tinygo/src/runtime/gc_extalloc.go
2020-07-04 08:34:39 +02:00

643 строки
16 КиБ
Go

// +build gc.extalloc
package runtime
import (
"internal/task"
"runtime/interrupt"
"unsafe"
)
// This garbage collector implementation allows TinyGo to use an external memory allocator.
// It appends a header to the end of every allocation which the garbage collector uses for tracking purposes.
// This is also a conservative collector.
const (
gcDebug = false
gcAsserts = false
)
func initHeap() {}
// memTreap is a treap which is used to track allocations for the garbage collector.
type memTreap struct {
root *memTreapNode
}
// printNode recursively prints a subtree at a given indentation depth.
func (t *memTreap) printNode(n *memTreapNode, depth int) {
for i := 0; i < depth; i++ {
print(" ")
}
println(n, n.priority())
if n == nil {
return
}
if gcAsserts && n.parent == nil && t.root != n {
runtimePanic("parent missing")
}
t.printNode(n.left, depth+1)
t.printNode(n.right, depth+1)
}
// print the treap.
func (t *memTreap) print() {
println("treap:")
t.printNode(t.root, 1)
}
// empty returns whether the treap contains any nodes.
func (t *memTreap) empty() bool {
return t.root == nil
}
// minAddr returns the lowest address contained in an allocation in the treap.
func (t *memTreap) minAddr() uintptr {
// Find the rightmost node.
n := t.root
for n.right != nil {
n = n.right
}
// The lowest address is the base of the rightmost node.
return uintptr(unsafe.Pointer(&n.base))
}
// maxAddr returns the highest address contained in an allocation in the treap.
func (t *memTreap) maxAddr() uintptr {
// Find the leftmost node.
n := t.root
for n.left != nil {
n = n.left
}
// The highest address is the end of the leftmost node.
return uintptr(unsafe.Pointer(&n.base)) + n.size
}
// rotateRight does a right rotation of p and q.
// https://en.wikipedia.org/wiki/Tree_rotation#/media/File:Tree_rotation.png
func (t *memTreap) rotateRight(p, q *memTreapNode) {
if t.root == q {
t.root = p
} else {
*q.parentSlot() = p
}
//a := p.left
b := p.right
//c := q.right
p.parent = q.parent
p.right = q
q.parent = p
q.left = b
if b != nil {
b.parent = q
}
}
// rotateLeft does a left rotation of p and q.
// https://en.wikipedia.org/wiki/Tree_rotation#/media/File:Tree_rotation.png
func (t *memTreap) rotateLeft(p, q *memTreapNode) {
if t.root == p {
t.root = q
} else {
*p.parentSlot() = q
}
//a := p.left
b := q.left
//c := q.right
q.parent = p.parent
q.left = p
p.parent = q
p.right = b
if b != nil {
b.parent = p
}
}
// rotate rotates a lower node up to its parent.
// The node n must be a child of m, and will be the parent of m after the rotation.
func (t *memTreap) rotate(n, m *memTreapNode) {
// https://en.wikipedia.org/wiki/Tree_rotation#/media/File:Tree_rotation.png
if uintptr(unsafe.Pointer(n)) > uintptr(unsafe.Pointer(m)) {
t.rotateRight(n, m)
} else {
t.rotateLeft(m, n)
}
}
// insert a node into the treap.
func (t *memTreap) insert(n *memTreapNode) {
if gcAsserts && (n.parent != nil || n.left != nil || n.right != nil) {
runtimePanic("tried to insert unzeroed treap node")
}
if t.root == nil {
// This is the first node, and can be inserted directly into the root.
t.root = n
return
}
// Insert like a regular binary search tree.
for n.parent = t.root; *n.parentSlot() != nil; n.parent = *n.parentSlot() {
}
*n.parentSlot() = n
// Rotate the tree to restore the heap invariant.
priority := n.priority()
for n.parent != nil && priority > n.parent.priority() {
t.rotate(n, n.parent)
}
}
// lookupAddr finds the treap node with the allocation containing the specified address.
// If the address is not contained in any allocations in this treap, nil is returned.
// NOTE: fields of memTreapNodes are not considered part of the allocations.
func (t *memTreap) lookupAddr(addr uintptr) *memTreapNode {
n := t.root
for n != nil && !n.contains(addr) {
if addr > uintptr(unsafe.Pointer(n)) {
n = n.left
} else {
n = n.right
}
}
return n
}
// replace a node with another node on the treap.
func (t *memTreap) replace(old, new *memTreapNode) {
if gcAsserts && (old == nil || new == nil) {
if gcDebug {
println("tried to replace:", old, "->", new)
}
runtimePanic("invalid replacement")
}
if gcAsserts && old.parent == nil && old != t.root {
if gcDebug {
println("tried to replace:", old, "->", new)
t.print()
}
runtimePanic("corrupted tree")
}
new.parent = old.parent
if old == t.root {
t.root = new
} else {
*new.parentSlot() = new
}
}
// remove a node from the treap.
// This does not free the allocation.
func (t *memTreap) remove(n *memTreapNode) {
scan:
for {
switch {
case n.left == nil && n.right == nil && n.parent == nil:
// This is the only node - uproot it.
t.root = nil
break scan
case n.left == nil && n.right == nil:
// There are no nodes beneath here, so just remove this node from the parent.
*n.parentSlot() = nil
break scan
case n.left != nil && n.right == nil:
t.replace(n, n.left)
break scan
case n.right != nil && n.left == nil:
t.replace(n, n.right)
break scan
default:
// Rotate this node downward.
if n.left.priority() > n.right.priority() {
t.rotate(n.left, n)
} else {
t.rotate(n.right, n)
}
}
}
n.left = nil
n.right = nil
n.parent = nil
}
// memTreapNode is a treap node used to track allocations for the garbage collector.
// This struct is prepended to every allocation.
type memTreapNode struct {
parent, left, right *memTreapNode
size uintptr
base struct{}
}
// priority computes a pseudo-random priority value for this treap node.
// This value is a fibonacci hash (https://en.wikipedia.org/wiki/Hash_function#Fibonacci_hashing) of the node's memory address.
func (n *memTreapNode) priority() uintptr {
// Select fibonacci multiplier for this bit-width.
var fibonacciMultiplier uint64
switch 8 * unsafe.Sizeof(uintptr(0)) {
case 16:
fibonacciMultiplier = 40503
case 32:
fibonacciMultiplier = 2654435769
case 64:
fibonacciMultiplier = 11400714819323198485
default:
runtimePanic("invalid size of uintptr")
}
// Hash the pointer.
return uintptr(fibonacciMultiplier) * uintptr(unsafe.Pointer(n))
}
// contains returns whether this allocation contains a given address.
func (n *memTreapNode) contains(addr uintptr) bool {
return addr >= uintptr(unsafe.Pointer(&n.base)) && addr < uintptr(unsafe.Pointer(&n.base))+n.size
}
// parentSlot returns a pointer to the parent's reference to this node.
func (n *memTreapNode) parentSlot() **memTreapNode {
if uintptr(unsafe.Pointer(n)) > uintptr(unsafe.Pointer(n.parent)) {
return &n.parent.left
} else {
return &n.parent.right
}
}
// memScanQueue is a queue of memTreapNodes.
type memScanQueue struct {
head, tail *memTreapNode
}
// push adds an allocation onto the queue.
func (q *memScanQueue) push(n *memTreapNode) {
if gcAsserts && (n.left != nil || n.right != nil || n.parent != nil) {
runtimePanic("tried to push a treap node that is in use")
}
if q.head == nil {
q.tail = n
} else {
q.head.left = n
}
n.right = q.head
q.head = n
}
// pop removes the next allocation from the queue.
func (q *memScanQueue) pop() *memTreapNode {
n := q.tail
q.tail = n.left
if q.tail == nil {
q.head = nil
}
n.left = nil
n.right = nil
return n
}
// empty returns whether the queue contains any allocations.
func (q *memScanQueue) empty() bool {
return q.tail == nil
}
// allocations is a treap containing all allocations.
var allocations memTreap
// usedMem is the total amount of allocated memory (including the space taken up by memory treap nodes).
var usedMem uintptr
// firstPtr and lastPtr are the bounds of memory used by the heap.
// They are computed before the collector starts marking, and are used to quickly eliminate false positives.
var firstPtr, lastPtr uintptr
// scanQueue is a queue of marked allocations to scan.
var scanQueue memScanQueue
// mark searches for an allocation containing the given address and marks it if found.
func mark(addr uintptr) bool {
if addr < firstPtr || addr > lastPtr {
// Pointer is outside of allocated bounds.
return false
}
node := allocations.lookupAddr(addr)
if node != nil {
if gcDebug {
println("mark:", addr)
}
allocations.remove(node)
scanQueue.push(node)
}
return node != nil
}
func markRoot(addr uintptr, root uintptr) {
marked := mark(root)
if gcDebug {
if marked {
println("marked root:", root, "at", addr)
} else if addr != 0 {
println("did not mark root:", root, "at", addr)
}
}
}
func markRoots(start uintptr, end uintptr) {
scan(start, end)
}
// scan loads all pointer-aligned words and marks any pointers that it finds.
func scan(start uintptr, end uintptr) {
// Align start and end pointers.
start = (start + unsafe.Alignof(unsafe.Pointer(nil)) - 1) &^ (unsafe.Alignof(unsafe.Pointer(nil)) - 1)
end &^= unsafe.Alignof(unsafe.Pointer(nil)) - 1
// Mark all pointers.
for ptr := start; ptr < end; ptr += unsafe.Alignof(unsafe.Pointer(nil)) {
mark(*(*uintptr)(unsafe.Pointer(ptr)))
}
}
// scan marks all allocations referenced by this allocation.
// This should only be invoked by the garbage collector.
func (n *memTreapNode) scan() {
start := uintptr(unsafe.Pointer(&n.base))
end := start + n.size
scan(start, end)
}
// destroy removes and frees all allocations in the treap.
func (t *memTreap) destroy() {
n := t.root
for n != nil {
switch {
case n.left != nil:
// Destroy the left subtree.
n = n.left
case n.right != nil:
// Destroy the right subtree.
n = n.right
default:
// This is a leaf node, so delete it and jump back to the parent.
// Save the parent to jump back to.
parent := n.parent
if parent != nil {
*n.parentSlot() = nil
} else {
t.root = nil
}
// Update used memory.
usedMem -= unsafe.Sizeof(memTreapNode{}) + n.size
if gcDebug {
println("collecting:", &n.base, "size:", n.size)
println("used memory:", usedMem)
}
// Free the node.
extfree(unsafe.Pointer(n))
// Jump back to the parent node.
n = parent
}
}
}
// gcrunning is used by gcAsserts to determine whether the garbage collector is running.
// This is used to detect if the collector is invoking itself or trying to allocate memory.
var gcrunning bool
// activeMem is a queue used to store marked allocations which have already been scanned.
// This is only used when the garbage collector is running.
var activeMem memScanQueue
func GC() {
if gcDebug {
println("running GC")
}
if allocations.empty() {
// Skip collection because the heap is empty.
if gcDebug {
println("nothing to collect")
}
return
}
if gcAsserts {
if gcrunning {
runtimePanic("GC called itself")
}
gcrunning = true
}
if gcDebug {
println("pre-GC allocations:")
allocations.print()
}
// Before scanning, find the lowest and highest allocated pointers.
// These can be quickly compared against to eliminate most false positives.
firstPtr, lastPtr = allocations.minAddr(), allocations.maxAddr()
// Start by scanning the stack.
markStack()
// Scan all globals.
markGlobals()
// Channel operations in interrupts may move task pointers around while we are marking.
// Therefore we need to scan the runqueue seperately.
var markedTaskQueue task.Queue
runqueueScan:
for !runqueue.Empty() {
// Pop the next task off of the runqueue.
t := runqueue.Pop()
// Mark the task if it has not already been marked.
markRoot(uintptr(unsafe.Pointer(&runqueue)), uintptr(unsafe.Pointer(t)))
// Push the task onto our temporary queue.
markedTaskQueue.Push(t)
}
// Scan all referenced allocations, building a new treap with marked allocations.
// The marking process deletes the allocations from the old allocations treap, so they are only queued once.
for !scanQueue.empty() {
// Pop a marked node off of the scan queue.
n := scanQueue.pop()
// Scan and mark all nodes that this references.
n.scan()
// Insert this node into the active memory queue.
activeMem.push(n)
}
i := interrupt.Disable()
if !runqueue.Empty() {
// Something new came in while finishing the mark.
interrupt.Restore(i)
goto runqueueScan
}
runqueue = markedTaskQueue
interrupt.Restore(i)
// The allocations treap now only contains unreferenced nodes. Destroy them all.
allocations.destroy()
if gcAsserts && !allocations.empty() {
runtimePanic("failed to fully destroy allocations")
}
// Treapify the active memory queue.
for !activeMem.empty() {
allocations.insert(activeMem.pop())
}
if gcDebug {
println("GC finished")
}
if gcAsserts {
gcrunning = false
}
}
// heapBound is used to control the growth of the heap.
// When the heap exceeds this size, the garbage collector is run.
// If the garbage collector cannot free up enough memory, the bound is doubled until the allocation fits.
var heapBound uintptr = 4 * unsafe.Sizeof(memTreapNode{})
// zeroSizedAlloc is just a sentinel that gets returned when allocating 0 bytes.
var zeroSizedAlloc uint8
// alloc tries to find some free space on the heap, possibly doing a garbage
// collection cycle if needed. If no space is free, it panics.
//go:noinline
func alloc(size uintptr) unsafe.Pointer {
if size == 0 {
return unsafe.Pointer(&zeroSizedAlloc)
}
if gcAsserts && gcrunning {
runtimePanic("allocated inside the garbage collector")
}
// Calculate size of allocation including treap node.
allocSize := unsafe.Sizeof(memTreapNode{}) + size
var gcRan bool
for {
// Try to bound heap growth.
if usedMem+allocSize < usedMem {
if gcDebug {
println("current mem:", usedMem, "alloc size:", allocSize)
}
runtimePanic("target heap size exceeds address space size")
}
if usedMem+allocSize > heapBound {
if !gcRan {
// Run the garbage collector before growing the heap.
if gcDebug {
println("heap reached size limit")
}
GC()
gcRan = true
continue
} else {
// Grow the heap bound to fit the allocation.
for heapBound != 0 && usedMem+allocSize > heapBound {
heapBound <<= 1
}
if heapBound == 0 {
// This is only possible on hosted 32-bit systems.
// Allow the heap bound to encompass everything.
heapBound = ^uintptr(0)
}
if gcDebug {
println("raising heap size limit to", heapBound)
}
}
}
// Allocate the memory.
ptr := extalloc(allocSize)
if ptr == nil {
if gcDebug {
println("extalloc failed")
}
if gcRan {
// Garbage collector was not able to free up enough memory.
runtimePanic("out of memory")
} else {
// Run the garbage collector and try again.
GC()
gcRan = true
continue
}
}
// Initialize the memory treap node.
node := (*memTreapNode)(ptr)
*node = memTreapNode{
size: size,
}
// Insert allocation into the allocations treap.
allocations.insert(node)
// Extract the user's section of the allocation.
ptr = unsafe.Pointer(&node.base)
if gcAsserts && !node.contains(uintptr(ptr)) {
runtimePanic("node is not self-contained")
}
if gcAsserts {
check := allocations.lookupAddr(uintptr(ptr))
if check == nil {
if gcDebug {
println("failed to find:", ptr)
allocations.print()
}
runtimePanic("bad insert")
}
}
// Zero the allocation.
memzero(ptr, size)
// Update used memory.
usedMem += allocSize
if gcDebug {
println("allocated:", uintptr(ptr), "size:", size)
println("used memory:", usedMem)
}
return ptr
}
}
func free(ptr unsafe.Pointer) {
// Currently unimplemented due to bugs in coroutine lowering.
}
func KeepAlive(x interface{}) {
// Unimplemented. Only required with SetFinalizer().
}
func SetFinalizer(obj interface{}, finalizer interface{}) {
// Unimplemented.
}