tinygo/src/runtime/runtime_stm32_timers.go
2022-02-28 10:19:26 +01:00

194 строки
5,3 КиБ
Go

//go:build stm32
// +build stm32
package runtime
// This file implements a common implementation of implementing 'ticks' and
// 'sleep' for STM32 devices. The implementation uses a single timer. The
// timer's PWM frequency (controlled by PSC and ARR) are configured for
// periodic interrupts at 100Hz (TICK_INTR_PERIOD_NS). The PWM counter
// register is used for fine-grained resolution (down to ~150ns) with an
// Output Comparator used for fine-grained sleeps.
import (
"device/stm32"
"machine"
"runtime/interrupt"
"runtime/volatile"
)
type timerInfo struct {
EnableRegister *volatile.Register32
EnableFlag uint32
Device *stm32.TIM_Type
}
const (
// All STM32 do a constant 16ns per tick. This keeps time
// conversion between ticks and ns fast (shift operation)
// at the expense of more complex logic when getting current
// time (which is already slow due to interfacing with hardware)
NS_PER_TICK = 16
// For very short sleeps a busy loop is used to avoid race
// conditions where a trigger would take longer to setup than
// the sleep duration.
MAX_BUSY_LOOP_NS = 10e3 // 10us
// The period of tick interrupts in nanoseconds
TICK_INTR_PERIOD_NS = 10e6 // 10ms = 100Hz
// The number of ticks that happen per overflow interrupt
TICK_PER_INTR = TICK_INTR_PERIOD_NS / NS_PER_TICK
)
var (
// Tick count since boot
tickCount volatile.Register64
// The timer used for counting ticks
tickTimer *machine.TIM
// The max counter value (fractional part)
countMax uint32
)
func ticksToNanoseconds(ticks timeUnit) int64 {
return int64(ticks) * NS_PER_TICK
}
func nanosecondsToTicks(ns int64) timeUnit {
return timeUnit(ns / NS_PER_TICK)
}
// number of ticks since start.
//go:linkname ticks runtime.ticks
func ticks() timeUnit {
// For some ways of capturing the time atomically, see this thread:
// https://www.eevblog.com/forum/microcontrollers/correct-timing-by-timer-overflow-count/msg749617/#msg749617
// Here, instead of re-reading the counter register if an overflow has been
// detected, we simply try again because that results in smaller code.
for {
mask := interrupt.Disable()
counter := tickTimer.Count()
overflows := uint64(tickCount.Get())
hasOverflow := tickTimer.Device.SR.HasBits(stm32.TIM_SR_UIF)
interrupt.Restore(mask)
if hasOverflow {
continue
}
return timeUnit(overflows*TICK_PER_INTR + countToTicks(counter))
}
}
//
// -- Ticks ---
//
// Enable the timer used to count ticks.
//
// For precise sleeps use a timer with at least one OutputCompare
// channel otherwise minimum reliable sleep resolution is bounded
// by TICK_INTR_PERIOD_NS.
//
// Typically avoid TIM6 / TIM7 as they often do not include an
// output comparator.
func initTickTimer(tim *machine.TIM) {
tickTimer = tim
tickTimer.Configure(machine.PWMConfig{Period: TICK_INTR_PERIOD_NS})
countMax = tickTimer.Top()
tickTimer.SetWraparoundInterrupt(handleTick)
}
func handleTick() {
// increment tick count
tickCount.Set(tickCount.Get() + 1)
}
//
// --- Sleep ---
//
func sleepTicks(d timeUnit) {
// If there is a scheduler, we sleep until any kind of CPU event up to
// a maximum of the requested sleep duration.
//
// The scheduler will call again if there is nothing to do and a further
// sleep is required.
if hasScheduler {
timerSleep(uint64(d))
return
}
// There's no scheduler, so we sleep until at least the requested number
// of ticks has passed. For short sleeps, this forms a busy loop since
// timerSleep will return immediately.
end := ticks() + d
for ticks() < end {
timerSleep(uint64(d))
}
}
// timerSleep sleeps for 'at most' ticks, but possibly less.
func timerSleep(ticks uint64) {
// If the sleep is super-small (<10us), busy loop by returning
// to the scheduler (if any). This avoids a busy loop here
// that might delay tasks from being scheduled triggered by
// an interrupt (e.g. channels).
if ticksToNanoseconds(timeUnit(ticks)) < MAX_BUSY_LOOP_NS {
return
}
// If the sleep is long, the tick interrupt will occur before
// the sleep expires, so just use that. This routine will be
// called again if the sleep is incomplete.
if ticks >= TICK_PER_INTR {
waitForEvents()
return
}
// Sleeping for less than one tick interrupt, now see if the
// next tick interrupt will occur before the sleep expires. If
// so, use that interrupt. (this routine will be called
// again if sleep is incomplete)
cnt := tickTimer.Count()
ticksUntilOverflow := countToTicks(countMax - cnt)
if ticksUntilOverflow <= ticks {
waitForEvents()
return
}
// The sleep is now known to be:
// - More than a few CPU cycles
// - Less than one interrupt period
// - Expiring before the next interrupt
//
// Setup a PWM channel to trigger an interrupt.
// NOTE: ticks is known to be < MAX_UINT32 at this point.
tickTimer.SetMatchInterrupt(0, handleSleep)
tickTimer.Set(0, cnt+ticksToCount(ticks))
// Wait till either the timer or some other event wakes
// up the CPU
waitForEvents()
// In case it was not the sleep interrupt that woke the
// CPU, disable the sleep interrupt now.
tickTimer.Unset(0)
}
func handleSleep(ch uint8) {
// Disable the sleep interrupt
tickTimer.Unset(0)
}
func countToTicks(count uint32) uint64 {
return (uint64(count) * TICK_PER_INTR) / uint64(countMax)
}
func ticksToCount(ticks uint64) uint32 {
return uint32((ticks * uint64(countMax)) / TICK_PER_INTR)
}