tinygo/src/runtime/string.go
Ayke van Laethem 31043628d8 reflect: use direct calls to runtime string functions
The runtime.stringFromBytesTyped and runtime.stringToBytesTyped
functions aren't really necessary, because they have the same LLVM IR
signature. Therefore, remove them and link directly to the functions
that the compiler uses internally.
2023-03-27 22:24:20 +02:00

285 строки
7,2 КиБ
Go

package runtime
// This file implements functions related to Go strings.
import (
"unsafe"
)
// The underlying struct for the Go string type.
type _string struct {
ptr *byte
length uintptr
}
// The iterator state for a range over a string.
type stringIterator struct {
byteindex uintptr
}
// Return true iff the strings match.
//
//go:nobounds
func stringEqual(x, y string) bool {
if len(x) != len(y) {
return false
}
for i := 0; i < len(x); i++ {
if x[i] != y[i] {
return false
}
}
return true
}
// Return true iff x < y.
//
//go:nobounds
func stringLess(x, y string) bool {
l := len(x)
if m := len(y); m < l {
l = m
}
for i := 0; i < l; i++ {
if x[i] < y[i] {
return true
}
if x[i] > y[i] {
return false
}
}
return len(x) < len(y)
}
// Add two strings together.
func stringConcat(x, y _string) _string {
if x.length == 0 {
return y
} else if y.length == 0 {
return x
} else {
length := x.length + y.length
buf := alloc(length, nil)
memcpy(buf, unsafe.Pointer(x.ptr), x.length)
memcpy(unsafe.Add(buf, x.length), unsafe.Pointer(y.ptr), y.length)
return _string{ptr: (*byte)(buf), length: length}
}
}
// Create a string from a []byte slice.
func stringFromBytes(x struct {
ptr *byte
len uintptr
cap uintptr
}) _string {
buf := alloc(x.len, nil)
memcpy(buf, unsafe.Pointer(x.ptr), x.len)
return _string{ptr: (*byte)(buf), length: x.len}
}
// Convert a string to a []byte slice.
func stringToBytes(x _string) (slice struct {
ptr *byte
len uintptr
cap uintptr
}) {
buf := alloc(x.length, nil)
memcpy(buf, unsafe.Pointer(x.ptr), x.length)
slice.ptr = (*byte)(buf)
slice.len = x.length
slice.cap = x.length
return
}
// Convert a []rune slice to a string.
func stringFromRunes(runeSlice []rune) (s _string) {
// Count the number of characters that will be in the string.
for _, r := range runeSlice {
_, numBytes := encodeUTF8(r)
s.length += numBytes
}
// Allocate memory for the string.
s.ptr = (*byte)(alloc(s.length, nil))
// Encode runes to UTF-8 and store the resulting bytes in the string.
index := uintptr(0)
for _, r := range runeSlice {
array, numBytes := encodeUTF8(r)
for _, c := range array[:numBytes] {
*(*byte)(unsafe.Add(unsafe.Pointer(s.ptr), index)) = c
index++
}
}
return
}
// Convert a string to []rune slice.
func stringToRunes(s string) []rune {
var n = 0
for range s {
n++
}
var r = make([]rune, n)
n = 0
for _, e := range s {
r[n] = e
n++
}
return r
}
// Create a string from a Unicode code point.
func stringFromUnicode(x rune) _string {
array, length := encodeUTF8(x)
// Array will be heap allocated.
// The heap most likely doesn't work with blocks below 4 bytes, so there's
// no point in allocating a smaller buffer for the string here.
return _string{ptr: (*byte)(unsafe.Pointer(&array)), length: length}
}
// Iterate over a string.
// Returns (ok, key, value).
func stringNext(s string, it *stringIterator) (bool, int, rune) {
if len(s) <= int(it.byteindex) {
return false, 0, 0
}
i := int(it.byteindex)
r, length := decodeUTF8(s, it.byteindex)
it.byteindex += length
return true, i, r
}
// Convert a Unicode code point into an array of bytes and its length.
func encodeUTF8(x rune) ([4]byte, uintptr) {
// https://stackoverflow.com/questions/6240055/manually-converting-unicode-codepoints-into-utf-8-and-utf-16
// Note: this code can probably be optimized (in size and speed).
switch {
case x <= 0x7f:
return [4]byte{byte(x), 0, 0, 0}, 1
case x <= 0x7ff:
b1 := 0xc0 | byte(x>>6)
b2 := 0x80 | byte(x&0x3f)
return [4]byte{b1, b2, 0, 0}, 2
case 0xd800 <= x && x <= 0xdfff:
// utf-16 surrogates are replaced with "invalid code point"
return [4]byte{0xef, 0xbf, 0xbd, 0}, 3
case x <= 0xffff:
b1 := 0xe0 | byte(x>>12)
b2 := 0x80 | byte((x>>6)&0x3f)
b3 := 0x80 | byte((x>>0)&0x3f)
return [4]byte{b1, b2, b3, 0}, 3
case x <= 0x10ffff:
b1 := 0xf0 | byte(x>>18)
b2 := 0x80 | byte((x>>12)&0x3f)
b3 := 0x80 | byte((x>>6)&0x3f)
b4 := 0x80 | byte((x>>0)&0x3f)
return [4]byte{b1, b2, b3, b4}, 4
default:
// Invalid Unicode code point.
return [4]byte{0xef, 0xbf, 0xbd, 0}, 3
}
}
// Decode a single UTF-8 character from a string.
//
//go:nobounds
func decodeUTF8(s string, index uintptr) (rune, uintptr) {
remaining := uintptr(len(s)) - index // must be >= 1 before calling this function
x := s[index]
switch {
case x&0x80 == 0x00: // 0xxxxxxx
return rune(x), 1
case x&0xe0 == 0xc0: // 110xxxxx
if remaining < 2 || !isContinuation(s[index+1]) {
return 0xfffd, 1
}
r := (rune(x&0x1f) << 6) | (rune(s[index+1]) & 0x3f)
if r >= 1<<7 {
// Check whether the rune really needed to be encoded as a two-byte
// sequence. UTF-8 requires every rune to be encoded in the smallest
// sequence possible.
return r, 2
}
case x&0xf0 == 0xe0: // 1110xxxx
if remaining < 3 || !isContinuation(s[index+1]) || !isContinuation(s[index+2]) {
return 0xfffd, 1
}
r := (rune(x&0x0f) << 12) | ((rune(s[index+1]) & 0x3f) << 6) | (rune(s[index+2]) & 0x3f)
if r >= 1<<11 && !(r >= 0xD800 && r <= 0xDFFF) {
// Check whether the rune really needed to be encoded as a
// three-byte sequence and check that this is not a Unicode
// surrogate pair (which are not allowed by UTF-8).
return r, 3
}
case x&0xf8 == 0xf0: // 11110xxx
if remaining < 4 || !isContinuation(s[index+1]) || !isContinuation(s[index+2]) || !isContinuation(s[index+3]) {
return 0xfffd, 1
}
r := (rune(x&0x07) << 18) | ((rune(s[index+1]) & 0x3f) << 12) | ((rune(s[index+2]) & 0x3f) << 6) | (rune(s[index+3]) & 0x3f)
if r >= 1<<16 && r <= '\U0010FFFF' {
// Check whether this rune really needed to be encoded as a four
// byte sequence and check that the resulting rune is in the valid
// range (up to at most U+10FFFF).
return r, 4
}
}
// Failed to decode. Return the Unicode replacement character and a length of 1.
return 0xfffd, 1
}
// isContinuation returns true if (and only if) this is a UTF-8 continuation
// byte.
func isContinuation(b byte) bool {
// Continuation bytes have their topmost bits set to 0b10.
return b&0xc0 == 0x80
}
// Functions used in CGo.
// Convert a Go string to a C string.
func cgo_CString(s _string) unsafe.Pointer {
buf := malloc(s.length + 1)
memcpy(buf, unsafe.Pointer(s.ptr), s.length)
*(*byte)(unsafe.Add(buf, s.length)) = 0 // trailing 0 byte
return buf
}
// Convert a C string to a Go string.
func cgo_GoString(cstr unsafe.Pointer) _string {
if cstr == nil {
return _string{}
}
return makeGoString(cstr, strlen(cstr))
}
// Convert a C data buffer to a Go string (that possibly contains 0 bytes).
func cgo_GoStringN(cstr unsafe.Pointer, length uintptr) _string {
return makeGoString(cstr, length)
}
// Make a Go string given a source buffer and a length.
func makeGoString(cstr unsafe.Pointer, length uintptr) _string {
s := _string{
length: length,
}
if s.length != 0 {
buf := make([]byte, s.length)
s.ptr = &buf[0]
memcpy(unsafe.Pointer(s.ptr), cstr, s.length)
}
return s
}
// Convert a C data buffer to a Go byte slice.
func cgo_GoBytes(ptr unsafe.Pointer, length uintptr) []byte {
// Note: don't return nil if length is 0, to match the behavior of C.GoBytes
// of upstream Go.
buf := make([]byte, length)
if length != 0 {
memcpy(unsafe.Pointer(&buf[0]), ptr, uintptr(length))
}
return buf
}