
This commit lets the compiler know about interrupts and allows optimizations to be performed based on that: interrupts are eliminated when they appear to be unused in a program. This is done with a new pseudo-call (runtime/interrupt.New) that is treated specially by the compiler.
202 строки
5 КиБ
Go
202 строки
5 КиБ
Go
// +build stm32,stm32f103xx
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"device/arm"
|
|
"device/stm32"
|
|
"machine"
|
|
"runtime/interrupt"
|
|
"runtime/volatile"
|
|
)
|
|
|
|
func init() {
|
|
initCLK()
|
|
initRTC()
|
|
initTIM()
|
|
machine.UART0.Configure(machine.UARTConfig{})
|
|
}
|
|
|
|
func putchar(c byte) {
|
|
machine.UART0.WriteByte(c)
|
|
}
|
|
|
|
// initCLK sets clock to 72MHz using HSE 8MHz crystal w/ PLL X 9 (8MHz x 9 = 72MHz).
|
|
func initCLK() {
|
|
stm32.FLASH.ACR.SetBits(stm32.FLASH_ACR_LATENCY_2) // Two wait states, per datasheet
|
|
stm32.RCC.CFGR.SetBits(stm32.RCC_CFGR_PPRE1_DIV_2) // prescale PCLK1 = HCLK/2
|
|
stm32.RCC.CFGR.SetBits(stm32.RCC_CFGR_PPRE2_DIV_NONE) // prescale PCLK2 = HCLK/1
|
|
stm32.RCC.CR.SetBits(stm32.RCC_CR_HSEON) // enable HSE clock
|
|
|
|
// wait for the HSEREADY flag
|
|
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_HSERDY) {
|
|
}
|
|
|
|
stm32.RCC.CR.SetBits(stm32.RCC_CR_HSION) // enable HSI clock
|
|
|
|
// wait for the HSIREADY flag
|
|
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_HSIRDY) {
|
|
}
|
|
|
|
stm32.RCC.CFGR.SetBits(stm32.RCC_CFGR_PLLSRC) // set PLL source to HSE
|
|
stm32.RCC.CFGR.SetBits(stm32.RCC_CFGR_PLLMUL_9) // multiply by 9
|
|
stm32.RCC.CR.SetBits(stm32.RCC_CR_PLLON) // enable the PLL
|
|
|
|
// wait for the PLLRDY flag
|
|
for !stm32.RCC.CR.HasBits(stm32.RCC_CR_PLLRDY) {
|
|
}
|
|
|
|
stm32.RCC.CFGR.SetBits(stm32.RCC_CFGR_SW_PLL) // set clock source to pll
|
|
|
|
// wait for PLL to be CLK
|
|
for !stm32.RCC.CFGR.HasBits(stm32.RCC_CFGR_SWS_PLL) {
|
|
}
|
|
}
|
|
|
|
const tickMicros = 1000
|
|
|
|
var (
|
|
timestamp timeUnit // microseconds since boottime
|
|
timerLastCounter uint64
|
|
)
|
|
|
|
var timerWakeup volatile.Register8
|
|
|
|
func initRTC() {
|
|
// Enable the PWR and BKP.
|
|
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_PWREN | stm32.RCC_APB1ENR_BKPEN)
|
|
|
|
// access to backup register
|
|
stm32.PWR.CR.SetBits(stm32.PWR_CR_DBP)
|
|
|
|
// Enable LSE
|
|
stm32.RCC.BDCR.SetBits(stm32.RCC_BDCR_LSEON)
|
|
|
|
// wait until LSE is ready
|
|
for !stm32.RCC.BDCR.HasBits(stm32.RCC_BDCR_LSERDY) {
|
|
}
|
|
|
|
// Select LSE
|
|
stm32.RCC.BDCR.SetBits(stm32.RCC_RTCCLKSource_LSE)
|
|
|
|
// set prescaler to "max" per datasheet
|
|
stm32.RTC.PRLH.Set(stm32.RTC_PRLH_PRLH_Msk)
|
|
stm32.RTC.PRLL.Set(stm32.RTC_PRLL_PRLL_Msk)
|
|
|
|
// set count to zero
|
|
stm32.RTC.CNTH.Set(0x0)
|
|
stm32.RTC.CNTL.Set(0x0)
|
|
|
|
// Enable RTC
|
|
stm32.RCC.BDCR.SetBits(stm32.RCC_BDCR_RTCEN)
|
|
|
|
// Clear RSF
|
|
stm32.RTC.CRL.ClearBits(stm32.RTC_CRL_RSF)
|
|
|
|
// Wait till flag is set
|
|
for !stm32.RTC.CRL.HasBits(stm32.RTC_CRL_RSF) {
|
|
}
|
|
}
|
|
|
|
// Enable the TIM3 clock.
|
|
func initTIM() {
|
|
stm32.RCC.APB1ENR.SetBits(stm32.RCC_APB1ENR_TIM3EN)
|
|
|
|
intr := interrupt.New(stm32.IRQ_TIM3, handleTIM3)
|
|
intr.SetPriority(0xc3)
|
|
intr.Enable()
|
|
}
|
|
|
|
const asyncScheduler = false
|
|
|
|
// sleepTicks should sleep for specific number of microseconds.
|
|
func sleepTicks(d timeUnit) {
|
|
for d != 0 {
|
|
ticks() // update timestamp
|
|
ticks := uint32(d) // current scaling only supports 100 usec to 6553 msec
|
|
timerSleep(ticks)
|
|
d -= timeUnit(ticks)
|
|
}
|
|
}
|
|
|
|
// number of ticks (microseconds) since start.
|
|
func ticks() timeUnit {
|
|
// convert RTC counter from seconds to microseconds
|
|
timerCounter := uint64(stm32.RTC.CNTH.Get()<<16|stm32.RTC.CNTL.Get()) * 1000 * 1000
|
|
|
|
// add the fractional part of current time using DIV register
|
|
timerCounter += uint64(0x8000-stm32.RTC.DIVL.Get()) * 31
|
|
|
|
// change since last measurement
|
|
offset := (timerCounter - timerLastCounter)
|
|
timerLastCounter = timerCounter
|
|
timestamp += timeUnit(offset)
|
|
return timestamp
|
|
}
|
|
|
|
// ticks are in microseconds
|
|
func timerSleep(ticks uint32) {
|
|
timerWakeup.Set(0)
|
|
|
|
// STM32 timer update event period is calculated as follows:
|
|
//
|
|
// Update_event = TIM_CLK/((PSC + 1)*(ARR + 1)*(RCR + 1))
|
|
//
|
|
// Where:
|
|
//
|
|
// TIM_CLK = timer clock input
|
|
// PSC = 16-bit prescaler register
|
|
// ARR = 16/32-bit Autoreload register
|
|
// RCR = 16-bit repetition counter
|
|
//
|
|
// Example:
|
|
//
|
|
// TIM_CLK = 72 MHz
|
|
// Prescaler = 1
|
|
// Auto reload = 65535
|
|
// No repetition counter RCR = 0
|
|
// Update_event = 72*(10^6)/((1 + 1)*(65535 + 1)*(1))
|
|
// Update_event = 549.3 Hz
|
|
//
|
|
// Set the timer prescaler/autoreload timing registers.
|
|
|
|
// TODO: support smaller or larger scales (autoscaling) based
|
|
// on the length of sleep time requested.
|
|
// The current scaling only supports a range of 200 usec to 6553 msec.
|
|
|
|
// prescale counter down from 72mhz to 10khz aka 0.1 ms frequency.
|
|
stm32.TIM3.PSC.Set(machine.CPUFrequency()/10000 - 1) // 7199
|
|
|
|
// Set duty aka duration.
|
|
// STM32 dividers use n-1, i.e. n counts from 0 to n-1.
|
|
// As a result, with these prescaler settings,
|
|
// the minimum allowed duration is 200 microseconds.
|
|
if ticks < 200 {
|
|
ticks = 200
|
|
}
|
|
stm32.TIM3.ARR.Set(ticks/100 - 1) // convert from microseconds to 0.1 ms
|
|
|
|
// Enable the hardware interrupt.
|
|
stm32.TIM3.DIER.SetBits(stm32.TIM_DIER_UIE)
|
|
|
|
// Enable the timer.
|
|
stm32.TIM3.CR1.SetBits(stm32.TIM_CR1_CEN)
|
|
|
|
// wait till timer wakes up
|
|
for timerWakeup.Get() == 0 {
|
|
arm.Asm("wfi")
|
|
}
|
|
}
|
|
|
|
func handleTIM3(interrupt.Interrupt) {
|
|
if stm32.TIM3.SR.HasBits(stm32.TIM_SR_UIF) {
|
|
// Disable the timer.
|
|
stm32.TIM3.CR1.ClearBits(stm32.TIM_CR1_CEN)
|
|
|
|
// clear the update flag
|
|
stm32.TIM3.SR.ClearBits(stm32.TIM_SR_UIF)
|
|
|
|
// timer was triggered
|
|
timerWakeup.Set(1)
|
|
}
|
|
}
|