (dac DAC) Set(value uint16) error {
sam.DAC.DATA.Set(value >> 6)
syncDAC()
return nil
}
func syncDAC() {
for sam.DAC.STATUS.HasBits(sam.DAC_STATUS_SYNCBUSY) {
}
}