tinygo/compiler/compiler.go
Ayke van Laethem a79edf416c cgo: do not allow capturing of external/exported functions
Instead of assuming all declared (but not defined) functions are CGo
functions, mark all pointer params of externally visible symbols
'nocapture'. This means you may not store pointers between function
calls.

This is already the case when calling CGo functions upstream:
https://golang.org/cmd/cgo/#hdr-Passing_pointers
2019-05-05 20:56:35 +02:00

2499 строки
88 КиБ
Go

package compiler
import (
"errors"
"fmt"
"go/build"
"go/constant"
"go/token"
"go/types"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"github.com/tinygo-org/tinygo/ir"
"github.com/tinygo-org/tinygo/loader"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
func init() {
llvm.InitializeAllTargets()
llvm.InitializeAllTargetMCs()
llvm.InitializeAllTargetInfos()
llvm.InitializeAllAsmParsers()
llvm.InitializeAllAsmPrinters()
}
// Configure the compiler.
type Config struct {
Triple string // LLVM target triple, e.g. x86_64-unknown-linux-gnu (empty string means default)
CPU string // LLVM CPU name, e.g. atmega328p (empty string means default)
GOOS string //
GOARCH string //
GC string // garbage collection strategy
PanicStrategy string // panic strategy ("abort" or "trap")
CFlags []string // cflags to pass to cgo
LDFlags []string // ldflags to pass to cgo
DumpSSA bool // dump Go SSA, for compiler debugging
Debug bool // add debug symbols for gdb
RootDir string // GOROOT for TinyGo
GOPATH string // GOPATH, like `go env GOPATH`
BuildTags []string // build tags for TinyGo (empty means {Config.GOOS/Config.GOARCH})
}
type Compiler struct {
Config
mod llvm.Module
ctx llvm.Context
builder llvm.Builder
dibuilder *llvm.DIBuilder
cu llvm.Metadata
difiles map[string]llvm.Metadata
ditypes map[string]llvm.Metadata
machine llvm.TargetMachine
targetData llvm.TargetData
intType llvm.Type
i8ptrType llvm.Type // for convenience
funcPtrAddrSpace int
uintptrType llvm.Type
initFuncs []llvm.Value
interfaceInvokeWrappers []interfaceInvokeWrapper
ir *ir.Program
diagnostics []error
}
type Frame struct {
fn *ir.Function
locals map[ssa.Value]llvm.Value // local variables
blockEntries map[*ssa.BasicBlock]llvm.BasicBlock // a *ssa.BasicBlock may be split up
blockExits map[*ssa.BasicBlock]llvm.BasicBlock // these are the exit blocks
currentBlock *ssa.BasicBlock
phis []Phi
taskHandle llvm.Value
deferPtr llvm.Value
difunc llvm.Metadata
allDeferFuncs []interface{}
deferFuncs map[*ir.Function]int
deferInvokeFuncs map[string]int
deferClosureFuncs map[*ir.Function]int
}
type Phi struct {
ssa *ssa.Phi
llvm llvm.Value
}
func NewCompiler(pkgName string, config Config) (*Compiler, error) {
if config.Triple == "" {
config.Triple = llvm.DefaultTargetTriple()
}
if len(config.BuildTags) == 0 {
config.BuildTags = []string{config.GOOS, config.GOARCH}
}
c := &Compiler{
Config: config,
difiles: make(map[string]llvm.Metadata),
ditypes: make(map[string]llvm.Metadata),
}
target, err := llvm.GetTargetFromTriple(config.Triple)
if err != nil {
return nil, err
}
c.machine = target.CreateTargetMachine(config.Triple, config.CPU, "", llvm.CodeGenLevelDefault, llvm.RelocStatic, llvm.CodeModelDefault)
c.targetData = c.machine.CreateTargetData()
c.ctx = llvm.NewContext()
c.mod = c.ctx.NewModule(pkgName)
c.mod.SetTarget(config.Triple)
c.mod.SetDataLayout(c.targetData.String())
c.builder = c.ctx.NewBuilder()
if c.Debug {
c.dibuilder = llvm.NewDIBuilder(c.mod)
}
c.uintptrType = c.ctx.IntType(c.targetData.PointerSize() * 8)
if c.targetData.PointerSize() <= 4 {
// 8, 16, 32 bits targets
c.intType = c.ctx.Int32Type()
} else if c.targetData.PointerSize() == 8 {
// 64 bits target
c.intType = c.ctx.Int64Type()
} else {
panic("unknown pointer size")
}
c.i8ptrType = llvm.PointerType(c.ctx.Int8Type(), 0)
dummyFuncType := llvm.FunctionType(c.ctx.VoidType(), nil, false)
dummyFunc := llvm.AddFunction(c.mod, "tinygo.dummy", dummyFuncType)
c.funcPtrAddrSpace = dummyFunc.Type().PointerAddressSpace()
dummyFunc.EraseFromParentAsFunction()
return c, nil
}
func (c *Compiler) Packages() []*loader.Package {
return c.ir.LoaderProgram.Sorted()
}
// Return the LLVM module. Only valid after a successful compile.
func (c *Compiler) Module() llvm.Module {
return c.mod
}
// Return the LLVM target data object. Only valid after a successful compile.
func (c *Compiler) TargetData() llvm.TargetData {
return c.targetData
}
// selectGC picks an appropriate GC strategy if none was provided.
func (c *Compiler) selectGC() string {
gc := c.GC
if gc == "" {
gc = "dumb"
}
return gc
}
// Compile the given package path or .go file path. Return an error when this
// fails (in any stage).
func (c *Compiler) Compile(mainPath string) []error {
// Prefix the GOPATH with the system GOROOT, as GOROOT is already set to
// the TinyGo root.
overlayGopath := c.GOPATH
if overlayGopath == "" {
overlayGopath = runtime.GOROOT()
} else {
overlayGopath = runtime.GOROOT() + string(filepath.ListSeparator) + overlayGopath
}
wd, err := os.Getwd()
if err != nil {
return []error{err}
}
lprogram := &loader.Program{
Build: &build.Context{
GOARCH: c.GOARCH,
GOOS: c.GOOS,
GOROOT: runtime.GOROOT(),
GOPATH: c.GOPATH,
CgoEnabled: true,
UseAllFiles: false,
Compiler: "gc", // must be one of the recognized compilers
BuildTags: append([]string{"tinygo", "gc." + c.selectGC()}, c.BuildTags...),
},
OverlayBuild: &build.Context{
GOARCH: c.GOARCH,
GOOS: c.GOOS,
GOROOT: c.RootDir,
GOPATH: overlayGopath,
CgoEnabled: true,
UseAllFiles: false,
Compiler: "gc", // must be one of the recognized compilers
BuildTags: append([]string{"tinygo", "gc." + c.selectGC()}, c.BuildTags...),
},
ShouldOverlay: func(path string) bool {
switch path {
case "machine", "os", "reflect", "runtime", "sync":
return true
default:
if strings.HasPrefix(path, "device/") || strings.HasPrefix(path, "examples/") {
return true
} else if path == "syscall" {
for _, tag := range c.BuildTags {
if tag == "avr" || tag == "cortexm" || tag == "darwin" {
return true
}
}
}
}
return false
},
TypeChecker: types.Config{
Sizes: &StdSizes{
IntSize: int64(c.targetData.TypeAllocSize(c.intType)),
PtrSize: int64(c.targetData.PointerSize()),
MaxAlign: int64(c.targetData.PrefTypeAlignment(c.i8ptrType)),
},
},
Dir: wd,
TinyGoRoot: c.RootDir,
CFlags: c.CFlags,
}
if strings.HasSuffix(mainPath, ".go") {
_, err = lprogram.ImportFile(mainPath)
if err != nil {
return []error{err}
}
} else {
_, err = lprogram.Import(mainPath, wd)
if err != nil {
return []error{err}
}
}
_, err = lprogram.Import("runtime", "")
if err != nil {
return []error{err}
}
err = lprogram.Parse()
if err != nil {
return []error{err}
}
c.ir = ir.NewProgram(lprogram, mainPath)
// Run a simple dead code elimination pass.
c.ir.SimpleDCE()
// Initialize debug information.
if c.Debug {
c.cu = c.dibuilder.CreateCompileUnit(llvm.DICompileUnit{
Language: llvm.DW_LANG_Go,
File: mainPath,
Dir: "",
Producer: "TinyGo",
Optimized: true,
})
}
var frames []*Frame
// Declare all named struct types.
for _, t := range c.ir.NamedTypes {
if named, ok := t.Type.Type().(*types.Named); ok {
if _, ok := named.Underlying().(*types.Struct); ok {
t.LLVMType = c.ctx.StructCreateNamed(named.Obj().Pkg().Path() + "." + named.Obj().Name())
}
}
}
// Define all named struct types.
for _, t := range c.ir.NamedTypes {
if named, ok := t.Type.Type().(*types.Named); ok {
if st, ok := named.Underlying().(*types.Struct); ok {
llvmType := c.getLLVMType(st)
t.LLVMType.StructSetBody(llvmType.StructElementTypes(), false)
}
}
}
// Declare all globals.
for _, g := range c.ir.Globals {
typ := g.Type().(*types.Pointer).Elem()
llvmType := c.getLLVMType(typ)
global := c.mod.NamedGlobal(g.LinkName())
if global.IsNil() {
global = llvm.AddGlobal(c.mod, llvmType, g.LinkName())
}
g.LLVMGlobal = global
if !g.IsExtern() {
global.SetLinkage(llvm.InternalLinkage)
global.SetInitializer(c.getZeroValue(llvmType))
}
}
// Declare all functions.
for _, f := range c.ir.Functions {
frames = append(frames, c.parseFuncDecl(f))
}
// Add definitions to declarations.
for _, frame := range frames {
if frame.fn.Synthetic == "package initializer" {
c.initFuncs = append(c.initFuncs, frame.fn.LLVMFn)
}
if frame.fn.CName() != "" {
continue
}
if frame.fn.Blocks == nil {
continue // external function
}
c.parseFunc(frame)
}
// Define the already declared functions that wrap methods for use in
// interfaces.
for _, state := range c.interfaceInvokeWrappers {
c.createInterfaceInvokeWrapper(state)
}
// After all packages are imported, add a synthetic initializer function
// that calls the initializer of each package.
initFn := c.ir.GetFunction(c.ir.Program.ImportedPackage("runtime").Members["initAll"].(*ssa.Function))
initFn.LLVMFn.SetLinkage(llvm.InternalLinkage)
initFn.LLVMFn.SetUnnamedAddr(true)
if c.Debug {
difunc := c.attachDebugInfo(initFn)
pos := c.ir.Program.Fset.Position(initFn.Pos())
c.builder.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), difunc, llvm.Metadata{})
}
block := c.ctx.AddBasicBlock(initFn.LLVMFn, "entry")
c.builder.SetInsertPointAtEnd(block)
for _, fn := range c.initFuncs {
c.builder.CreateCall(fn, []llvm.Value{llvm.Undef(c.i8ptrType), llvm.Undef(c.i8ptrType)}, "")
}
c.builder.CreateRetVoid()
// Conserve for goroutine lowering. Without marking these as external, they
// would be optimized away.
realMain := c.mod.NamedFunction(c.ir.MainPkg().Pkg.Path() + ".main")
realMain.SetLinkage(llvm.ExternalLinkage) // keep alive until goroutine lowering
c.mod.NamedFunction("runtime.alloc").SetLinkage(llvm.ExternalLinkage)
c.mod.NamedFunction("runtime.free").SetLinkage(llvm.ExternalLinkage)
c.mod.NamedFunction("runtime.sleepTask").SetLinkage(llvm.ExternalLinkage)
c.mod.NamedFunction("runtime.setTaskPromisePtr").SetLinkage(llvm.ExternalLinkage)
c.mod.NamedFunction("runtime.getTaskPromisePtr").SetLinkage(llvm.ExternalLinkage)
c.mod.NamedFunction("runtime.activateTask").SetLinkage(llvm.ExternalLinkage)
c.mod.NamedFunction("runtime.scheduler").SetLinkage(llvm.ExternalLinkage)
// Load some attributes
getAttr := func(attrName string) llvm.Attribute {
attrKind := llvm.AttributeKindID(attrName)
return c.ctx.CreateEnumAttribute(attrKind, 0)
}
nocapture := getAttr("nocapture")
writeonly := getAttr("writeonly")
readonly := getAttr("readonly")
// Tell the optimizer that runtime.alloc is an allocator, meaning that it
// returns values that are never null and never alias to an existing value.
for _, attrName := range []string{"noalias", "nonnull"} {
c.mod.NamedFunction("runtime.alloc").AddAttributeAtIndex(0, getAttr(attrName))
}
// See emitNilCheck in asserts.go.
c.mod.NamedFunction("runtime.isnil").AddAttributeAtIndex(1, nocapture)
// Memory copy operations do not capture pointers, even though some weird
// pointer arithmetic is happening in the Go implementation.
for _, fnName := range []string{"runtime.memcpy", "runtime.memmove"} {
fn := c.mod.NamedFunction(fnName)
fn.AddAttributeAtIndex(1, nocapture)
fn.AddAttributeAtIndex(1, writeonly)
fn.AddAttributeAtIndex(2, nocapture)
fn.AddAttributeAtIndex(2, readonly)
}
// see: https://reviews.llvm.org/D18355
if c.Debug {
c.mod.AddNamedMetadataOperand("llvm.module.flags",
c.ctx.MDNode([]llvm.Metadata{
llvm.ConstInt(c.ctx.Int32Type(), 1, false).ConstantAsMetadata(), // Error on mismatch
llvm.GlobalContext().MDString("Debug Info Version"),
llvm.ConstInt(c.ctx.Int32Type(), 3, false).ConstantAsMetadata(), // DWARF version
}),
)
c.dibuilder.Finalize()
}
return c.diagnostics
}
func (c *Compiler) getLLVMType(goType types.Type) llvm.Type {
switch typ := goType.(type) {
case *types.Array:
elemType := c.getLLVMType(typ.Elem())
return llvm.ArrayType(elemType, int(typ.Len()))
case *types.Basic:
switch typ.Kind() {
case types.Bool, types.UntypedBool:
return c.ctx.Int1Type()
case types.Int8, types.Uint8:
return c.ctx.Int8Type()
case types.Int16, types.Uint16:
return c.ctx.Int16Type()
case types.Int32, types.Uint32:
return c.ctx.Int32Type()
case types.Int, types.Uint:
return c.intType
case types.Int64, types.Uint64:
return c.ctx.Int64Type()
case types.Float32:
return c.ctx.FloatType()
case types.Float64:
return c.ctx.DoubleType()
case types.Complex64:
return c.ctx.StructType([]llvm.Type{c.ctx.FloatType(), c.ctx.FloatType()}, false)
case types.Complex128:
return c.ctx.StructType([]llvm.Type{c.ctx.DoubleType(), c.ctx.DoubleType()}, false)
case types.String, types.UntypedString:
return c.mod.GetTypeByName("runtime._string")
case types.Uintptr:
return c.uintptrType
case types.UnsafePointer:
return c.i8ptrType
default:
panic("unknown basic type: " + typ.String())
}
case *types.Chan:
return llvm.PointerType(c.mod.GetTypeByName("runtime.channel"), 0)
case *types.Interface:
return c.mod.GetTypeByName("runtime._interface")
case *types.Map:
return llvm.PointerType(c.mod.GetTypeByName("runtime.hashmap"), 0)
case *types.Named:
if _, ok := typ.Underlying().(*types.Struct); ok {
llvmType := c.mod.GetTypeByName(typ.Obj().Pkg().Path() + "." + typ.Obj().Name())
if llvmType.IsNil() {
panic("underlying type not found: " + typ.Obj().Pkg().Path() + "." + typ.Obj().Name())
}
return llvmType
}
return c.getLLVMType(typ.Underlying())
case *types.Pointer:
ptrTo := c.getLLVMType(typ.Elem())
return llvm.PointerType(ptrTo, 0)
case *types.Signature: // function value
return c.getFuncType(typ)
case *types.Slice:
elemType := c.getLLVMType(typ.Elem())
members := []llvm.Type{
llvm.PointerType(elemType, 0),
c.uintptrType, // len
c.uintptrType, // cap
}
return c.ctx.StructType(members, false)
case *types.Struct:
members := make([]llvm.Type, typ.NumFields())
for i := 0; i < typ.NumFields(); i++ {
members[i] = c.getLLVMType(typ.Field(i).Type())
}
if len(members) > 2 && typ.Field(0).Name() == "C union" {
// Not a normal struct but a C union emitted by cgo.
// Such a field name cannot be entered in regular Go code, this must
// be manually inserted in the AST so this is safe.
maxAlign := 0
maxSize := uint64(0)
mainType := members[0]
for _, member := range members {
align := c.targetData.ABITypeAlignment(member)
size := c.targetData.TypeAllocSize(member)
if align > maxAlign {
maxAlign = align
mainType = member
} else if align == maxAlign && size > maxSize {
maxAlign = align
maxSize = size
mainType = member
} else if size > maxSize {
maxSize = size
}
}
members = []llvm.Type{mainType}
mainTypeSize := c.targetData.TypeAllocSize(mainType)
if mainTypeSize < maxSize {
members = append(members, llvm.ArrayType(c.ctx.Int8Type(), int(maxSize-mainTypeSize)))
}
}
return c.ctx.StructType(members, false)
case *types.Tuple:
members := make([]llvm.Type, typ.Len())
for i := 0; i < typ.Len(); i++ {
members[i] = c.getLLVMType(typ.At(i).Type())
}
return c.ctx.StructType(members, false)
default:
panic("unknown type: " + goType.String())
}
}
// Return a zero LLVM value for any LLVM type. Setting this value as an
// initializer has the same effect as setting 'zeroinitializer' on a value.
// Sadly, I haven't found a way to do it directly with the Go API but this works
// just fine.
func (c *Compiler) getZeroValue(typ llvm.Type) llvm.Value {
switch typ.TypeKind() {
case llvm.ArrayTypeKind:
subTyp := typ.ElementType()
subVal := c.getZeroValue(subTyp)
vals := make([]llvm.Value, typ.ArrayLength())
for i := range vals {
vals[i] = subVal
}
return llvm.ConstArray(subTyp, vals)
case llvm.FloatTypeKind, llvm.DoubleTypeKind:
return llvm.ConstFloat(typ, 0.0)
case llvm.IntegerTypeKind:
return llvm.ConstInt(typ, 0, false)
case llvm.PointerTypeKind:
return llvm.ConstPointerNull(typ)
case llvm.StructTypeKind:
types := typ.StructElementTypes()
vals := make([]llvm.Value, len(types))
for i, subTyp := range types {
vals[i] = c.getZeroValue(subTyp)
}
if typ.StructName() != "" {
return llvm.ConstNamedStruct(typ, vals)
} else {
return c.ctx.ConstStruct(vals, false)
}
default:
panic("unknown LLVM zero inititializer: " + typ.String())
}
}
// Is this a pointer type of some sort? Can be unsafe.Pointer or any *T pointer.
func isPointer(typ types.Type) bool {
if _, ok := typ.(*types.Pointer); ok {
return true
} else if typ, ok := typ.(*types.Basic); ok && typ.Kind() == types.UnsafePointer {
return true
} else {
return false
}
}
// Get the DWARF type for this Go type.
func (c *Compiler) getDIType(typ types.Type) llvm.Metadata {
name := typ.String()
if dityp, ok := c.ditypes[name]; ok {
return dityp
} else {
llvmType := c.getLLVMType(typ)
sizeInBytes := c.targetData.TypeAllocSize(llvmType)
var encoding llvm.DwarfTypeEncoding
switch typ := typ.(type) {
case *types.Basic:
if typ.Info()&types.IsBoolean != 0 {
encoding = llvm.DW_ATE_boolean
} else if typ.Info()&types.IsFloat != 0 {
encoding = llvm.DW_ATE_float
} else if typ.Info()&types.IsComplex != 0 {
encoding = llvm.DW_ATE_complex_float
} else if typ.Info()&types.IsUnsigned != 0 {
encoding = llvm.DW_ATE_unsigned
} else if typ.Info()&types.IsInteger != 0 {
encoding = llvm.DW_ATE_signed
} else if typ.Kind() == types.UnsafePointer {
encoding = llvm.DW_ATE_address
}
case *types.Pointer:
encoding = llvm.DW_ATE_address
}
// TODO: other types
dityp = c.dibuilder.CreateBasicType(llvm.DIBasicType{
Name: name,
SizeInBits: sizeInBytes * 8,
Encoding: encoding,
})
c.ditypes[name] = dityp
return dityp
}
}
func (c *Compiler) parseFuncDecl(f *ir.Function) *Frame {
frame := &Frame{
fn: f,
locals: make(map[ssa.Value]llvm.Value),
blockEntries: make(map[*ssa.BasicBlock]llvm.BasicBlock),
blockExits: make(map[*ssa.BasicBlock]llvm.BasicBlock),
}
var retType llvm.Type
if f.Signature.Results() == nil {
retType = c.ctx.VoidType()
} else if f.Signature.Results().Len() == 1 {
retType = c.getLLVMType(f.Signature.Results().At(0).Type())
} else {
results := make([]llvm.Type, 0, f.Signature.Results().Len())
for i := 0; i < f.Signature.Results().Len(); i++ {
results = append(results, c.getLLVMType(f.Signature.Results().At(i).Type()))
}
retType = c.ctx.StructType(results, false)
}
var paramTypes []llvm.Type
for _, param := range f.Params {
paramType := c.getLLVMType(param.Type())
paramTypeFragments := c.expandFormalParamType(paramType)
paramTypes = append(paramTypes, paramTypeFragments...)
}
// Add an extra parameter as the function context. This context is used in
// closures and bound methods, but should be optimized away when not used.
if !f.IsExported() {
paramTypes = append(paramTypes, c.i8ptrType) // context
paramTypes = append(paramTypes, c.i8ptrType) // parent coroutine
}
fnType := llvm.FunctionType(retType, paramTypes, false)
name := f.LinkName()
frame.fn.LLVMFn = c.mod.NamedFunction(name)
if frame.fn.LLVMFn.IsNil() {
frame.fn.LLVMFn = llvm.AddFunction(c.mod, name, fnType)
}
// External/exported functions may not retain pointer values.
// https://golang.org/cmd/cgo/#hdr-Passing_pointers
if f.IsExported() {
nocaptureKind := llvm.AttributeKindID("nocapture")
nocapture := c.ctx.CreateEnumAttribute(nocaptureKind, 0)
for i, typ := range paramTypes {
if typ.TypeKind() == llvm.PointerTypeKind {
frame.fn.LLVMFn.AddAttributeAtIndex(i+1, nocapture)
}
}
}
return frame
}
func (c *Compiler) attachDebugInfo(f *ir.Function) llvm.Metadata {
pos := c.ir.Program.Fset.Position(f.Syntax().Pos())
return c.attachDebugInfoRaw(f, f.LLVMFn, "", pos.Filename, pos.Line)
}
func (c *Compiler) attachDebugInfoRaw(f *ir.Function, llvmFn llvm.Value, suffix, filename string, line int) llvm.Metadata {
if _, ok := c.difiles[filename]; !ok {
dir, file := filepath.Split(filename)
if dir != "" {
dir = dir[:len(dir)-1]
}
c.difiles[filename] = c.dibuilder.CreateFile(file, dir)
}
// Debug info for this function.
diparams := make([]llvm.Metadata, 0, len(f.Params))
for _, param := range f.Params {
diparams = append(diparams, c.getDIType(param.Type()))
}
diFuncType := c.dibuilder.CreateSubroutineType(llvm.DISubroutineType{
File: c.difiles[filename],
Parameters: diparams,
Flags: 0, // ?
})
difunc := c.dibuilder.CreateFunction(c.difiles[filename], llvm.DIFunction{
Name: f.RelString(nil) + suffix,
LinkageName: f.LinkName() + suffix,
File: c.difiles[filename],
Line: line,
Type: diFuncType,
LocalToUnit: true,
IsDefinition: true,
ScopeLine: 0,
Flags: llvm.FlagPrototyped,
Optimized: true,
})
llvmFn.SetSubprogram(difunc)
return difunc
}
func (c *Compiler) parseFunc(frame *Frame) {
if c.DumpSSA {
fmt.Printf("\nfunc %s:\n", frame.fn.Function)
}
if !frame.fn.IsExported() {
frame.fn.LLVMFn.SetLinkage(llvm.InternalLinkage)
frame.fn.LLVMFn.SetUnnamedAddr(true)
}
if frame.fn.IsInterrupt() && strings.HasPrefix(c.Triple, "avr") {
frame.fn.LLVMFn.SetFunctionCallConv(85) // CallingConv::AVR_SIGNAL
}
// Add debug info, if needed.
if c.Debug {
if frame.fn.Synthetic == "package initializer" {
// Package initializers have no debug info. Create some fake debug
// info to at least have *something*.
frame.difunc = c.attachDebugInfoRaw(frame.fn, frame.fn.LLVMFn, "", "", 0)
} else if frame.fn.Syntax() != nil {
// Create debug info file if needed.
frame.difunc = c.attachDebugInfo(frame.fn)
}
pos := c.ir.Program.Fset.Position(frame.fn.Pos())
c.builder.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), frame.difunc, llvm.Metadata{})
}
// Pre-create all basic blocks in the function.
for _, block := range frame.fn.DomPreorder() {
llvmBlock := c.ctx.AddBasicBlock(frame.fn.LLVMFn, block.Comment)
frame.blockEntries[block] = llvmBlock
frame.blockExits[block] = llvmBlock
}
entryBlock := frame.blockEntries[frame.fn.Blocks[0]]
c.builder.SetInsertPointAtEnd(entryBlock)
// Load function parameters
llvmParamIndex := 0
for i, param := range frame.fn.Params {
llvmType := c.getLLVMType(param.Type())
fields := make([]llvm.Value, 0, 1)
for range c.expandFormalParamType(llvmType) {
fields = append(fields, frame.fn.LLVMFn.Param(llvmParamIndex))
llvmParamIndex++
}
frame.locals[param] = c.collapseFormalParam(llvmType, fields)
// Add debug information to this parameter (if available)
if c.Debug && frame.fn.Syntax() != nil {
pos := c.ir.Program.Fset.Position(frame.fn.Syntax().Pos())
c.dibuilder.CreateParameterVariable(frame.difunc, llvm.DIParameterVariable{
Name: param.Name(),
File: c.difiles[pos.Filename],
Line: pos.Line,
Type: c.getDIType(param.Type()),
AlwaysPreserve: true,
ArgNo: i + 1,
})
// TODO: set the value of this parameter.
}
}
// Load free variables from the context. This is a closure (or bound
// method).
var context llvm.Value
if !frame.fn.IsExported() {
parentHandle := frame.fn.LLVMFn.LastParam()
parentHandle.SetName("parentHandle")
context = llvm.PrevParam(parentHandle)
context.SetName("context")
}
if len(frame.fn.FreeVars) != 0 {
// Get a list of all variable types in the context.
freeVarTypes := make([]llvm.Type, len(frame.fn.FreeVars))
for i, freeVar := range frame.fn.FreeVars {
freeVarTypes[i] = c.getLLVMType(freeVar.Type())
}
// Load each free variable from the context pointer.
// A free variable is always a pointer when this is a closure, but it
// can be another type when it is a wrapper for a bound method (these
// wrappers are generated by the ssa package).
for i, val := range c.emitPointerUnpack(context, freeVarTypes) {
frame.locals[frame.fn.FreeVars[i]] = val
}
}
if frame.fn.Recover != nil {
// This function has deferred function calls. Set some things up for
// them.
c.deferInitFunc(frame)
}
// Fill blocks with instructions.
for _, block := range frame.fn.DomPreorder() {
if c.DumpSSA {
fmt.Printf("%d: %s:\n", block.Index, block.Comment)
}
c.builder.SetInsertPointAtEnd(frame.blockEntries[block])
frame.currentBlock = block
for _, instr := range block.Instrs {
if _, ok := instr.(*ssa.DebugRef); ok {
continue
}
if c.DumpSSA {
if val, ok := instr.(ssa.Value); ok && val.Name() != "" {
fmt.Printf("\t%s = %s\n", val.Name(), val.String())
} else {
fmt.Printf("\t%s\n", instr.String())
}
}
c.parseInstr(frame, instr)
}
if frame.fn.Name() == "init" && len(block.Instrs) == 0 {
c.builder.CreateRetVoid()
}
}
// Resolve phi nodes
for _, phi := range frame.phis {
block := phi.ssa.Block()
for i, edge := range phi.ssa.Edges {
llvmVal := c.getValue(frame, edge)
llvmBlock := frame.blockExits[block.Preds[i]]
phi.llvm.AddIncoming([]llvm.Value{llvmVal}, []llvm.BasicBlock{llvmBlock})
}
}
}
func (c *Compiler) parseInstr(frame *Frame, instr ssa.Instruction) {
if c.Debug {
pos := c.ir.Program.Fset.Position(instr.Pos())
c.builder.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), frame.difunc, llvm.Metadata{})
}
switch instr := instr.(type) {
case ssa.Value:
if value, err := c.parseExpr(frame, instr); err != nil {
// This expression could not be parsed. Add the error to the list
// of diagnostics and continue with an undef value.
// The resulting IR will be incorrect (but valid). However,
// compilation can proceed which is useful because there may be
// more compilation errors which can then all be shown together to
// the user.
c.diagnostics = append(c.diagnostics, err)
frame.locals[instr] = llvm.Undef(c.getLLVMType(instr.Type()))
} else {
frame.locals[instr] = value
}
case *ssa.DebugRef:
// ignore
case *ssa.Defer:
c.emitDefer(frame, instr)
case *ssa.Go:
if instr.Call.IsInvoke() {
c.addError(instr.Pos(), "todo: go on method receiver")
return
}
callee := instr.Call.StaticCallee()
if callee == nil {
c.addError(instr.Pos(), "todo: go on non-direct function (function pointer, etc.)")
return
}
calleeFn := c.ir.GetFunction(callee)
// Mark this function as a 'go' invocation and break invalid
// interprocedural optimizations. For example, heap-to-stack
// transformations are not sound as goroutines can outlive their parent.
calleeType := calleeFn.LLVMFn.Type()
calleeValue := c.builder.CreateBitCast(calleeFn.LLVMFn, c.i8ptrType, "")
calleeValue = c.createRuntimeCall("makeGoroutine", []llvm.Value{calleeValue}, "")
calleeValue = c.builder.CreateBitCast(calleeValue, calleeType, "")
// Get all function parameters to pass to the goroutine.
var params []llvm.Value
for _, param := range instr.Call.Args {
params = append(params, c.getValue(frame, param))
}
if !calleeFn.IsExported() {
params = append(params, llvm.Undef(c.i8ptrType)) // context parameter
params = append(params, llvm.Undef(c.i8ptrType)) // parent coroutine handle
}
c.createCall(calleeValue, params, "")
case *ssa.If:
cond := c.getValue(frame, instr.Cond)
block := instr.Block()
blockThen := frame.blockEntries[block.Succs[0]]
blockElse := frame.blockEntries[block.Succs[1]]
c.builder.CreateCondBr(cond, blockThen, blockElse)
case *ssa.Jump:
blockJump := frame.blockEntries[instr.Block().Succs[0]]
c.builder.CreateBr(blockJump)
case *ssa.MapUpdate:
m := c.getValue(frame, instr.Map)
key := c.getValue(frame, instr.Key)
value := c.getValue(frame, instr.Value)
mapType := instr.Map.Type().Underlying().(*types.Map)
c.emitMapUpdate(mapType.Key(), m, key, value, instr.Pos())
case *ssa.Panic:
value := c.getValue(frame, instr.X)
c.createRuntimeCall("_panic", []llvm.Value{value}, "")
c.builder.CreateUnreachable()
case *ssa.Return:
if len(instr.Results) == 0 {
c.builder.CreateRetVoid()
} else if len(instr.Results) == 1 {
c.builder.CreateRet(c.getValue(frame, instr.Results[0]))
} else {
// Multiple return values. Put them all in a struct.
retVal := c.getZeroValue(frame.fn.LLVMFn.Type().ElementType().ReturnType())
for i, result := range instr.Results {
val := c.getValue(frame, result)
retVal = c.builder.CreateInsertValue(retVal, val, i, "")
}
c.builder.CreateRet(retVal)
}
case *ssa.RunDefers:
c.emitRunDefers(frame)
case *ssa.Send:
c.emitChanSend(frame, instr)
case *ssa.Store:
llvmAddr := c.getValue(frame, instr.Addr)
llvmVal := c.getValue(frame, instr.Val)
if c.targetData.TypeAllocSize(llvmVal.Type()) == 0 {
// nothing to store
return
}
store := c.builder.CreateStore(llvmVal, llvmAddr)
valType := instr.Addr.Type().Underlying().(*types.Pointer).Elem()
if c.ir.IsVolatile(valType) {
// Volatile store, for memory-mapped registers.
store.SetVolatile(true)
}
default:
c.addError(instr.Pos(), "unknown instruction: "+instr.String())
}
}
func (c *Compiler) parseBuiltin(frame *Frame, args []ssa.Value, callName string, pos token.Pos) (llvm.Value, error) {
switch callName {
case "append":
src := c.getValue(frame, args[0])
elems := c.getValue(frame, args[1])
srcBuf := c.builder.CreateExtractValue(src, 0, "append.srcBuf")
srcPtr := c.builder.CreateBitCast(srcBuf, c.i8ptrType, "append.srcPtr")
srcLen := c.builder.CreateExtractValue(src, 1, "append.srcLen")
srcCap := c.builder.CreateExtractValue(src, 2, "append.srcCap")
elemsBuf := c.builder.CreateExtractValue(elems, 0, "append.elemsBuf")
elemsPtr := c.builder.CreateBitCast(elemsBuf, c.i8ptrType, "append.srcPtr")
elemsLen := c.builder.CreateExtractValue(elems, 1, "append.elemsLen")
elemType := srcBuf.Type().ElementType()
elemSize := llvm.ConstInt(c.uintptrType, c.targetData.TypeAllocSize(elemType), false)
result := c.createRuntimeCall("sliceAppend", []llvm.Value{srcPtr, elemsPtr, srcLen, srcCap, elemsLen, elemSize}, "append.new")
newPtr := c.builder.CreateExtractValue(result, 0, "append.newPtr")
newBuf := c.builder.CreateBitCast(newPtr, srcBuf.Type(), "append.newBuf")
newLen := c.builder.CreateExtractValue(result, 1, "append.newLen")
newCap := c.builder.CreateExtractValue(result, 2, "append.newCap")
newSlice := llvm.Undef(src.Type())
newSlice = c.builder.CreateInsertValue(newSlice, newBuf, 0, "")
newSlice = c.builder.CreateInsertValue(newSlice, newLen, 1, "")
newSlice = c.builder.CreateInsertValue(newSlice, newCap, 2, "")
return newSlice, nil
case "cap":
value := c.getValue(frame, args[0])
var llvmCap llvm.Value
switch args[0].Type().(type) {
case *types.Chan:
// Channel. Buffered channels haven't been implemented yet so always
// return 0.
llvmCap = llvm.ConstInt(c.intType, 0, false)
case *types.Slice:
llvmCap = c.builder.CreateExtractValue(value, 2, "cap")
default:
return llvm.Value{}, c.makeError(pos, "todo: cap: unknown type")
}
if c.targetData.TypeAllocSize(llvmCap.Type()) < c.targetData.TypeAllocSize(c.intType) {
llvmCap = c.builder.CreateZExt(llvmCap, c.intType, "len.int")
}
return llvmCap, nil
case "close":
c.emitChanClose(frame, args[0])
return llvm.Value{}, nil
case "complex":
r := c.getValue(frame, args[0])
i := c.getValue(frame, args[1])
t := args[0].Type().Underlying().(*types.Basic)
var cplx llvm.Value
switch t.Kind() {
case types.Float32:
cplx = llvm.Undef(c.ctx.StructType([]llvm.Type{c.ctx.FloatType(), c.ctx.FloatType()}, false))
case types.Float64:
cplx = llvm.Undef(c.ctx.StructType([]llvm.Type{c.ctx.DoubleType(), c.ctx.DoubleType()}, false))
default:
return llvm.Value{}, c.makeError(pos, "unsupported type in complex builtin: "+t.String())
}
cplx = c.builder.CreateInsertValue(cplx, r, 0, "")
cplx = c.builder.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
case "copy":
dst := c.getValue(frame, args[0])
src := c.getValue(frame, args[1])
dstLen := c.builder.CreateExtractValue(dst, 1, "copy.dstLen")
srcLen := c.builder.CreateExtractValue(src, 1, "copy.srcLen")
dstBuf := c.builder.CreateExtractValue(dst, 0, "copy.dstArray")
srcBuf := c.builder.CreateExtractValue(src, 0, "copy.srcArray")
elemType := dstBuf.Type().ElementType()
dstBuf = c.builder.CreateBitCast(dstBuf, c.i8ptrType, "copy.dstPtr")
srcBuf = c.builder.CreateBitCast(srcBuf, c.i8ptrType, "copy.srcPtr")
elemSize := llvm.ConstInt(c.uintptrType, c.targetData.TypeAllocSize(elemType), false)
return c.createRuntimeCall("sliceCopy", []llvm.Value{dstBuf, srcBuf, dstLen, srcLen, elemSize}, "copy.n"), nil
case "delete":
m := c.getValue(frame, args[0])
key := c.getValue(frame, args[1])
return llvm.Value{}, c.emitMapDelete(args[1].Type(), m, key, pos)
case "imag":
cplx := c.getValue(frame, args[0])
return c.builder.CreateExtractValue(cplx, 1, "imag"), nil
case "len":
value := c.getValue(frame, args[0])
var llvmLen llvm.Value
switch args[0].Type().Underlying().(type) {
case *types.Basic, *types.Slice:
// string or slice
llvmLen = c.builder.CreateExtractValue(value, 1, "len")
case *types.Chan:
// Channel. Buffered channels haven't been implemented yet so always
// return 0.
llvmLen = llvm.ConstInt(c.intType, 0, false)
case *types.Map:
llvmLen = c.createRuntimeCall("hashmapLen", []llvm.Value{value}, "len")
default:
return llvm.Value{}, c.makeError(pos, "todo: len: unknown type")
}
if c.targetData.TypeAllocSize(llvmLen.Type()) < c.targetData.TypeAllocSize(c.intType) {
llvmLen = c.builder.CreateZExt(llvmLen, c.intType, "len.int")
}
return llvmLen, nil
case "print", "println":
for i, arg := range args {
if i >= 1 && callName == "println" {
c.createRuntimeCall("printspace", nil, "")
}
value := c.getValue(frame, arg)
typ := arg.Type().Underlying()
switch typ := typ.(type) {
case *types.Basic:
switch typ.Kind() {
case types.String, types.UntypedString:
c.createRuntimeCall("printstring", []llvm.Value{value}, "")
case types.Uintptr:
c.createRuntimeCall("printptr", []llvm.Value{value}, "")
case types.UnsafePointer:
ptrValue := c.builder.CreatePtrToInt(value, c.uintptrType, "")
c.createRuntimeCall("printptr", []llvm.Value{ptrValue}, "")
default:
// runtime.print{int,uint}{8,16,32,64}
if typ.Info()&types.IsInteger != 0 {
name := "print"
if typ.Info()&types.IsUnsigned != 0 {
name += "uint"
} else {
name += "int"
}
name += strconv.FormatUint(c.targetData.TypeAllocSize(value.Type())*8, 10)
c.createRuntimeCall(name, []llvm.Value{value}, "")
} else if typ.Kind() == types.Bool {
c.createRuntimeCall("printbool", []llvm.Value{value}, "")
} else if typ.Kind() == types.Float32 {
c.createRuntimeCall("printfloat32", []llvm.Value{value}, "")
} else if typ.Kind() == types.Float64 {
c.createRuntimeCall("printfloat64", []llvm.Value{value}, "")
} else if typ.Kind() == types.Complex64 {
c.createRuntimeCall("printcomplex64", []llvm.Value{value}, "")
} else if typ.Kind() == types.Complex128 {
c.createRuntimeCall("printcomplex128", []llvm.Value{value}, "")
} else {
return llvm.Value{}, c.makeError(pos, "unknown basic arg type: "+typ.String())
}
}
case *types.Interface:
c.createRuntimeCall("printitf", []llvm.Value{value}, "")
case *types.Map:
c.createRuntimeCall("printmap", []llvm.Value{value}, "")
case *types.Pointer:
ptrValue := c.builder.CreatePtrToInt(value, c.uintptrType, "")
c.createRuntimeCall("printptr", []llvm.Value{ptrValue}, "")
default:
return llvm.Value{}, c.makeError(pos, "unknown arg type: "+typ.String())
}
}
if callName == "println" {
c.createRuntimeCall("printnl", nil, "")
}
return llvm.Value{}, nil // print() or println() returns void
case "real":
cplx := c.getValue(frame, args[0])
return c.builder.CreateExtractValue(cplx, 0, "real"), nil
case "recover":
return c.createRuntimeCall("_recover", nil, ""), nil
case "ssa:wrapnilchk":
// TODO: do an actual nil check?
return c.getValue(frame, args[0]), nil
default:
return llvm.Value{}, c.makeError(pos, "todo: builtin: "+callName)
}
}
func (c *Compiler) parseFunctionCall(frame *Frame, args []ssa.Value, llvmFn, context llvm.Value, exported bool) llvm.Value {
var params []llvm.Value
for _, param := range args {
params = append(params, c.getValue(frame, param))
}
if !exported {
// This function takes a context parameter.
// Add it to the end of the parameter list.
params = append(params, context)
// Parent coroutine handle.
params = append(params, llvm.Undef(c.i8ptrType))
}
return c.createCall(llvmFn, params, "")
}
func (c *Compiler) parseCall(frame *Frame, instr *ssa.CallCommon) (llvm.Value, error) {
if instr.IsInvoke() {
fnCast, args := c.getInvokeCall(frame, instr)
return c.createCall(fnCast, args, ""), nil
}
// Try to call the function directly for trivially static calls.
if fn := instr.StaticCallee(); fn != nil {
switch fn.RelString(nil) {
case "device/arm.ReadRegister":
return c.emitReadRegister(instr.Args)
case "device/arm.Asm", "device/avr.Asm":
return c.emitAsm(instr.Args)
case "device/arm.AsmFull", "device/avr.AsmFull":
return c.emitAsmFull(frame, instr)
case "device/arm.SVCall0", "device/arm.SVCall1", "device/arm.SVCall2", "device/arm.SVCall3", "device/arm.SVCall4":
return c.emitSVCall(frame, instr.Args)
case "syscall.Syscall", "syscall.Syscall6", "syscall.Syscall9":
return c.emitSyscall(frame, instr)
}
targetFunc := c.ir.GetFunction(fn)
if targetFunc.LLVMFn.IsNil() {
return llvm.Value{}, c.makeError(instr.Pos(), "undefined function: "+targetFunc.LinkName())
}
var context llvm.Value
switch value := instr.Value.(type) {
case *ssa.Function:
// Regular function call. No context is necessary.
context = llvm.Undef(c.i8ptrType)
case *ssa.MakeClosure:
// A call on a func value, but the callee is trivial to find. For
// example: immediately applied functions.
funcValue := c.getValue(frame, value)
context = c.extractFuncContext(funcValue)
default:
panic("StaticCallee returned an unexpected value")
}
return c.parseFunctionCall(frame, instr.Args, targetFunc.LLVMFn, context, targetFunc.IsExported()), nil
}
// Builtin or function pointer.
switch call := instr.Value.(type) {
case *ssa.Builtin:
return c.parseBuiltin(frame, instr.Args, call.Name(), instr.Pos())
default: // function pointer
value := c.getValue(frame, instr.Value)
// This is a func value, which cannot be called directly. We have to
// extract the function pointer and context first from the func value.
funcPtr, context, err := c.decodeFuncValue(value, instr.Value.Type().Underlying().(*types.Signature))
if err != nil {
return llvm.Value{}, err
}
c.emitNilCheck(frame, funcPtr, "fpcall")
return c.parseFunctionCall(frame, instr.Args, funcPtr, context, false), nil
}
}
// getValue returns the LLVM value of a constant, function value, global, or
// already processed SSA expression.
func (c *Compiler) getValue(frame *Frame, expr ssa.Value) llvm.Value {
switch expr := expr.(type) {
case *ssa.Const:
return c.parseConst(frame.fn.LinkName(), expr)
case *ssa.Function:
fn := c.ir.GetFunction(expr)
if fn.IsExported() {
c.addError(expr.Pos(), "cannot use an exported function as value: "+expr.String())
return llvm.Undef(c.getLLVMType(expr.Type()))
}
return c.createFuncValue(fn.LLVMFn, llvm.Undef(c.i8ptrType), fn.Signature)
case *ssa.Global:
value := c.ir.GetGlobal(expr).LLVMGlobal
if value.IsNil() {
c.addError(expr.Pos(), "global not found: "+c.ir.GetGlobal(expr).LinkName())
return llvm.Undef(c.getLLVMType(expr.Type()))
}
return value
default:
// other (local) SSA value
if value, ok := frame.locals[expr]; ok {
return value
} else {
// indicates a compiler bug
panic("local has not been parsed: " + expr.String())
}
}
}
// parseExpr translates a Go SSA expression to a LLVM instruction.
func (c *Compiler) parseExpr(frame *Frame, expr ssa.Value) (llvm.Value, error) {
if _, ok := frame.locals[expr]; ok {
// sanity check
panic("local has already been parsed: " + expr.String())
}
switch expr := expr.(type) {
case *ssa.Alloc:
typ := c.getLLVMType(expr.Type().Underlying().(*types.Pointer).Elem())
var buf llvm.Value
if expr.Heap {
size := c.targetData.TypeAllocSize(typ)
// Calculate ^uintptr(0)
maxSize := llvm.ConstNot(llvm.ConstInt(c.uintptrType, 0, false)).ZExtValue()
if size > maxSize {
// Size would be truncated if truncated to uintptr.
return llvm.Value{}, c.makeError(expr.Pos(), fmt.Sprintf("value is too big (%v bytes)", size))
}
// TODO: escape analysis
sizeValue := llvm.ConstInt(c.uintptrType, size, false)
buf = c.createRuntimeCall("alloc", []llvm.Value{sizeValue}, expr.Comment)
buf = c.builder.CreateBitCast(buf, llvm.PointerType(typ, 0), "")
} else {
buf = c.builder.CreateAlloca(typ, expr.Comment)
if c.targetData.TypeAllocSize(typ) != 0 {
c.builder.CreateStore(c.getZeroValue(typ), buf) // zero-initialize var
}
}
return buf, nil
case *ssa.BinOp:
x := c.getValue(frame, expr.X)
y := c.getValue(frame, expr.Y)
return c.parseBinOp(expr.Op, expr.X.Type(), x, y, expr.Pos())
case *ssa.Call:
// Passing the current task here to the subroutine. It is only used when
// the subroutine is blocking.
return c.parseCall(frame, expr.Common())
case *ssa.ChangeInterface:
// Do not change between interface types: always use the underlying
// (concrete) type in the type number of the interface. Every method
// call on an interface will do a lookup which method to call.
// This is different from how the official Go compiler works, because of
// heap allocation and because it's easier to implement, see:
// https://research.swtch.com/interfaces
return c.getValue(frame, expr.X), nil
case *ssa.ChangeType:
// This instruction changes the type, but the underlying value remains
// the same. This is often a no-op, but sometimes we have to change the
// LLVM type as well.
x := c.getValue(frame, expr.X)
llvmType := c.getLLVMType(expr.Type())
if x.Type() == llvmType {
// Different Go type but same LLVM type (for example, named int).
// This is the common case.
return x, nil
}
// Figure out what kind of type we need to cast.
switch llvmType.TypeKind() {
case llvm.StructTypeKind:
// Unfortunately, we can't just bitcast structs. We have to
// actually create a new struct of the correct type and insert the
// values from the previous struct in there.
value := llvm.Undef(llvmType)
for i := 0; i < llvmType.StructElementTypesCount(); i++ {
field := c.builder.CreateExtractValue(x, i, "changetype.field")
value = c.builder.CreateInsertValue(value, field, i, "changetype.struct")
}
return value, nil
case llvm.PointerTypeKind:
// This can happen with pointers to structs. This case is easy:
// simply bitcast the pointer to the destination type.
return c.builder.CreateBitCast(x, llvmType, "changetype.pointer"), nil
default:
return llvm.Value{}, errors.New("todo: unknown ChangeType type: " + expr.X.Type().String())
}
case *ssa.Const:
panic("const is not an expression")
case *ssa.Convert:
x := c.getValue(frame, expr.X)
return c.parseConvert(expr.X.Type(), expr.Type(), x, expr.Pos())
case *ssa.Extract:
value := c.getValue(frame, expr.Tuple)
result := c.builder.CreateExtractValue(value, expr.Index, "")
return result, nil
case *ssa.Field:
value := c.getValue(frame, expr.X)
if s := expr.X.Type().Underlying().(*types.Struct); s.NumFields() > 2 && s.Field(0).Name() == "C union" {
// Extract a field from a CGo union.
// This could be done directly, but as this is a very infrequent
// operation it's much easier to bitcast it through an alloca.
resultType := c.getLLVMType(expr.Type())
alloca := c.builder.CreateAlloca(value.Type(), "")
c.builder.CreateStore(value, alloca)
bitcast := c.builder.CreateBitCast(alloca, llvm.PointerType(resultType, 0), "")
return c.builder.CreateLoad(bitcast, ""), nil
}
result := c.builder.CreateExtractValue(value, expr.Field, "")
return result, nil
case *ssa.FieldAddr:
val := c.getValue(frame, expr.X)
// Check for nil pointer before calculating the address, from the spec:
// > For an operand x of type T, the address operation &x generates a
// > pointer of type *T to x. [...] If the evaluation of x would cause a
// > run-time panic, then the evaluation of &x does too.
c.emitNilCheck(frame, val, "gep")
if s := expr.X.Type().(*types.Pointer).Elem().Underlying().(*types.Struct); s.NumFields() > 2 && s.Field(0).Name() == "C union" {
// This is not a regular struct but actually an union.
// That simplifies things, as we can just bitcast the pointer to the
// right type.
ptrType := c.getLLVMType(expr.Type())
return c.builder.CreateBitCast(val, ptrType, ""), nil
} else {
// Do a GEP on the pointer to get the field address.
indices := []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
llvm.ConstInt(c.ctx.Int32Type(), uint64(expr.Field), false),
}
return c.builder.CreateInBoundsGEP(val, indices, ""), nil
}
case *ssa.Function:
panic("function is not an expression")
case *ssa.Global:
panic("global is not an expression")
case *ssa.Index:
array := c.getValue(frame, expr.X)
index := c.getValue(frame, expr.Index)
// Check bounds.
arrayLen := expr.X.Type().(*types.Array).Len()
arrayLenLLVM := llvm.ConstInt(c.uintptrType, uint64(arrayLen), false)
c.emitLookupBoundsCheck(frame, arrayLenLLVM, index, expr.Index.Type())
// Can't load directly from array (as index is non-constant), so have to
// do it using an alloca+gep+load.
alloca := c.builder.CreateAlloca(array.Type(), "index.alloca")
c.builder.CreateStore(array, alloca)
zero := llvm.ConstInt(c.ctx.Int32Type(), 0, false)
ptr := c.builder.CreateInBoundsGEP(alloca, []llvm.Value{zero, index}, "index.gep")
return c.builder.CreateLoad(ptr, "index.load"), nil
case *ssa.IndexAddr:
val := c.getValue(frame, expr.X)
index := c.getValue(frame, expr.Index)
// Get buffer pointer and length
var bufptr, buflen llvm.Value
switch ptrTyp := expr.X.Type().Underlying().(type) {
case *types.Pointer:
typ := expr.X.Type().Underlying().(*types.Pointer).Elem().Underlying()
switch typ := typ.(type) {
case *types.Array:
bufptr = val
buflen = llvm.ConstInt(c.uintptrType, uint64(typ.Len()), false)
// Check for nil pointer before calculating the address, from
// the spec:
// > For an operand x of type T, the address operation &x
// > generates a pointer of type *T to x. [...] If the
// > evaluation of x would cause a run-time panic, then the
// > evaluation of &x does too.
c.emitNilCheck(frame, bufptr, "gep")
default:
return llvm.Value{}, c.makeError(expr.Pos(), "todo: indexaddr: "+typ.String())
}
case *types.Slice:
bufptr = c.builder.CreateExtractValue(val, 0, "indexaddr.ptr")
buflen = c.builder.CreateExtractValue(val, 1, "indexaddr.len")
default:
return llvm.Value{}, c.makeError(expr.Pos(), "todo: indexaddr: "+ptrTyp.String())
}
// Bounds check.
c.emitLookupBoundsCheck(frame, buflen, index, expr.Index.Type())
switch expr.X.Type().Underlying().(type) {
case *types.Pointer:
indices := []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
index,
}
return c.builder.CreateInBoundsGEP(bufptr, indices, ""), nil
case *types.Slice:
return c.builder.CreateInBoundsGEP(bufptr, []llvm.Value{index}, ""), nil
default:
panic("unreachable")
}
case *ssa.Lookup:
value := c.getValue(frame, expr.X)
index := c.getValue(frame, expr.Index)
switch xType := expr.X.Type().Underlying().(type) {
case *types.Basic:
// Value type must be a string, which is a basic type.
if xType.Info()&types.IsString == 0 {
panic("lookup on non-string?")
}
// Bounds check.
length := c.builder.CreateExtractValue(value, 1, "len")
c.emitLookupBoundsCheck(frame, length, index, expr.Index.Type())
// Lookup byte
buf := c.builder.CreateExtractValue(value, 0, "")
bufPtr := c.builder.CreateInBoundsGEP(buf, []llvm.Value{index}, "")
return c.builder.CreateLoad(bufPtr, ""), nil
case *types.Map:
valueType := expr.Type()
if expr.CommaOk {
valueType = valueType.(*types.Tuple).At(0).Type()
}
return c.emitMapLookup(xType.Key(), valueType, value, index, expr.CommaOk, expr.Pos())
default:
panic("unknown lookup type: " + expr.String())
}
case *ssa.MakeChan:
return c.emitMakeChan(expr)
case *ssa.MakeClosure:
return c.parseMakeClosure(frame, expr)
case *ssa.MakeInterface:
val := c.getValue(frame, expr.X)
return c.parseMakeInterface(val, expr.X.Type(), expr.Pos())
case *ssa.MakeMap:
mapType := expr.Type().Underlying().(*types.Map)
llvmKeyType := c.getLLVMType(mapType.Key().Underlying())
llvmValueType := c.getLLVMType(mapType.Elem().Underlying())
keySize := c.targetData.TypeAllocSize(llvmKeyType)
valueSize := c.targetData.TypeAllocSize(llvmValueType)
llvmKeySize := llvm.ConstInt(c.ctx.Int8Type(), keySize, false)
llvmValueSize := llvm.ConstInt(c.ctx.Int8Type(), valueSize, false)
hashmap := c.createRuntimeCall("hashmapMake", []llvm.Value{llvmKeySize, llvmValueSize}, "")
return hashmap, nil
case *ssa.MakeSlice:
sliceLen := c.getValue(frame, expr.Len)
sliceCap := c.getValue(frame, expr.Cap)
sliceType := expr.Type().Underlying().(*types.Slice)
llvmElemType := c.getLLVMType(sliceType.Elem())
elemSize := c.targetData.TypeAllocSize(llvmElemType)
elemSizeValue := llvm.ConstInt(c.uintptrType, elemSize, false)
// Calculate (^uintptr(0)) >> 1, which is the max value that fits in
// uintptr if uintptr were signed.
maxSize := llvm.ConstLShr(llvm.ConstNot(llvm.ConstInt(c.uintptrType, 0, false)), llvm.ConstInt(c.uintptrType, 1, false))
if elemSize > maxSize.ZExtValue() {
// This seems to be checked by the typechecker already, but let's
// check it again just to be sure.
return llvm.Value{}, c.makeError(expr.Pos(), fmt.Sprintf("slice element type is too big (%v bytes)", elemSize))
}
// Bounds checking.
c.emitSliceBoundsCheck(frame, maxSize, sliceLen, sliceCap, expr.Len.Type().(*types.Basic), expr.Cap.Type().(*types.Basic))
// Allocate the backing array.
// TODO: escape analysis
sliceCapCast, err := c.parseConvert(expr.Cap.Type(), types.Typ[types.Uintptr], sliceCap, expr.Pos())
if err != nil {
return llvm.Value{}, err
}
sliceSize := c.builder.CreateBinOp(llvm.Mul, elemSizeValue, sliceCapCast, "makeslice.cap")
slicePtr := c.createRuntimeCall("alloc", []llvm.Value{sliceSize}, "makeslice.buf")
slicePtr = c.builder.CreateBitCast(slicePtr, llvm.PointerType(llvmElemType, 0), "makeslice.array")
// Extend or truncate if necessary. This is safe as we've already done
// the bounds check.
sliceLen, err = c.parseConvert(expr.Len.Type(), types.Typ[types.Uintptr], sliceLen, expr.Pos())
if err != nil {
return llvm.Value{}, err
}
sliceCap, err = c.parseConvert(expr.Cap.Type(), types.Typ[types.Uintptr], sliceCap, expr.Pos())
if err != nil {
return llvm.Value{}, err
}
// Create the slice.
slice := c.ctx.ConstStruct([]llvm.Value{
llvm.Undef(slicePtr.Type()),
llvm.Undef(c.uintptrType),
llvm.Undef(c.uintptrType),
}, false)
slice = c.builder.CreateInsertValue(slice, slicePtr, 0, "")
slice = c.builder.CreateInsertValue(slice, sliceLen, 1, "")
slice = c.builder.CreateInsertValue(slice, sliceCap, 2, "")
return slice, nil
case *ssa.Next:
rangeVal := expr.Iter.(*ssa.Range).X
llvmRangeVal := c.getValue(frame, rangeVal)
it := c.getValue(frame, expr.Iter)
if expr.IsString {
return c.createRuntimeCall("stringNext", []llvm.Value{llvmRangeVal, it}, "range.next"), nil
} else { // map
llvmKeyType := c.getLLVMType(rangeVal.Type().Underlying().(*types.Map).Key())
llvmValueType := c.getLLVMType(rangeVal.Type().Underlying().(*types.Map).Elem())
mapKeyAlloca := c.builder.CreateAlloca(llvmKeyType, "range.key")
mapKeyPtr := c.builder.CreateBitCast(mapKeyAlloca, c.i8ptrType, "range.keyptr")
mapValueAlloca := c.builder.CreateAlloca(llvmValueType, "range.value")
mapValuePtr := c.builder.CreateBitCast(mapValueAlloca, c.i8ptrType, "range.valueptr")
ok := c.createRuntimeCall("hashmapNext", []llvm.Value{llvmRangeVal, it, mapKeyPtr, mapValuePtr}, "range.next")
tuple := llvm.Undef(c.ctx.StructType([]llvm.Type{c.ctx.Int1Type(), llvmKeyType, llvmValueType}, false))
tuple = c.builder.CreateInsertValue(tuple, ok, 0, "")
tuple = c.builder.CreateInsertValue(tuple, c.builder.CreateLoad(mapKeyAlloca, ""), 1, "")
tuple = c.builder.CreateInsertValue(tuple, c.builder.CreateLoad(mapValueAlloca, ""), 2, "")
return tuple, nil
}
case *ssa.Phi:
phi := c.builder.CreatePHI(c.getLLVMType(expr.Type()), "")
frame.phis = append(frame.phis, Phi{expr, phi})
return phi, nil
case *ssa.Range:
var iteratorType llvm.Type
switch typ := expr.X.Type().Underlying().(type) {
case *types.Basic: // string
iteratorType = c.mod.GetTypeByName("runtime.stringIterator")
case *types.Map:
iteratorType = c.mod.GetTypeByName("runtime.hashmapIterator")
default:
panic("unknown type in range: " + typ.String())
}
it := c.builder.CreateAlloca(iteratorType, "range.it")
c.builder.CreateStore(c.getZeroValue(iteratorType), it)
return it, nil
case *ssa.Select:
if len(expr.States) == 0 {
// Shortcuts for some simple selects.
llvmType := c.getLLVMType(expr.Type())
if expr.Blocking {
// Blocks forever:
// select {}
c.createRuntimeCall("deadlockStub", nil, "")
return llvm.Undef(llvmType), nil
} else {
// No-op:
// select {
// default:
// }
retval := llvm.Undef(llvmType)
retval = c.builder.CreateInsertValue(retval, llvm.ConstInt(c.intType, 0xffffffffffffffff, true), 0, "")
return retval, nil // {-1, false}
}
}
return llvm.Value{}, c.makeError(expr.Pos(), "unimplemented: "+expr.String())
case *ssa.Slice:
if expr.Max != nil {
return llvm.Value{}, c.makeError(expr.Pos(), "todo: full slice expressions (with max): "+expr.Type().String())
}
value := c.getValue(frame, expr.X)
var lowType, highType *types.Basic
var low, high llvm.Value
if expr.Low != nil {
lowType = expr.Low.Type().Underlying().(*types.Basic)
low = c.getValue(frame, expr.Low)
if low.Type().IntTypeWidth() < c.uintptrType.IntTypeWidth() {
if lowType.Info()&types.IsUnsigned != 0 {
low = c.builder.CreateZExt(low, c.uintptrType, "")
} else {
low = c.builder.CreateSExt(low, c.uintptrType, "")
}
}
} else {
lowType = types.Typ[types.Uintptr]
low = llvm.ConstInt(c.uintptrType, 0, false)
}
if expr.High != nil {
highType = expr.High.Type().Underlying().(*types.Basic)
high = c.getValue(frame, expr.High)
if high.Type().IntTypeWidth() < c.uintptrType.IntTypeWidth() {
if highType.Info()&types.IsUnsigned != 0 {
high = c.builder.CreateZExt(high, c.uintptrType, "")
} else {
high = c.builder.CreateSExt(high, c.uintptrType, "")
}
}
} else {
highType = types.Typ[types.Uintptr]
}
switch typ := expr.X.Type().Underlying().(type) {
case *types.Pointer: // pointer to array
// slice an array
length := typ.Elem().Underlying().(*types.Array).Len()
llvmLen := llvm.ConstInt(c.uintptrType, uint64(length), false)
if high.IsNil() {
high = llvmLen
}
indices := []llvm.Value{
llvm.ConstInt(c.ctx.Int32Type(), 0, false),
low,
}
c.emitSliceBoundsCheck(frame, llvmLen, low, high, lowType, highType)
// Truncate ints bigger than uintptr. This is after the bounds
// check so it's safe.
if c.targetData.TypeAllocSize(high.Type()) > c.targetData.TypeAllocSize(c.uintptrType) {
high = c.builder.CreateTrunc(high, c.uintptrType, "")
}
if c.targetData.TypeAllocSize(low.Type()) > c.targetData.TypeAllocSize(c.uintptrType) {
low = c.builder.CreateTrunc(low, c.uintptrType, "")
}
sliceLen := c.builder.CreateSub(high, low, "slice.len")
slicePtr := c.builder.CreateInBoundsGEP(value, indices, "slice.ptr")
sliceCap := c.builder.CreateSub(llvmLen, low, "slice.cap")
slice := c.ctx.ConstStruct([]llvm.Value{
llvm.Undef(slicePtr.Type()),
llvm.Undef(c.uintptrType),
llvm.Undef(c.uintptrType),
}, false)
slice = c.builder.CreateInsertValue(slice, slicePtr, 0, "")
slice = c.builder.CreateInsertValue(slice, sliceLen, 1, "")
slice = c.builder.CreateInsertValue(slice, sliceCap, 2, "")
return slice, nil
case *types.Slice:
// slice a slice
oldPtr := c.builder.CreateExtractValue(value, 0, "")
oldLen := c.builder.CreateExtractValue(value, 1, "")
oldCap := c.builder.CreateExtractValue(value, 2, "")
if high.IsNil() {
high = oldLen
}
c.emitSliceBoundsCheck(frame, oldCap, low, high, lowType, highType)
// Truncate ints bigger than uintptr. This is after the bounds
// check so it's safe.
if c.targetData.TypeAllocSize(low.Type()) > c.targetData.TypeAllocSize(c.uintptrType) {
low = c.builder.CreateTrunc(low, c.uintptrType, "")
}
if c.targetData.TypeAllocSize(high.Type()) > c.targetData.TypeAllocSize(c.uintptrType) {
high = c.builder.CreateTrunc(high, c.uintptrType, "")
}
newPtr := c.builder.CreateInBoundsGEP(oldPtr, []llvm.Value{low}, "")
newLen := c.builder.CreateSub(high, low, "")
newCap := c.builder.CreateSub(oldCap, low, "")
slice := c.ctx.ConstStruct([]llvm.Value{
llvm.Undef(newPtr.Type()),
llvm.Undef(c.uintptrType),
llvm.Undef(c.uintptrType),
}, false)
slice = c.builder.CreateInsertValue(slice, newPtr, 0, "")
slice = c.builder.CreateInsertValue(slice, newLen, 1, "")
slice = c.builder.CreateInsertValue(slice, newCap, 2, "")
return slice, nil
case *types.Basic:
if typ.Info()&types.IsString == 0 {
return llvm.Value{}, c.makeError(expr.Pos(), "unknown slice type: "+typ.String())
}
// slice a string
oldPtr := c.builder.CreateExtractValue(value, 0, "")
oldLen := c.builder.CreateExtractValue(value, 1, "")
if high.IsNil() {
high = oldLen
}
c.emitSliceBoundsCheck(frame, oldLen, low, high, lowType, highType)
// Truncate ints bigger than uintptr. This is after the bounds
// check so it's safe.
if c.targetData.TypeAllocSize(low.Type()) > c.targetData.TypeAllocSize(c.uintptrType) {
low = c.builder.CreateTrunc(low, c.uintptrType, "")
}
if c.targetData.TypeAllocSize(high.Type()) > c.targetData.TypeAllocSize(c.uintptrType) {
high = c.builder.CreateTrunc(high, c.uintptrType, "")
}
newPtr := c.builder.CreateInBoundsGEP(oldPtr, []llvm.Value{low}, "")
newLen := c.builder.CreateSub(high, low, "")
str := llvm.Undef(c.mod.GetTypeByName("runtime._string"))
str = c.builder.CreateInsertValue(str, newPtr, 0, "")
str = c.builder.CreateInsertValue(str, newLen, 1, "")
return str, nil
default:
return llvm.Value{}, c.makeError(expr.Pos(), "unknown slice type: "+typ.String())
}
case *ssa.TypeAssert:
return c.parseTypeAssert(frame, expr), nil
case *ssa.UnOp:
return c.parseUnOp(frame, expr)
default:
return llvm.Value{}, c.makeError(expr.Pos(), "todo: unknown expression: "+expr.String())
}
}
func (c *Compiler) parseBinOp(op token.Token, typ types.Type, x, y llvm.Value, pos token.Pos) (llvm.Value, error) {
switch typ := typ.Underlying().(type) {
case *types.Basic:
if typ.Info()&types.IsInteger != 0 {
// Operations on integers
signed := typ.Info()&types.IsUnsigned == 0
switch op {
case token.ADD: // +
return c.builder.CreateAdd(x, y, ""), nil
case token.SUB: // -
return c.builder.CreateSub(x, y, ""), nil
case token.MUL: // *
return c.builder.CreateMul(x, y, ""), nil
case token.QUO: // /
if signed {
return c.builder.CreateSDiv(x, y, ""), nil
} else {
return c.builder.CreateUDiv(x, y, ""), nil
}
case token.REM: // %
if signed {
return c.builder.CreateSRem(x, y, ""), nil
} else {
return c.builder.CreateURem(x, y, ""), nil
}
case token.AND: // &
return c.builder.CreateAnd(x, y, ""), nil
case token.OR: // |
return c.builder.CreateOr(x, y, ""), nil
case token.XOR: // ^
return c.builder.CreateXor(x, y, ""), nil
case token.SHL, token.SHR:
sizeX := c.targetData.TypeAllocSize(x.Type())
sizeY := c.targetData.TypeAllocSize(y.Type())
if sizeX > sizeY {
// x and y must have equal sizes, make Y bigger in this case.
// y is unsigned, this has been checked by the Go type checker.
y = c.builder.CreateZExt(y, x.Type(), "")
} else if sizeX < sizeY {
// What about shifting more than the integer width?
// I'm not entirely sure what the Go spec is on that, but as
// Intel CPUs have undefined behavior when shifting more
// than the integer width I'm assuming it is also undefined
// in Go.
y = c.builder.CreateTrunc(y, x.Type(), "")
}
switch op {
case token.SHL: // <<
return c.builder.CreateShl(x, y, ""), nil
case token.SHR: // >>
if signed {
return c.builder.CreateAShr(x, y, ""), nil
} else {
return c.builder.CreateLShr(x, y, ""), nil
}
default:
panic("unreachable")
}
case token.EQL: // ==
return c.builder.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return c.builder.CreateICmp(llvm.IntNE, x, y, ""), nil
case token.AND_NOT: // &^
// Go specific. Calculate "and not" with x & (~y)
inv := c.builder.CreateNot(y, "") // ~y
return c.builder.CreateAnd(x, inv, ""), nil
case token.LSS: // <
if signed {
return c.builder.CreateICmp(llvm.IntSLT, x, y, ""), nil
} else {
return c.builder.CreateICmp(llvm.IntULT, x, y, ""), nil
}
case token.LEQ: // <=
if signed {
return c.builder.CreateICmp(llvm.IntSLE, x, y, ""), nil
} else {
return c.builder.CreateICmp(llvm.IntULE, x, y, ""), nil
}
case token.GTR: // >
if signed {
return c.builder.CreateICmp(llvm.IntSGT, x, y, ""), nil
} else {
return c.builder.CreateICmp(llvm.IntUGT, x, y, ""), nil
}
case token.GEQ: // >=
if signed {
return c.builder.CreateICmp(llvm.IntSGE, x, y, ""), nil
} else {
return c.builder.CreateICmp(llvm.IntUGE, x, y, ""), nil
}
default:
panic("binop on integer: " + op.String())
}
} else if typ.Info()&types.IsFloat != 0 {
// Operations on floats
switch op {
case token.ADD: // +
return c.builder.CreateFAdd(x, y, ""), nil
case token.SUB: // -
return c.builder.CreateFSub(x, y, ""), nil
case token.MUL: // *
return c.builder.CreateFMul(x, y, ""), nil
case token.QUO: // /
return c.builder.CreateFDiv(x, y, ""), nil
case token.EQL: // ==
return c.builder.CreateFCmp(llvm.FloatUEQ, x, y, ""), nil
case token.NEQ: // !=
return c.builder.CreateFCmp(llvm.FloatUNE, x, y, ""), nil
case token.LSS: // <
return c.builder.CreateFCmp(llvm.FloatULT, x, y, ""), nil
case token.LEQ: // <=
return c.builder.CreateFCmp(llvm.FloatULE, x, y, ""), nil
case token.GTR: // >
return c.builder.CreateFCmp(llvm.FloatUGT, x, y, ""), nil
case token.GEQ: // >=
return c.builder.CreateFCmp(llvm.FloatUGE, x, y, ""), nil
default:
panic("binop on float: " + op.String())
}
} else if typ.Info()&types.IsComplex != 0 {
r1 := c.builder.CreateExtractValue(x, 0, "r1")
r2 := c.builder.CreateExtractValue(y, 0, "r2")
i1 := c.builder.CreateExtractValue(x, 1, "i1")
i2 := c.builder.CreateExtractValue(y, 1, "i2")
switch op {
case token.EQL: // ==
req := c.builder.CreateFCmp(llvm.FloatOEQ, r1, r2, "")
ieq := c.builder.CreateFCmp(llvm.FloatOEQ, i1, i2, "")
return c.builder.CreateAnd(req, ieq, ""), nil
case token.NEQ: // !=
req := c.builder.CreateFCmp(llvm.FloatOEQ, r1, r2, "")
ieq := c.builder.CreateFCmp(llvm.FloatOEQ, i1, i2, "")
neq := c.builder.CreateAnd(req, ieq, "")
return c.builder.CreateNot(neq, ""), nil
default:
return llvm.Value{}, c.makeError(pos, "todo: binop on complex number: "+op.String())
}
} else if typ.Info()&types.IsBoolean != 0 {
// Operations on booleans
switch op {
case token.EQL: // ==
return c.builder.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return c.builder.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
panic("binop on bool: " + op.String())
}
} else if typ.Kind() == types.UnsafePointer {
// Operations on pointers
switch op {
case token.EQL: // ==
return c.builder.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return c.builder.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
panic("binop on pointer: " + op.String())
}
} else if typ.Info()&types.IsString != 0 {
// Operations on strings
switch op {
case token.ADD: // +
return c.createRuntimeCall("stringConcat", []llvm.Value{x, y}, ""), nil
case token.EQL: // ==
return c.createRuntimeCall("stringEqual", []llvm.Value{x, y}, ""), nil
case token.NEQ: // !=
result := c.createRuntimeCall("stringEqual", []llvm.Value{x, y}, "")
return c.builder.CreateNot(result, ""), nil
case token.LSS: // <
return c.createRuntimeCall("stringLess", []llvm.Value{x, y}, ""), nil
case token.LEQ: // <=
result := c.createRuntimeCall("stringLess", []llvm.Value{y, x}, "")
return c.builder.CreateNot(result, ""), nil
case token.GTR: // >
result := c.createRuntimeCall("stringLess", []llvm.Value{x, y}, "")
return c.builder.CreateNot(result, ""), nil
case token.GEQ: // >=
return c.createRuntimeCall("stringLess", []llvm.Value{y, x}, ""), nil
default:
panic("binop on string: " + op.String())
}
} else {
return llvm.Value{}, c.makeError(pos, "todo: unknown basic type in binop: "+typ.String())
}
case *types.Signature:
// Get raw scalars from the function value and compare those.
// Function values may be implemented in multiple ways, but they all
// have some way of getting a scalar value identifying the function.
// This is safe: function pointers are generally not comparable
// against each other, only against nil. So one of these has to be nil.
x = c.extractFuncScalar(x)
y = c.extractFuncScalar(y)
switch op {
case token.EQL: // ==
return c.builder.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return c.builder.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
return llvm.Value{}, c.makeError(pos, "binop on signature: "+op.String())
}
case *types.Interface:
switch op {
case token.EQL, token.NEQ: // ==, !=
result := c.createRuntimeCall("interfaceEqual", []llvm.Value{x, y}, "")
if op == token.NEQ {
result = c.builder.CreateNot(result, "")
}
return result, nil
default:
return llvm.Value{}, c.makeError(pos, "binop on interface: "+op.String())
}
case *types.Map, *types.Pointer:
// Maps are in general not comparable, but can be compared against nil
// (which is a nil pointer). This means they can be trivially compared
// by treating them as a pointer.
switch op {
case token.EQL: // ==
return c.builder.CreateICmp(llvm.IntEQ, x, y, ""), nil
case token.NEQ: // !=
return c.builder.CreateICmp(llvm.IntNE, x, y, ""), nil
default:
return llvm.Value{}, c.makeError(pos, "todo: binop on pointer: "+op.String())
}
case *types.Slice:
// Slices are in general not comparable, but can be compared against
// nil. Assume at least one of them is nil to make the code easier.
xPtr := c.builder.CreateExtractValue(x, 0, "")
yPtr := c.builder.CreateExtractValue(y, 0, "")
switch op {
case token.EQL: // ==
return c.builder.CreateICmp(llvm.IntEQ, xPtr, yPtr, ""), nil
case token.NEQ: // !=
return c.builder.CreateICmp(llvm.IntNE, xPtr, yPtr, ""), nil
default:
return llvm.Value{}, c.makeError(pos, "todo: binop on slice: "+op.String())
}
case *types.Array:
// Compare each array element and combine the result. From the spec:
// Array values are comparable if values of the array element type
// are comparable. Two array values are equal if their corresponding
// elements are equal.
result := llvm.ConstInt(c.ctx.Int1Type(), 1, true)
for i := 0; i < int(typ.Len()); i++ {
xField := c.builder.CreateExtractValue(x, i, "")
yField := c.builder.CreateExtractValue(y, i, "")
fieldEqual, err := c.parseBinOp(token.EQL, typ.Elem(), xField, yField, pos)
if err != nil {
return llvm.Value{}, err
}
result = c.builder.CreateAnd(result, fieldEqual, "")
}
switch op {
case token.EQL: // ==
return result, nil
case token.NEQ: // !=
return c.builder.CreateNot(result, ""), nil
default:
return llvm.Value{}, c.makeError(pos, "unknown: binop on struct: "+op.String())
}
case *types.Struct:
// Compare each struct field and combine the result. From the spec:
// Struct values are comparable if all their fields are comparable.
// Two struct values are equal if their corresponding non-blank
// fields are equal.
result := llvm.ConstInt(c.ctx.Int1Type(), 1, true)
for i := 0; i < typ.NumFields(); i++ {
if typ.Field(i).Name() == "_" {
// skip blank fields
continue
}
fieldType := typ.Field(i).Type()
xField := c.builder.CreateExtractValue(x, i, "")
yField := c.builder.CreateExtractValue(y, i, "")
fieldEqual, err := c.parseBinOp(token.EQL, fieldType, xField, yField, pos)
if err != nil {
return llvm.Value{}, err
}
result = c.builder.CreateAnd(result, fieldEqual, "")
}
switch op {
case token.EQL: // ==
return result, nil
case token.NEQ: // !=
return c.builder.CreateNot(result, ""), nil
default:
return llvm.Value{}, c.makeError(pos, "unknown: binop on struct: "+op.String())
}
default:
return llvm.Value{}, c.makeError(pos, "todo: binop type: "+typ.String())
}
}
func (c *Compiler) parseConst(prefix string, expr *ssa.Const) llvm.Value {
switch typ := expr.Type().Underlying().(type) {
case *types.Basic:
llvmType := c.getLLVMType(typ)
if typ.Info()&types.IsBoolean != 0 {
b := constant.BoolVal(expr.Value)
n := uint64(0)
if b {
n = 1
}
return llvm.ConstInt(llvmType, n, false)
} else if typ.Info()&types.IsString != 0 {
str := constant.StringVal(expr.Value)
strLen := llvm.ConstInt(c.uintptrType, uint64(len(str)), false)
objname := prefix + "$string"
global := llvm.AddGlobal(c.mod, llvm.ArrayType(c.ctx.Int8Type(), len(str)), objname)
global.SetInitializer(c.ctx.ConstString(str, false))
global.SetLinkage(llvm.InternalLinkage)
global.SetGlobalConstant(true)
global.SetUnnamedAddr(true)
zero := llvm.ConstInt(c.ctx.Int32Type(), 0, false)
strPtr := c.builder.CreateInBoundsGEP(global, []llvm.Value{zero, zero}, "")
strObj := llvm.ConstNamedStruct(c.mod.GetTypeByName("runtime._string"), []llvm.Value{strPtr, strLen})
return strObj
} else if typ.Kind() == types.UnsafePointer {
if !expr.IsNil() {
value, _ := constant.Uint64Val(expr.Value)
return llvm.ConstIntToPtr(llvm.ConstInt(c.uintptrType, value, false), c.i8ptrType)
}
return llvm.ConstNull(c.i8ptrType)
} else if typ.Info()&types.IsUnsigned != 0 {
n, _ := constant.Uint64Val(expr.Value)
return llvm.ConstInt(llvmType, n, false)
} else if typ.Info()&types.IsInteger != 0 { // signed
n, _ := constant.Int64Val(expr.Value)
return llvm.ConstInt(llvmType, uint64(n), true)
} else if typ.Info()&types.IsFloat != 0 {
n, _ := constant.Float64Val(expr.Value)
return llvm.ConstFloat(llvmType, n)
} else if typ.Kind() == types.Complex64 {
r := c.parseConst(prefix, ssa.NewConst(constant.Real(expr.Value), types.Typ[types.Float32]))
i := c.parseConst(prefix, ssa.NewConst(constant.Imag(expr.Value), types.Typ[types.Float32]))
cplx := llvm.Undef(c.ctx.StructType([]llvm.Type{c.ctx.FloatType(), c.ctx.FloatType()}, false))
cplx = c.builder.CreateInsertValue(cplx, r, 0, "")
cplx = c.builder.CreateInsertValue(cplx, i, 1, "")
return cplx
} else if typ.Kind() == types.Complex128 {
r := c.parseConst(prefix, ssa.NewConst(constant.Real(expr.Value), types.Typ[types.Float64]))
i := c.parseConst(prefix, ssa.NewConst(constant.Imag(expr.Value), types.Typ[types.Float64]))
cplx := llvm.Undef(c.ctx.StructType([]llvm.Type{c.ctx.DoubleType(), c.ctx.DoubleType()}, false))
cplx = c.builder.CreateInsertValue(cplx, r, 0, "")
cplx = c.builder.CreateInsertValue(cplx, i, 1, "")
return cplx
} else {
panic("unknown constant of basic type: " + expr.String())
}
case *types.Chan:
if expr.Value != nil {
panic("expected nil chan constant")
}
return c.getZeroValue(c.getLLVMType(expr.Type()))
case *types.Signature:
if expr.Value != nil {
panic("expected nil signature constant")
}
return c.getZeroValue(c.getLLVMType(expr.Type()))
case *types.Interface:
if expr.Value != nil {
panic("expected nil interface constant")
}
// Create a generic nil interface with no dynamic type (typecode=0).
fields := []llvm.Value{
llvm.ConstInt(c.uintptrType, 0, false),
llvm.ConstPointerNull(c.i8ptrType),
}
return llvm.ConstNamedStruct(c.mod.GetTypeByName("runtime._interface"), fields)
case *types.Pointer:
if expr.Value != nil {
panic("expected nil pointer constant")
}
return llvm.ConstPointerNull(c.getLLVMType(typ))
case *types.Slice:
if expr.Value != nil {
panic("expected nil slice constant")
}
elemType := c.getLLVMType(typ.Elem())
llvmPtr := llvm.ConstPointerNull(llvm.PointerType(elemType, 0))
llvmLen := llvm.ConstInt(c.uintptrType, 0, false)
slice := c.ctx.ConstStruct([]llvm.Value{
llvmPtr, // backing array
llvmLen, // len
llvmLen, // cap
}, false)
return slice
case *types.Map:
if !expr.IsNil() {
// I believe this is not allowed by the Go spec.
panic("non-nil map constant")
}
llvmType := c.getLLVMType(typ)
return c.getZeroValue(llvmType)
default:
panic("unknown constant: " + expr.String())
}
}
func (c *Compiler) parseConvert(typeFrom, typeTo types.Type, value llvm.Value, pos token.Pos) (llvm.Value, error) {
llvmTypeFrom := value.Type()
llvmTypeTo := c.getLLVMType(typeTo)
// Conversion between unsafe.Pointer and uintptr.
isPtrFrom := isPointer(typeFrom.Underlying())
isPtrTo := isPointer(typeTo.Underlying())
if isPtrFrom && !isPtrTo {
return c.builder.CreatePtrToInt(value, llvmTypeTo, ""), nil
} else if !isPtrFrom && isPtrTo {
if !value.IsABinaryOperator().IsNil() && value.InstructionOpcode() == llvm.Add {
// This is probably a pattern like the following:
// unsafe.Pointer(uintptr(ptr) + index)
// Used in functions like memmove etc. for lack of pointer
// arithmetic. Convert it to real pointer arithmatic here.
ptr := value.Operand(0)
index := value.Operand(1)
if !index.IsAPtrToIntInst().IsNil() {
// Swap if necessary, if ptr and index are reversed.
ptr, index = index, ptr
}
if !ptr.IsAPtrToIntInst().IsNil() {
origptr := ptr.Operand(0)
if origptr.Type() == c.i8ptrType {
// This pointer can be calculated from the original
// ptrtoint instruction with a GEP. The leftover inttoptr
// instruction is trivial to optimize away.
// Making it an in bounds GEP even though it's easy to
// create a GEP that is not in bounds. However, we're
// talking about unsafe code here so the programmer has to
// be careful anyway.
return c.builder.CreateInBoundsGEP(origptr, []llvm.Value{index}, ""), nil
}
}
}
return c.builder.CreateIntToPtr(value, llvmTypeTo, ""), nil
}
// Conversion between pointers and unsafe.Pointer.
if isPtrFrom && isPtrTo {
return c.builder.CreateBitCast(value, llvmTypeTo, ""), nil
}
switch typeTo := typeTo.Underlying().(type) {
case *types.Basic:
sizeFrom := c.targetData.TypeAllocSize(llvmTypeFrom)
if typeTo.Info()&types.IsString != 0 {
switch typeFrom := typeFrom.Underlying().(type) {
case *types.Basic:
// Assume a Unicode code point, as that is the only possible
// value here.
// Cast to an i32 value as expected by
// runtime.stringFromUnicode.
if sizeFrom > 4 {
value = c.builder.CreateTrunc(value, c.ctx.Int32Type(), "")
} else if sizeFrom < 4 && typeTo.Info()&types.IsUnsigned != 0 {
value = c.builder.CreateZExt(value, c.ctx.Int32Type(), "")
} else if sizeFrom < 4 {
value = c.builder.CreateSExt(value, c.ctx.Int32Type(), "")
}
return c.createRuntimeCall("stringFromUnicode", []llvm.Value{value}, ""), nil
case *types.Slice:
switch typeFrom.Elem().(*types.Basic).Kind() {
case types.Byte:
return c.createRuntimeCall("stringFromBytes", []llvm.Value{value}, ""), nil
default:
return llvm.Value{}, c.makeError(pos, "todo: convert to string: "+typeFrom.String())
}
default:
return llvm.Value{}, c.makeError(pos, "todo: convert to string: "+typeFrom.String())
}
}
typeFrom := typeFrom.Underlying().(*types.Basic)
sizeTo := c.targetData.TypeAllocSize(llvmTypeTo)
if typeFrom.Info()&types.IsInteger != 0 && typeTo.Info()&types.IsInteger != 0 {
// Conversion between two integers.
if sizeFrom > sizeTo {
return c.builder.CreateTrunc(value, llvmTypeTo, ""), nil
} else if typeFrom.Info()&types.IsUnsigned != 0 { // if unsigned
return c.builder.CreateZExt(value, llvmTypeTo, ""), nil
} else { // if signed
return c.builder.CreateSExt(value, llvmTypeTo, ""), nil
}
}
if typeFrom.Info()&types.IsFloat != 0 && typeTo.Info()&types.IsFloat != 0 {
// Conversion between two floats.
if sizeFrom > sizeTo {
return c.builder.CreateFPTrunc(value, llvmTypeTo, ""), nil
} else if sizeFrom < sizeTo {
return c.builder.CreateFPExt(value, llvmTypeTo, ""), nil
} else {
return value, nil
}
}
if typeFrom.Info()&types.IsFloat != 0 && typeTo.Info()&types.IsInteger != 0 {
// Conversion from float to int.
if typeTo.Info()&types.IsUnsigned != 0 { // if unsigned
return c.builder.CreateFPToUI(value, llvmTypeTo, ""), nil
} else { // if signed
return c.builder.CreateFPToSI(value, llvmTypeTo, ""), nil
}
}
if typeFrom.Info()&types.IsInteger != 0 && typeTo.Info()&types.IsFloat != 0 {
// Conversion from int to float.
if typeFrom.Info()&types.IsUnsigned != 0 { // if unsigned
return c.builder.CreateUIToFP(value, llvmTypeTo, ""), nil
} else { // if signed
return c.builder.CreateSIToFP(value, llvmTypeTo, ""), nil
}
}
if typeFrom.Kind() == types.Complex128 && typeTo.Kind() == types.Complex64 {
// Conversion from complex128 to complex64.
r := c.builder.CreateExtractValue(value, 0, "real.f64")
i := c.builder.CreateExtractValue(value, 1, "imag.f64")
r = c.builder.CreateFPTrunc(r, c.ctx.FloatType(), "real.f32")
i = c.builder.CreateFPTrunc(i, c.ctx.FloatType(), "imag.f32")
cplx := llvm.Undef(c.ctx.StructType([]llvm.Type{c.ctx.FloatType(), c.ctx.FloatType()}, false))
cplx = c.builder.CreateInsertValue(cplx, r, 0, "")
cplx = c.builder.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
}
if typeFrom.Kind() == types.Complex64 && typeTo.Kind() == types.Complex128 {
// Conversion from complex64 to complex128.
r := c.builder.CreateExtractValue(value, 0, "real.f32")
i := c.builder.CreateExtractValue(value, 1, "imag.f32")
r = c.builder.CreateFPExt(r, c.ctx.DoubleType(), "real.f64")
i = c.builder.CreateFPExt(i, c.ctx.DoubleType(), "imag.f64")
cplx := llvm.Undef(c.ctx.StructType([]llvm.Type{c.ctx.DoubleType(), c.ctx.DoubleType()}, false))
cplx = c.builder.CreateInsertValue(cplx, r, 0, "")
cplx = c.builder.CreateInsertValue(cplx, i, 1, "")
return cplx, nil
}
return llvm.Value{}, c.makeError(pos, "todo: convert: basic non-integer type: "+typeFrom.String()+" -> "+typeTo.String())
case *types.Slice:
if basic, ok := typeFrom.(*types.Basic); !ok || basic.Info()&types.IsString == 0 {
panic("can only convert from a string to a slice")
}
elemType := typeTo.Elem().Underlying().(*types.Basic) // must be byte or rune
switch elemType.Kind() {
case types.Byte:
return c.createRuntimeCall("stringToBytes", []llvm.Value{value}, ""), nil
default:
return llvm.Value{}, c.makeError(pos, "todo: convert from string: "+elemType.String())
}
default:
return llvm.Value{}, c.makeError(pos, "todo: convert "+typeTo.String()+" <- "+typeFrom.String())
}
}
func (c *Compiler) parseUnOp(frame *Frame, unop *ssa.UnOp) (llvm.Value, error) {
x := c.getValue(frame, unop.X)
switch unop.Op {
case token.NOT: // !x
return c.builder.CreateNot(x, ""), nil
case token.SUB: // -x
if typ, ok := unop.X.Type().Underlying().(*types.Basic); ok {
if typ.Info()&types.IsInteger != 0 {
return c.builder.CreateSub(llvm.ConstInt(x.Type(), 0, false), x, ""), nil
} else if typ.Info()&types.IsFloat != 0 {
return c.builder.CreateFSub(llvm.ConstFloat(x.Type(), 0.0), x, ""), nil
} else {
return llvm.Value{}, c.makeError(unop.Pos(), "todo: unknown basic type for negate: "+typ.String())
}
} else {
return llvm.Value{}, c.makeError(unop.Pos(), "todo: unknown type for negate: "+unop.X.Type().Underlying().String())
}
case token.MUL: // *x, dereference pointer
valType := unop.X.Type().Underlying().(*types.Pointer).Elem()
if c.targetData.TypeAllocSize(x.Type().ElementType()) == 0 {
// zero-length data
return c.getZeroValue(x.Type().ElementType()), nil
} else if strings.HasSuffix(unop.X.String(), "$funcaddr") {
// CGo function pointer. The cgo part has rewritten CGo function
// pointers as stub global variables of the form:
// var C.add unsafe.Pointer
// Instead of a load from the global, create a bitcast of the
// function pointer itself.
global := c.ir.GetGlobal(unop.X.(*ssa.Global))
name := global.LinkName()[:len(global.LinkName())-len("$funcaddr")]
fn := c.mod.NamedFunction(name)
if fn.IsNil() {
return llvm.Value{}, c.makeError(unop.Pos(), "cgo function not found: "+name)
}
return c.builder.CreateBitCast(fn, c.i8ptrType, ""), nil
} else {
c.emitNilCheck(frame, x, "deref")
load := c.builder.CreateLoad(x, "")
if c.ir.IsVolatile(valType) {
// Volatile load, for memory-mapped registers.
load.SetVolatile(true)
}
return load, nil
}
case token.XOR: // ^x, toggle all bits in integer
return c.builder.CreateXor(x, llvm.ConstInt(x.Type(), ^uint64(0), false), ""), nil
case token.ARROW: // <-x, receive from channel
return c.emitChanRecv(frame, unop), nil
default:
return llvm.Value{}, c.makeError(unop.Pos(), "todo: unknown unop")
}
}
// IR returns the whole IR as a human-readable string.
func (c *Compiler) IR() string {
return c.mod.String()
}
func (c *Compiler) Verify() error {
return llvm.VerifyModule(c.mod, llvm.PrintMessageAction)
}
func (c *Compiler) ApplyFunctionSections() {
// Put every function in a separate section. This makes it possible for the
// linker to remove dead code (-ffunction-sections).
llvmFn := c.mod.FirstFunction()
for !llvmFn.IsNil() {
if !llvmFn.IsDeclaration() {
name := llvmFn.Name()
llvmFn.SetSection(".text." + name)
}
llvmFn = llvm.NextFunction(llvmFn)
}
}
// Turn all global constants into global variables. This works around a
// limitation on Harvard architectures (e.g. AVR), where constant and
// non-constant pointers point to a different address space.
func (c *Compiler) NonConstGlobals() {
global := c.mod.FirstGlobal()
for !global.IsNil() {
global.SetGlobalConstant(false)
global = llvm.NextGlobal(global)
}
}
// When -wasm-abi flag set to "js" (default),
// replace i64 in an external function with a stack-allocated i64*, to work
// around the lack of 64-bit integers in JavaScript (commonly used together with
// WebAssembly). Once that's resolved, this pass may be avoided.
// See also the -wasm-abi= flag
// https://github.com/WebAssembly/design/issues/1172
func (c *Compiler) ExternalInt64AsPtr() error {
int64Type := c.ctx.Int64Type()
int64PtrType := llvm.PointerType(int64Type, 0)
for fn := c.mod.FirstFunction(); !fn.IsNil(); fn = llvm.NextFunction(fn) {
if fn.Linkage() != llvm.ExternalLinkage {
// Only change externally visible functions (exports and imports).
continue
}
if strings.HasPrefix(fn.Name(), "llvm.") || strings.HasPrefix(fn.Name(), "runtime.") {
// Do not try to modify the signature of internal LLVM functions and
// assume that runtime functions are only temporarily exported for
// coroutine lowering.
continue
}
hasInt64 := false
paramTypes := []llvm.Type{}
// Check return type for 64-bit integer.
fnType := fn.Type().ElementType()
returnType := fnType.ReturnType()
if returnType == int64Type {
hasInt64 = true
paramTypes = append(paramTypes, int64PtrType)
returnType = c.ctx.VoidType()
}
// Check param types for 64-bit integers.
for param := fn.FirstParam(); !param.IsNil(); param = llvm.NextParam(param) {
if param.Type() == int64Type {
hasInt64 = true
paramTypes = append(paramTypes, int64PtrType)
} else {
paramTypes = append(paramTypes, param.Type())
}
}
if !hasInt64 {
// No i64 in the paramter list.
continue
}
// Add $i64wrapper to the real function name as it is only used
// internally.
// Add a new function with the correct signature that is exported.
name := fn.Name()
fn.SetName(name + "$i64wrap")
externalFnType := llvm.FunctionType(returnType, paramTypes, fnType.IsFunctionVarArg())
externalFn := llvm.AddFunction(c.mod, name, externalFnType)
if fn.IsDeclaration() {
// Just a declaration: the definition doesn't exist on the Go side
// so it cannot be called from external code.
// Update all users to call the external function.
// The old $i64wrapper function could be removed, but it may as well
// be left in place.
for use := fn.FirstUse(); !use.IsNil(); use = use.NextUse() {
call := use.User()
c.builder.SetInsertPointBefore(call)
callParams := []llvm.Value{}
var retvalAlloca llvm.Value
if fnType.ReturnType() == int64Type {
retvalAlloca = c.builder.CreateAlloca(int64Type, "i64asptr")
callParams = append(callParams, retvalAlloca)
}
for i := 0; i < call.OperandsCount()-1; i++ {
operand := call.Operand(i)
if operand.Type() == int64Type {
// Pass a stack-allocated pointer instead of the value
// itself.
alloca := c.builder.CreateAlloca(int64Type, "i64asptr")
c.builder.CreateStore(operand, alloca)
callParams = append(callParams, alloca)
} else {
// Unchanged parameter.
callParams = append(callParams, operand)
}
}
if fnType.ReturnType() == int64Type {
// Pass a stack-allocated pointer as the first parameter
// where the return value should be stored, instead of using
// the regular return value.
c.builder.CreateCall(externalFn, callParams, call.Name())
returnValue := c.builder.CreateLoad(retvalAlloca, "retval")
call.ReplaceAllUsesWith(returnValue)
call.EraseFromParentAsInstruction()
} else {
newCall := c.builder.CreateCall(externalFn, callParams, call.Name())
call.ReplaceAllUsesWith(newCall)
call.EraseFromParentAsInstruction()
}
}
} else {
// The function has a definition in Go. This means that it may still
// be called both Go and from external code.
// Keep existing calls with the existing convention in place (for
// better performance), but export a new wrapper function with the
// correct calling convention.
fn.SetLinkage(llvm.InternalLinkage)
fn.SetUnnamedAddr(true)
entryBlock := llvm.AddBasicBlock(externalFn, "entry")
c.builder.SetInsertPointAtEnd(entryBlock)
var callParams []llvm.Value
if fnType.ReturnType() == int64Type {
return errors.New("not yet implemented: exported function returns i64 with -wasm-abi=js; " +
"see https://tinygo.org/compiler-internals/calling-convention/")
}
for i, origParam := range fn.Params() {
paramValue := externalFn.Param(i)
if origParam.Type() == int64Type {
paramValue = c.builder.CreateLoad(paramValue, "i64")
}
callParams = append(callParams, paramValue)
}
retval := c.builder.CreateCall(fn, callParams, "")
if retval.Type().TypeKind() == llvm.VoidTypeKind {
c.builder.CreateRetVoid()
} else {
c.builder.CreateRet(retval)
}
}
}
return nil
}
// Emit object file (.o).
func (c *Compiler) EmitObject(path string) error {
llvmBuf, err := c.machine.EmitToMemoryBuffer(c.mod, llvm.ObjectFile)
if err != nil {
return err
}
return c.writeFile(llvmBuf.Bytes(), path)
}
// Emit LLVM bitcode file (.bc).
func (c *Compiler) EmitBitcode(path string) error {
data := llvm.WriteBitcodeToMemoryBuffer(c.mod).Bytes()
return c.writeFile(data, path)
}
// Emit LLVM IR source file (.ll).
func (c *Compiler) EmitText(path string) error {
data := []byte(c.mod.String())
return c.writeFile(data, path)
}
// Write the data to the file specified by path.
func (c *Compiler) writeFile(data []byte, path string) error {
// Write output to file
f, err := os.OpenFile(path, os.O_RDWR|os.O_CREATE|os.O_TRUNC, 0666)
if err != nil {
return err
}
_, err = f.Write(data)
if err != nil {
return err
}
return f.Close()
}