2176 строки
64 КиБ
Go
2176 строки
64 КиБ
Go
// +build sam,atsamd51
|
|
|
|
// Peripheral abstraction layer for the atsamd51.
|
|
//
|
|
// Datasheet:
|
|
// http://ww1.microchip.com/downloads/en/DeviceDoc/60001507C.pdf
|
|
//
|
|
package machine
|
|
|
|
import (
|
|
"device/arm"
|
|
"device/sam"
|
|
"errors"
|
|
"runtime/interrupt"
|
|
"unsafe"
|
|
)
|
|
|
|
func CPUFrequency() uint32 {
|
|
return 120000000
|
|
}
|
|
|
|
type PinMode uint8
|
|
|
|
const (
|
|
PinAnalog PinMode = 1
|
|
PinSERCOM PinMode = 2
|
|
PinSERCOMAlt PinMode = 3
|
|
PinTimer PinMode = 4
|
|
PinTimerAlt PinMode = 5
|
|
PinTCCPDEC PinMode = 6
|
|
PinCom PinMode = 7
|
|
PinSDHC PinMode = 8
|
|
PinI2S PinMode = 9
|
|
PinPCC PinMode = 10
|
|
PinGMAC PinMode = 11
|
|
PinACCLK PinMode = 12
|
|
PinCCL PinMode = 13
|
|
PinDigital PinMode = 14
|
|
PinInput PinMode = 15
|
|
PinInputPullup PinMode = 16
|
|
PinOutput PinMode = 17
|
|
PinPWME PinMode = PinTimer
|
|
PinPWMF PinMode = PinTimerAlt
|
|
PinPWMG PinMode = PinTCCPDEC
|
|
PinInputPulldown PinMode = 18
|
|
)
|
|
|
|
// Hardware pins
|
|
const (
|
|
PA00 Pin = 0
|
|
PA01 Pin = 1
|
|
PA02 Pin = 2
|
|
PA03 Pin = 3
|
|
PA04 Pin = 4
|
|
PA05 Pin = 5
|
|
PA06 Pin = 6
|
|
PA07 Pin = 7
|
|
PA08 Pin = 8
|
|
PA09 Pin = 9
|
|
PA10 Pin = 10
|
|
PA11 Pin = 11
|
|
PA12 Pin = 12
|
|
PA13 Pin = 13
|
|
PA14 Pin = 14
|
|
PA15 Pin = 15
|
|
PA16 Pin = 16
|
|
PA17 Pin = 17
|
|
PA18 Pin = 18
|
|
PA19 Pin = 19
|
|
PA20 Pin = 20
|
|
PA21 Pin = 21
|
|
PA22 Pin = 22
|
|
PA23 Pin = 23
|
|
PA24 Pin = 24
|
|
PA25 Pin = 25
|
|
PA26 Pin = 26
|
|
PA27 Pin = 27
|
|
PA28 Pin = 28
|
|
PA29 Pin = 29
|
|
PA30 Pin = 30
|
|
PA31 Pin = 31
|
|
PB00 Pin = 32
|
|
PB01 Pin = 33
|
|
PB02 Pin = 34
|
|
PB03 Pin = 35
|
|
PB04 Pin = 36
|
|
PB05 Pin = 37
|
|
PB06 Pin = 38
|
|
PB07 Pin = 39
|
|
PB08 Pin = 40
|
|
PB09 Pin = 41
|
|
PB10 Pin = 42
|
|
PB11 Pin = 43
|
|
PB12 Pin = 44
|
|
PB13 Pin = 45
|
|
PB14 Pin = 46
|
|
PB15 Pin = 47
|
|
PB16 Pin = 48
|
|
PB17 Pin = 49
|
|
PB18 Pin = 50
|
|
PB19 Pin = 51
|
|
PB20 Pin = 52
|
|
PB21 Pin = 53
|
|
PB22 Pin = 54
|
|
PB23 Pin = 55
|
|
PB24 Pin = 56
|
|
PB25 Pin = 57
|
|
PB26 Pin = 58
|
|
PB27 Pin = 59
|
|
PB28 Pin = 60
|
|
PB29 Pin = 61
|
|
PB30 Pin = 62
|
|
PB31 Pin = 63
|
|
)
|
|
|
|
const (
|
|
pinPadMapSERCOM0Pad0 uint16 = 0x1000
|
|
pinPadMapSERCOM1Pad0 uint16 = 0x2000
|
|
pinPadMapSERCOM2Pad0 uint16 = 0x3000
|
|
pinPadMapSERCOM3Pad0 uint16 = 0x4000
|
|
pinPadMapSERCOM4Pad0 uint16 = 0x5000
|
|
pinPadMapSERCOM5Pad0 uint16 = 0x6000
|
|
pinPadMapSERCOM6Pad0 uint16 = 0x7000
|
|
pinPadMapSERCOM7Pad0 uint16 = 0x8000
|
|
pinPadMapSERCOM0Pad2 uint16 = 0x1200
|
|
pinPadMapSERCOM1Pad2 uint16 = 0x2200
|
|
pinPadMapSERCOM2Pad2 uint16 = 0x3200
|
|
pinPadMapSERCOM3Pad2 uint16 = 0x4200
|
|
pinPadMapSERCOM4Pad2 uint16 = 0x5200
|
|
pinPadMapSERCOM5Pad2 uint16 = 0x6200
|
|
pinPadMapSERCOM6Pad2 uint16 = 0x7200
|
|
pinPadMapSERCOM7Pad2 uint16 = 0x8200
|
|
|
|
pinPadMapSERCOM0AltPad0 uint16 = 0x0010
|
|
pinPadMapSERCOM1AltPad0 uint16 = 0x0020
|
|
pinPadMapSERCOM2AltPad0 uint16 = 0x0030
|
|
pinPadMapSERCOM3AltPad0 uint16 = 0x0040
|
|
pinPadMapSERCOM4AltPad0 uint16 = 0x0050
|
|
pinPadMapSERCOM5AltPad0 uint16 = 0x0060
|
|
pinPadMapSERCOM6AltPad0 uint16 = 0x0070
|
|
pinPadMapSERCOM7AltPad0 uint16 = 0x0080
|
|
pinPadMapSERCOM0AltPad1 uint16 = 0x0011
|
|
pinPadMapSERCOM1AltPad1 uint16 = 0x0021
|
|
pinPadMapSERCOM2AltPad1 uint16 = 0x0031
|
|
pinPadMapSERCOM3AltPad1 uint16 = 0x0041
|
|
pinPadMapSERCOM4AltPad1 uint16 = 0x0051
|
|
pinPadMapSERCOM5AltPad1 uint16 = 0x0061
|
|
pinPadMapSERCOM6AltPad1 uint16 = 0x0071
|
|
pinPadMapSERCOM7AltPad1 uint16 = 0x0081
|
|
pinPadMapSERCOM0AltPad2 uint16 = 0x0012
|
|
pinPadMapSERCOM1AltPad2 uint16 = 0x0022
|
|
pinPadMapSERCOM2AltPad2 uint16 = 0x0032
|
|
pinPadMapSERCOM3AltPad2 uint16 = 0x0042
|
|
pinPadMapSERCOM4AltPad2 uint16 = 0x0052
|
|
pinPadMapSERCOM5AltPad2 uint16 = 0x0062
|
|
pinPadMapSERCOM6AltPad2 uint16 = 0x0072
|
|
pinPadMapSERCOM7AltPad2 uint16 = 0x0082
|
|
)
|
|
|
|
// pinPadMapping lists which pins have which SERCOMs attached to them.
|
|
// The encoding is rather dense, with each uint16 encoding two pins and both
|
|
// SERCOM and SERCOM-ALT.
|
|
//
|
|
// Observations:
|
|
// * There are eight SERCOMs. Those SERCOM numbers can be encoded in 4 bits.
|
|
// * Even pad numbers are usually on even pins, and odd pad numbers are usually
|
|
// on odd pins. The exception is SERCOM-ALT, which sometimes swaps pad 0 and 1.
|
|
// With that, there is still an invariant that the pad number for an odd pin is
|
|
// the pad number for the corresponding even pin with the low bit toggled.
|
|
// * Pin pads come in pairs. If PA00 has pad 0, then PA01 has pad 1.
|
|
// With this information, we can encode SERCOM pin/pad numbers much more
|
|
// efficiently. Due to pads coming in pairs, we can ignore half the pins: the
|
|
// information for an odd pin can be calculated easily from the preceding even
|
|
// pin.
|
|
//
|
|
// Each word below is split in two bytes. The 8 high bytes are for SERCOM and
|
|
// the 8 low bits are for SERCOM-ALT. Of each byte, the 4 high bits encode the
|
|
// SERCOM + 1 while the two low bits encodes the pad number (the pad number for
|
|
// the odd pin can be trivially calculated by toggling the low bit of the pad
|
|
// number). It encodes SERCOM + 1 instead of just the SERCOM number, to make it
|
|
// easy to check whether a nibble is set at all.
|
|
//
|
|
// Datasheet: http://ww1.microchip.com/downloads/en/DeviceDoc/60001507E.pdf
|
|
var pinPadMapping = [32]uint16{
|
|
// page 32
|
|
PA00 / 2: 0 | pinPadMapSERCOM1AltPad0,
|
|
|
|
// page 33
|
|
PB08 / 2: 0 | pinPadMapSERCOM4AltPad0,
|
|
PA04 / 2: 0 | pinPadMapSERCOM0AltPad0,
|
|
PA06 / 2: 0 | pinPadMapSERCOM0AltPad2,
|
|
//PC04 / 2: pinPadMapSERCOM6Pad0 | 0,
|
|
//PC06 / 2: pinPadMapSERCOM6Pad2 | 0,
|
|
PA08 / 2: pinPadMapSERCOM0Pad0 | pinPadMapSERCOM2AltPad1,
|
|
PA10 / 2: pinPadMapSERCOM0Pad2 | pinPadMapSERCOM2AltPad2,
|
|
PB10 / 2: 0 | pinPadMapSERCOM4AltPad2,
|
|
PB12 / 2: pinPadMapSERCOM4Pad0 | 0,
|
|
PB14 / 2: pinPadMapSERCOM4Pad2 | 0,
|
|
//PD08 / 2: pinPadMapSERCOM7Pad0 | pinPadMapSERCOM6AltPad1,
|
|
//PD10 / 2: pinPadMapSERCOM7Pad2 | pinPadMapSERCOM6AltPad2,
|
|
//PC10 / 2: pinPadMapSERCOM6Pad2 | pinPadMapSERCOM7AltPad2,
|
|
|
|
// page 34
|
|
//PC12 / 2: pinPadMapSERCOM7Pad0 | pinPadMapSERCOM6AltPad1,
|
|
//PC14 / 2: pinPadMapSERCOM7Pad2 | pinPadMapSERCOM6AltPad2,
|
|
PA12 / 2: pinPadMapSERCOM2Pad0 | pinPadMapSERCOM4AltPad1,
|
|
PA14 / 2: pinPadMapSERCOM2Pad2 | pinPadMapSERCOM4AltPad2,
|
|
PA16 / 2: pinPadMapSERCOM1Pad0 | pinPadMapSERCOM3AltPad1,
|
|
PA18 / 2: pinPadMapSERCOM1Pad2 | pinPadMapSERCOM3AltPad2,
|
|
//PC16 / 2: pinPadMapSERCOM6Pad0 | pinPadMapSERCOM0AltPad1,
|
|
//PC18 / 2: pinPadMapSERCOM6Pad2 | pinPadMapSERCOM0AltPad2,
|
|
//PC22 / 2: pinPadMapSERCOM1Pad0 | pinPadMapSERCOM3AltPad1,
|
|
//PD20 / 2: pinPadMapSERCOM1Pad2 | pinPadMapSERCOM3AltPad2,
|
|
PB16 / 2: pinPadMapSERCOM5Pad0 | 0,
|
|
PB18 / 2: pinPadMapSERCOM5Pad2 | pinPadMapSERCOM7AltPad2,
|
|
|
|
// page 35
|
|
PB20 / 2: pinPadMapSERCOM3Pad0 | pinPadMapSERCOM7AltPad1,
|
|
PA20 / 2: pinPadMapSERCOM5Pad2 | pinPadMapSERCOM3AltPad2,
|
|
PA22 / 2: pinPadMapSERCOM3Pad0 | pinPadMapSERCOM5AltPad1,
|
|
PA24 / 2: pinPadMapSERCOM3Pad2 | pinPadMapSERCOM5AltPad2,
|
|
PB22 / 2: pinPadMapSERCOM1Pad2 | pinPadMapSERCOM5AltPad2,
|
|
PB24 / 2: pinPadMapSERCOM0Pad0 | pinPadMapSERCOM2AltPad1,
|
|
PB26 / 2: pinPadMapSERCOM2Pad0 | pinPadMapSERCOM4AltPad1,
|
|
PB28 / 2: pinPadMapSERCOM2Pad2 | pinPadMapSERCOM4AltPad2,
|
|
//PC24 / 2: pinPadMapSERCOM0Pad2 | pinPadMapSERCOM2AltPad2,
|
|
//PC26 / 2: pinPadMapSERCOM1Pad1 | 0, // note: PC26 doesn't support SERCOM, but PC27 does
|
|
//PC28 / 2: pinPadMapSERCOM1Pad1 | 0, // note: PC29 doesn't exist in the datasheet?
|
|
PA30 / 2: 0 | pinPadMapSERCOM1AltPad2,
|
|
|
|
// page 36
|
|
PB30 / 2: 0 | pinPadMapSERCOM5AltPad1,
|
|
PB00 / 2: 0 | pinPadMapSERCOM5AltPad2,
|
|
PB02 / 2: 0 | pinPadMapSERCOM5AltPad0,
|
|
}
|
|
|
|
// findPinPadMapping looks up the pad number and the pinmode for a given pin and
|
|
// SERCOM number. The result can either be SERCOM, SERCOM-ALT, or "not found"
|
|
// (indicated by returning ok=false). The pad number is returned to calculate
|
|
// the DOPO/DIPO bitfields of the various serial peripherals.
|
|
func findPinPadMapping(sercom uint8, pin Pin) (pinMode PinMode, pad uint32, ok bool) {
|
|
bytes := pinPadMapping[pin/2]
|
|
upper := byte(bytes >> 8)
|
|
lower := byte(bytes & 0xff)
|
|
|
|
if upper != 0 {
|
|
// SERCOM
|
|
if (upper>>4)-1 == sercom {
|
|
pinMode = PinSERCOM
|
|
pad |= uint32(upper % 4)
|
|
ok = true
|
|
}
|
|
}
|
|
if lower != 0 {
|
|
// SERCOM-ALT
|
|
if (lower>>4)-1 == sercom {
|
|
pinMode = PinSERCOMAlt
|
|
pad |= uint32(lower % 4)
|
|
ok = true
|
|
}
|
|
}
|
|
|
|
if ok {
|
|
// If the pin is uneven, toggle the lowest bit of the pad number.
|
|
if pin&1 != 0 {
|
|
pad ^= 1
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Return the register and mask to enable a given GPIO pin. This can be used to
|
|
// implement bit-banged drivers.
|
|
func (p Pin) PortMaskSet() (*uint32, uint32) {
|
|
group, pin_in_group := p.getPinGrouping()
|
|
return &sam.PORT.GROUP[group].OUTSET.Reg, 1 << pin_in_group
|
|
}
|
|
|
|
// Return the register and mask to disable a given port. This can be used to
|
|
// implement bit-banged drivers.
|
|
func (p Pin) PortMaskClear() (*uint32, uint32) {
|
|
group, pin_in_group := p.getPinGrouping()
|
|
return &sam.PORT.GROUP[group].OUTCLR.Reg, 1 << pin_in_group
|
|
}
|
|
|
|
// Set the pin to high or low.
|
|
// Warning: only use this on an output pin!
|
|
func (p Pin) Set(high bool) {
|
|
group, pin_in_group := p.getPinGrouping()
|
|
if high {
|
|
sam.PORT.GROUP[group].OUTSET.Set(1 << pin_in_group)
|
|
} else {
|
|
sam.PORT.GROUP[group].OUTCLR.Set(1 << pin_in_group)
|
|
}
|
|
}
|
|
|
|
// Get returns the current value of a GPIO pin.
|
|
func (p Pin) Get() bool {
|
|
group, pin_in_group := p.getPinGrouping()
|
|
return (sam.PORT.GROUP[group].IN.Get()>>pin_in_group)&1 > 0
|
|
}
|
|
|
|
// Toggle switches an output pin from low to high or from high to low.
|
|
// Warning: only use this on an output pin!
|
|
func (p Pin) Toggle() {
|
|
group, pin_in_group := p.getPinGrouping()
|
|
sam.PORT.GROUP[group].OUTTGL.Set(1 << pin_in_group)
|
|
}
|
|
|
|
// Configure this pin with the given configuration.
|
|
func (p Pin) Configure(config PinConfig) {
|
|
group, pin_in_group := p.getPinGrouping()
|
|
switch config.Mode {
|
|
case PinOutput:
|
|
sam.PORT.GROUP[group].DIRSET.Set(1 << pin_in_group)
|
|
// output is also set to input enable so pin can read back its own value
|
|
p.setPinCfg(sam.PORT_GROUP_PINCFG_INEN)
|
|
|
|
case PinInput:
|
|
sam.PORT.GROUP[group].DIRCLR.Set(1 << pin_in_group)
|
|
p.setPinCfg(sam.PORT_GROUP_PINCFG_INEN)
|
|
|
|
case PinInputPulldown:
|
|
sam.PORT.GROUP[group].DIRCLR.Set(1 << pin_in_group)
|
|
sam.PORT.GROUP[group].OUTCLR.Set(1 << pin_in_group)
|
|
p.setPinCfg(sam.PORT_GROUP_PINCFG_INEN | sam.PORT_GROUP_PINCFG_PULLEN)
|
|
|
|
case PinInputPullup:
|
|
sam.PORT.GROUP[group].DIRCLR.Set(1 << pin_in_group)
|
|
sam.PORT.GROUP[group].OUTSET.Set(1 << pin_in_group)
|
|
p.setPinCfg(sam.PORT_GROUP_PINCFG_INEN | sam.PORT_GROUP_PINCFG_PULLEN)
|
|
|
|
case PinSERCOM:
|
|
if p&1 > 0 {
|
|
// odd pin, so save the even pins
|
|
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
|
|
p.setPMux(val | (uint8(PinSERCOM) << sam.PORT_GROUP_PMUX_PMUXO_Pos))
|
|
} else {
|
|
// even pin, so save the odd pins
|
|
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
|
|
p.setPMux(val | (uint8(PinSERCOM) << sam.PORT_GROUP_PMUX_PMUXE_Pos))
|
|
}
|
|
// enable port config
|
|
p.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN | sam.PORT_GROUP_PINCFG_DRVSTR | sam.PORT_GROUP_PINCFG_INEN)
|
|
|
|
case PinSERCOMAlt:
|
|
if p&1 > 0 {
|
|
// odd pin, so save the even pins
|
|
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
|
|
p.setPMux(val | (uint8(PinSERCOMAlt) << sam.PORT_GROUP_PMUX_PMUXO_Pos))
|
|
} else {
|
|
// even pin, so save the odd pins
|
|
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
|
|
p.setPMux(val | (uint8(PinSERCOMAlt) << sam.PORT_GROUP_PMUX_PMUXE_Pos))
|
|
}
|
|
// enable port config
|
|
p.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN | sam.PORT_GROUP_PINCFG_DRVSTR)
|
|
|
|
case PinCom:
|
|
if p&1 > 0 {
|
|
// odd pin, so save the even pins
|
|
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
|
|
p.setPMux(val | (uint8(PinCom) << sam.PORT_GROUP_PMUX_PMUXO_Pos))
|
|
} else {
|
|
// even pin, so save the odd pins
|
|
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
|
|
p.setPMux(val | (uint8(PinCom) << sam.PORT_GROUP_PMUX_PMUXE_Pos))
|
|
}
|
|
// enable port config
|
|
p.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN)
|
|
case PinAnalog:
|
|
if p&1 > 0 {
|
|
// odd pin, so save the even pins
|
|
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
|
|
p.setPMux(val | (uint8(PinAnalog) << sam.PORT_GROUP_PMUX_PMUXO_Pos))
|
|
} else {
|
|
// even pin, so save the odd pins
|
|
val := p.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
|
|
p.setPMux(val | (uint8(PinAnalog) << sam.PORT_GROUP_PMUX_PMUXE_Pos))
|
|
}
|
|
// enable port config
|
|
p.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN | sam.PORT_GROUP_PINCFG_DRVSTR)
|
|
}
|
|
}
|
|
|
|
// getPMux returns the value for the correct PMUX register for this pin.
|
|
func (p Pin) getPMux() uint8 {
|
|
group, pin_in_group := p.getPinGrouping()
|
|
return sam.PORT.GROUP[group].PMUX[pin_in_group>>1].Get()
|
|
}
|
|
|
|
// setPMux sets the value for the correct PMUX register for this pin.
|
|
func (p Pin) setPMux(val uint8) {
|
|
group, pin_in_group := p.getPinGrouping()
|
|
sam.PORT.GROUP[group].PMUX[pin_in_group>>1].Set(val)
|
|
}
|
|
|
|
// getPinCfg returns the value for the correct PINCFG register for this pin.
|
|
func (p Pin) getPinCfg() uint8 {
|
|
group, pin_in_group := p.getPinGrouping()
|
|
return sam.PORT.GROUP[group].PINCFG[pin_in_group].Get()
|
|
}
|
|
|
|
// setPinCfg sets the value for the correct PINCFG register for this pin.
|
|
func (p Pin) setPinCfg(val uint8) {
|
|
group, pin_in_group := p.getPinGrouping()
|
|
sam.PORT.GROUP[group].PINCFG[pin_in_group].Set(val)
|
|
}
|
|
|
|
// getPinGrouping calculates the gpio group and pin id from the pin number.
|
|
// Pins are split into groups of 32, and each group has its own set of
|
|
// control registers.
|
|
func (p Pin) getPinGrouping() (uint8, uint8) {
|
|
group := uint8(p) >> 5
|
|
pin_in_group := uint8(p) & 0x1f
|
|
return group, pin_in_group
|
|
}
|
|
|
|
// InitADC initializes the ADC.
|
|
func InitADC() {
|
|
// ADC Bias Calibration
|
|
// NVMCTRL_SW0 0x00800080
|
|
// #define ADC0_FUSES_BIASCOMP_ADDR NVMCTRL_SW0
|
|
// #define ADC0_FUSES_BIASCOMP_Pos 2 /**< \brief (NVMCTRL_SW0) ADC Comparator Scaling */
|
|
// #define ADC0_FUSES_BIASCOMP_Msk (_Ul(0x7) << ADC0_FUSES_BIASCOMP_Pos)
|
|
// #define ADC0_FUSES_BIASCOMP(value) (ADC0_FUSES_BIASCOMP_Msk & ((value) << ADC0_FUSES_BIASCOMP_Pos))
|
|
|
|
// #define ADC0_FUSES_BIASR2R_ADDR NVMCTRL_SW0
|
|
// #define ADC0_FUSES_BIASR2R_Pos 8 /**< \brief (NVMCTRL_SW0) ADC Bias R2R ampli scaling */
|
|
// #define ADC0_FUSES_BIASR2R_Msk (_Ul(0x7) << ADC0_FUSES_BIASR2R_Pos)
|
|
// #define ADC0_FUSES_BIASR2R(value) (ADC0_FUSES_BIASR2R_Msk & ((value) << ADC0_FUSES_BIASR2R_Pos))
|
|
|
|
// #define ADC0_FUSES_BIASREFBUF_ADDR NVMCTRL_SW0
|
|
// #define ADC0_FUSES_BIASREFBUF_Pos 5 /**< \brief (NVMCTRL_SW0) ADC Bias Reference Buffer Scaling */
|
|
// #define ADC0_FUSES_BIASREFBUF_Msk (_Ul(0x7) << ADC0_FUSES_BIASREFBUF_Pos)
|
|
// #define ADC0_FUSES_BIASREFBUF(value) (ADC0_FUSES_BIASREFBUF_Msk & ((value) << ADC0_FUSES_BIASREFBUF_Pos))
|
|
|
|
// #define ADC1_FUSES_BIASCOMP_ADDR NVMCTRL_SW0
|
|
// #define ADC1_FUSES_BIASCOMP_Pos 16 /**< \brief (NVMCTRL_SW0) ADC Comparator Scaling */
|
|
// #define ADC1_FUSES_BIASCOMP_Msk (_Ul(0x7) << ADC1_FUSES_BIASCOMP_Pos)
|
|
// #define ADC1_FUSES_BIASCOMP(value) (ADC1_FUSES_BIASCOMP_Msk & ((value) << ADC1_FUSES_BIASCOMP_Pos))
|
|
|
|
// #define ADC1_FUSES_BIASR2R_ADDR NVMCTRL_SW0
|
|
// #define ADC1_FUSES_BIASR2R_Pos 22 /**< \brief (NVMCTRL_SW0) ADC Bias R2R ampli scaling */
|
|
// #define ADC1_FUSES_BIASR2R_Msk (_Ul(0x7) << ADC1_FUSES_BIASR2R_Pos)
|
|
// #define ADC1_FUSES_BIASR2R(value) (ADC1_FUSES_BIASR2R_Msk & ((value) << ADC1_FUSES_BIASR2R_Pos))
|
|
|
|
// #define ADC1_FUSES_BIASREFBUF_ADDR NVMCTRL_SW0
|
|
// #define ADC1_FUSES_BIASREFBUF_Pos 19 /**< \brief (NVMCTRL_SW0) ADC Bias Reference Buffer Scaling */
|
|
// #define ADC1_FUSES_BIASREFBUF_Msk (_Ul(0x7) << ADC1_FUSES_BIASREFBUF_Pos)
|
|
// #define ADC1_FUSES_BIASREFBUF(value) (ADC1_FUSES_BIASREFBUF_Msk & ((value) << ADC1_FUSES_BIASREFBUF_Pos))
|
|
|
|
adcFuse := *(*uint32)(unsafe.Pointer(uintptr(0x00800080)))
|
|
|
|
// uint32_t biascomp = (*((uint32_t *)ADC0_FUSES_BIASCOMP_ADDR) & ADC0_FUSES_BIASCOMP_Msk) >> ADC0_FUSES_BIASCOMP_Pos;
|
|
biascomp := (adcFuse & uint32(0x7<<2)) //>> 2
|
|
|
|
// uint32_t biasr2r = (*((uint32_t *)ADC0_FUSES_BIASR2R_ADDR) & ADC0_FUSES_BIASR2R_Msk) >> ADC0_FUSES_BIASR2R_Pos;
|
|
biasr2r := (adcFuse & uint32(0x7<<8)) //>> 8
|
|
|
|
// uint32_t biasref = (*((uint32_t *)ADC0_FUSES_BIASREFBUF_ADDR) & ADC0_FUSES_BIASREFBUF_Msk) >> ADC0_FUSES_BIASREFBUF_Pos;
|
|
biasref := (adcFuse & uint32(0x7<<5)) //>> 5
|
|
|
|
// calibrate ADC0
|
|
sam.ADC0.CALIB.Set(uint16(biascomp | biasr2r | biasref))
|
|
|
|
// biascomp = (*((uint32_t *)ADC1_FUSES_BIASCOMP_ADDR) & ADC1_FUSES_BIASCOMP_Msk) >> ADC1_FUSES_BIASCOMP_Pos;
|
|
biascomp = (adcFuse & uint32(0x7<<16)) //>> 16
|
|
|
|
// biasr2r = (*((uint32_t *)ADC1_FUSES_BIASR2R_ADDR) & ADC1_FUSES_BIASR2R_Msk) >> ADC1_FUSES_BIASR2R_Pos;
|
|
biasr2r = (adcFuse & uint32(0x7<<22)) //>> 22
|
|
|
|
// biasref = (*((uint32_t *)ADC1_FUSES_BIASREFBUF_ADDR) & ADC1_FUSES_BIASREFBUF_Msk) >> ADC1_FUSES_BIASREFBUF_Pos;
|
|
biasref = (adcFuse & uint32(0x7<<19)) //>> 19
|
|
|
|
// calibrate ADC1
|
|
sam.ADC1.CALIB.Set(uint16((biascomp | biasr2r | biasref) >> 16))
|
|
|
|
sam.ADC0.CTRLA.SetBits(sam.ADC_CTRLA_PRESCALER_DIV32 << sam.ADC_CTRLA_PRESCALER_Pos)
|
|
// adcs[i]->CTRLB.bit.RESSEL = ADC_CTRLB_RESSEL_10BIT_Val;
|
|
sam.ADC0.CTRLB.SetBits(sam.ADC_CTRLB_RESSEL_12BIT << sam.ADC_CTRLB_RESSEL_Pos)
|
|
|
|
// wait for sync
|
|
for sam.ADC0.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_CTRLB) {
|
|
}
|
|
|
|
// sampling Time Length
|
|
sam.ADC0.SAMPCTRL.Set(5)
|
|
|
|
// wait for sync
|
|
for sam.ADC0.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_SAMPCTRL) {
|
|
}
|
|
|
|
// No Negative input (Internal Ground)
|
|
sam.ADC0.INPUTCTRL.Set(sam.ADC_INPUTCTRL_MUXNEG_GND << sam.ADC_INPUTCTRL_MUXNEG_Pos)
|
|
|
|
// wait for sync
|
|
for sam.ADC0.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_INPUTCTRL) {
|
|
}
|
|
|
|
// Averaging (see datasheet table in AVGCTRL register description)
|
|
// 1 sample only (no oversampling nor averaging), adjusting result by 0
|
|
sam.ADC0.AVGCTRL.Set(sam.ADC_AVGCTRL_SAMPLENUM_1 | (0 << sam.ADC_AVGCTRL_ADJRES_Pos))
|
|
|
|
// wait for sync
|
|
for sam.ADC0.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_AVGCTRL) {
|
|
}
|
|
|
|
// same for ADC1, as for ADC0
|
|
sam.ADC1.CTRLA.SetBits(sam.ADC_CTRLA_PRESCALER_DIV32 << sam.ADC_CTRLA_PRESCALER_Pos)
|
|
sam.ADC1.CTRLB.SetBits(sam.ADC_CTRLB_RESSEL_12BIT << sam.ADC_CTRLB_RESSEL_Pos)
|
|
for sam.ADC1.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_CTRLB) {
|
|
}
|
|
sam.ADC1.SAMPCTRL.Set(5)
|
|
for sam.ADC1.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_SAMPCTRL) {
|
|
}
|
|
sam.ADC1.INPUTCTRL.Set(sam.ADC_INPUTCTRL_MUXNEG_GND << sam.ADC_INPUTCTRL_MUXNEG_Pos)
|
|
for sam.ADC1.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_INPUTCTRL) {
|
|
}
|
|
sam.ADC1.AVGCTRL.Set(sam.ADC_AVGCTRL_SAMPLENUM_1 | (0 << sam.ADC_AVGCTRL_ADJRES_Pos))
|
|
for sam.ADC1.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_AVGCTRL) {
|
|
}
|
|
|
|
// wait for sync
|
|
for sam.ADC0.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_REFCTRL) {
|
|
}
|
|
for sam.ADC1.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_REFCTRL) {
|
|
}
|
|
|
|
// default is 3V3 reference voltage
|
|
sam.ADC0.REFCTRL.SetBits(sam.ADC_REFCTRL_REFSEL_INTVCC1)
|
|
sam.ADC1.REFCTRL.SetBits(sam.ADC_REFCTRL_REFSEL_INTVCC1)
|
|
}
|
|
|
|
// Configure configures a ADCPin to be able to be used to read data.
|
|
func (a ADC) Configure() {
|
|
a.Pin.Configure(PinConfig{Mode: PinAnalog})
|
|
}
|
|
|
|
// Get returns the current value of a ADC pin, in the range 0..0xffff.
|
|
func (a ADC) Get() uint16 {
|
|
bus := a.getADCBus()
|
|
ch := a.getADCChannel()
|
|
|
|
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_INPUTCTRL) {
|
|
}
|
|
|
|
// Selection for the positive ADC input channel
|
|
bus.INPUTCTRL.ClearBits(sam.ADC_INPUTCTRL_MUXPOS_Msk)
|
|
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
|
|
}
|
|
bus.INPUTCTRL.SetBits((uint16(ch) & sam.ADC_INPUTCTRL_MUXPOS_Msk) << sam.ADC_INPUTCTRL_MUXPOS_Pos)
|
|
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
|
|
}
|
|
|
|
// Enable ADC
|
|
bus.CTRLA.SetBits(sam.ADC_CTRLA_ENABLE)
|
|
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
|
|
}
|
|
|
|
// Start conversion
|
|
bus.SWTRIG.SetBits(sam.ADC_SWTRIG_START)
|
|
for !bus.INTFLAG.HasBits(sam.ADC_INTFLAG_RESRDY) {
|
|
}
|
|
|
|
// Clear the Data Ready flag
|
|
bus.INTFLAG.ClearBits(sam.ADC_INTFLAG_RESRDY)
|
|
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
|
|
}
|
|
|
|
// Start conversion again, since first conversion after reference voltage changed is invalid.
|
|
bus.SWTRIG.SetBits(sam.ADC_SWTRIG_START)
|
|
|
|
// Waiting for conversion to complete
|
|
for !bus.INTFLAG.HasBits(sam.ADC_INTFLAG_RESRDY) {
|
|
}
|
|
val := bus.RESULT.Get()
|
|
|
|
// Disable ADC
|
|
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
|
|
}
|
|
bus.CTRLA.ClearBits(sam.ADC_CTRLA_ENABLE)
|
|
for bus.SYNCBUSY.HasBits(sam.ADC_SYNCBUSY_ENABLE) {
|
|
}
|
|
|
|
return uint16(val) << 4 // scales from 12 to 16-bit result
|
|
}
|
|
|
|
func (a ADC) getADCBus() *sam.ADC_Type {
|
|
if a.Pin >= PB04 && a.Pin <= PB07 {
|
|
return sam.ADC1
|
|
}
|
|
return sam.ADC0
|
|
}
|
|
|
|
func (a ADC) getADCChannel() uint8 {
|
|
switch a.Pin {
|
|
case PA02:
|
|
return 0
|
|
case PB08:
|
|
return 2
|
|
case PB09:
|
|
return 3
|
|
case PA04:
|
|
return 4
|
|
case PA05:
|
|
return 5
|
|
case PA06:
|
|
return 6
|
|
case PA07:
|
|
return 7
|
|
case PB00:
|
|
return 12
|
|
case PB01:
|
|
return 13
|
|
case PB02:
|
|
return 14
|
|
case PB03:
|
|
return 15
|
|
case PA09:
|
|
return 17
|
|
case PA11:
|
|
return 19
|
|
|
|
case PB04:
|
|
return 6
|
|
case PB05:
|
|
return 7
|
|
case PB06:
|
|
return 8
|
|
case PB07:
|
|
return 9
|
|
default:
|
|
panic("Invalid ADC pin")
|
|
}
|
|
}
|
|
|
|
// UART on the SAMD51.
|
|
type UART struct {
|
|
Buffer *RingBuffer
|
|
Bus *sam.SERCOM_USART_INT_Type
|
|
SERCOM uint8
|
|
IRQVal uint32 // RXC interrupt
|
|
}
|
|
|
|
var (
|
|
// UART0 is actually a USB CDC interface.
|
|
UART0 = USBCDC{Buffer: NewRingBuffer()}
|
|
|
|
// The first hardware serial port on the SAMD51. Uses the SERCOM3 interface.
|
|
UART1 = UART{
|
|
Buffer: NewRingBuffer(),
|
|
Bus: sam.SERCOM3_USART_INT,
|
|
SERCOM: 3,
|
|
IRQVal: sam.IRQ_SERCOM3_2, // RXC interrupt
|
|
}
|
|
|
|
// The second hardware serial port on the SAMD51. Uses the SERCOM0 interface.
|
|
UART2 = UART{
|
|
Buffer: NewRingBuffer(),
|
|
Bus: sam.SERCOM0_USART_INT,
|
|
SERCOM: 0,
|
|
IRQVal: sam.IRQ_SERCOM0_2, // RXC interrupt
|
|
}
|
|
)
|
|
|
|
const (
|
|
sampleRate16X = 16
|
|
lsbFirst = 1
|
|
)
|
|
|
|
// Configure the UART.
|
|
func (uart UART) Configure(config UARTConfig) error {
|
|
// Default baud rate to 115200.
|
|
if config.BaudRate == 0 {
|
|
config.BaudRate = 115200
|
|
}
|
|
|
|
// determine pins
|
|
if config.TX == 0 && config.RX == 0 {
|
|
// use default pins
|
|
config.TX = UART_TX_PIN
|
|
config.RX = UART_RX_PIN
|
|
}
|
|
|
|
// Determine transmit pinout.
|
|
txPinMode, txPad, ok := findPinPadMapping(uart.SERCOM, config.TX)
|
|
if !ok {
|
|
return ErrInvalidOutputPin
|
|
}
|
|
var txPinOut uint32
|
|
// See CTRLA.RXPO bits of the SERCOM USART peripheral (page 945-946) for how
|
|
// pads are mapped to pinout values.
|
|
switch txPad {
|
|
case 0:
|
|
txPinOut = 0
|
|
default:
|
|
// TODO: flow control (RTS/CTS)
|
|
return ErrInvalidOutputPin
|
|
}
|
|
|
|
// Determine receive pinout.
|
|
rxPinMode, rxPad, ok := findPinPadMapping(uart.SERCOM, config.RX)
|
|
if !ok {
|
|
return ErrInvalidInputPin
|
|
}
|
|
// As you can see in the CTRLA.RXPO bits of the SERCOM USART peripheral
|
|
// (page 945), input pins are mapped directly.
|
|
rxPinOut := rxPad
|
|
|
|
// configure pins
|
|
config.TX.Configure(PinConfig{Mode: txPinMode})
|
|
config.RX.Configure(PinConfig{Mode: rxPinMode})
|
|
|
|
// reset SERCOM
|
|
uart.Bus.CTRLA.SetBits(sam.SERCOM_USART_INT_CTRLA_SWRST)
|
|
for uart.Bus.CTRLA.HasBits(sam.SERCOM_USART_INT_CTRLA_SWRST) ||
|
|
uart.Bus.SYNCBUSY.HasBits(sam.SERCOM_USART_INT_SYNCBUSY_SWRST) {
|
|
}
|
|
|
|
// set UART mode/sample rate
|
|
// SERCOM_USART_CTRLA_MODE(mode) |
|
|
// SERCOM_USART_CTRLA_SAMPR(sampleRate);
|
|
// sam.SERCOM_USART_CTRLA_MODE_USART_INT_CLK = 1?
|
|
uart.Bus.CTRLA.Set((1 << sam.SERCOM_USART_INT_CTRLA_MODE_Pos) |
|
|
(1 << sam.SERCOM_USART_INT_CTRLA_SAMPR_Pos)) // sample rate of 16x
|
|
|
|
// Set baud rate
|
|
uart.SetBaudRate(config.BaudRate)
|
|
|
|
// setup UART frame
|
|
// SERCOM_USART_CTRLA_FORM( (parityMode == SERCOM_NO_PARITY ? 0 : 1) ) |
|
|
// dataOrder << SERCOM_USART_CTRLA_DORD_Pos;
|
|
uart.Bus.CTRLA.SetBits((0 << sam.SERCOM_USART_INT_CTRLA_FORM_Pos) | // no parity
|
|
(lsbFirst << sam.SERCOM_USART_INT_CTRLA_DORD_Pos)) // data order
|
|
|
|
// set UART stop bits/parity
|
|
// SERCOM_USART_CTRLB_CHSIZE(charSize) |
|
|
// nbStopBits << SERCOM_USART_CTRLB_SBMODE_Pos |
|
|
// (parityMode == SERCOM_NO_PARITY ? 0 : parityMode) << SERCOM_USART_CTRLB_PMODE_Pos; //If no parity use default value
|
|
uart.Bus.CTRLB.SetBits((0 << sam.SERCOM_USART_INT_CTRLB_CHSIZE_Pos) | // 8 bits is 0
|
|
(0 << sam.SERCOM_USART_INT_CTRLB_SBMODE_Pos) | // 1 stop bit is zero
|
|
(0 << sam.SERCOM_USART_INT_CTRLB_PMODE_Pos)) // no parity
|
|
|
|
// set UART pads. This is not same as pins...
|
|
// SERCOM_USART_CTRLA_TXPO(txPad) |
|
|
// SERCOM_USART_CTRLA_RXPO(rxPad);
|
|
uart.Bus.CTRLA.SetBits((txPinOut << sam.SERCOM_USART_INT_CTRLA_TXPO_Pos) |
|
|
(rxPinOut << sam.SERCOM_USART_INT_CTRLA_RXPO_Pos))
|
|
|
|
// Enable Transceiver and Receiver
|
|
//sercom->USART.CTRLB.reg |= SERCOM_USART_CTRLB_TXEN | SERCOM_USART_CTRLB_RXEN ;
|
|
uart.Bus.CTRLB.SetBits(sam.SERCOM_USART_INT_CTRLB_TXEN | sam.SERCOM_USART_INT_CTRLB_RXEN)
|
|
|
|
// Enable USART1 port.
|
|
// sercom->USART.CTRLA.bit.ENABLE = 0x1u;
|
|
uart.Bus.CTRLA.SetBits(sam.SERCOM_USART_INT_CTRLA_ENABLE)
|
|
for uart.Bus.SYNCBUSY.HasBits(sam.SERCOM_USART_INT_SYNCBUSY_ENABLE) {
|
|
}
|
|
|
|
// setup interrupt on receive
|
|
uart.Bus.INTENSET.Set(sam.SERCOM_USART_INT_INTENSET_RXC)
|
|
|
|
// Enable RX IRQ.
|
|
// This is a small note at the bottom of the NVIC section of the datasheet:
|
|
// > The integer number specified in the source refers to the respective bit
|
|
// > position in the INTFLAG register of respective peripheral.
|
|
// Therefore, if we only need to listen to the RXC interrupt source (in bit
|
|
// position 2), we only need interrupt source 2 for this SERCOM device.
|
|
arm.EnableIRQ(uart.IRQVal)
|
|
|
|
return nil
|
|
}
|
|
|
|
// SetBaudRate sets the communication speed for the UART.
|
|
func (uart UART) SetBaudRate(br uint32) {
|
|
// Asynchronous fractional mode (Table 24-2 in datasheet)
|
|
// BAUD = fref / (sampleRateValue * fbaud)
|
|
// (multiply by 8, to calculate fractional piece)
|
|
// uint32_t baudTimes8 = (SystemCoreClock * 8) / (16 * baudrate);
|
|
baud := (SERCOM_FREQ_REF * 8) / (sampleRate16X * br)
|
|
|
|
// sercom->USART.BAUD.FRAC.FP = (baudTimes8 % 8);
|
|
// sercom->USART.BAUD.FRAC.BAUD = (baudTimes8 / 8);
|
|
uart.Bus.BAUD.Set(uint16(((baud % 8) << sam.SERCOM_USART_INT_BAUD_FRAC_MODE_FP_Pos) |
|
|
((baud / 8) << sam.SERCOM_USART_INT_BAUD_FRAC_MODE_BAUD_Pos)))
|
|
}
|
|
|
|
// WriteByte writes a byte of data to the UART.
|
|
func (uart UART) WriteByte(c byte) error {
|
|
// wait until ready to receive
|
|
for !uart.Bus.INTFLAG.HasBits(sam.SERCOM_USART_INT_INTFLAG_DRE) {
|
|
}
|
|
uart.Bus.DATA.Set(uint32(c))
|
|
return nil
|
|
}
|
|
|
|
//go:export SERCOM3_2_IRQHandler
|
|
func handleSERCOM3_2() {
|
|
// should reset IRQ
|
|
UART1.Receive(byte((UART1.Bus.DATA.Get() & 0xFF)))
|
|
UART1.Bus.INTFLAG.SetBits(sam.SERCOM_USART_INT_INTFLAG_RXC)
|
|
}
|
|
|
|
//go:export SERCOM0_2_IRQHandler
|
|
func handleSERCOM0_2() {
|
|
// should reset IRQ
|
|
UART2.Receive(byte((UART2.Bus.DATA.Get() & 0xFF)))
|
|
UART2.Bus.INTFLAG.SetBits(sam.SERCOM_USART_INT_INTFLAG_RXC)
|
|
}
|
|
|
|
// I2C on the SAMD51.
|
|
type I2C struct {
|
|
Bus *sam.SERCOM_I2CM_Type
|
|
SERCOM uint8
|
|
}
|
|
|
|
// I2CConfig is used to store config info for I2C.
|
|
type I2CConfig struct {
|
|
Frequency uint32
|
|
SCL Pin
|
|
SDA Pin
|
|
}
|
|
|
|
const (
|
|
// SERCOM_FREQ_REF is always reference frequency on SAMD51 regardless of CPU speed.
|
|
SERCOM_FREQ_REF = 48000000
|
|
|
|
// Default rise time in nanoseconds, based on 4.7K ohm pull up resistors
|
|
riseTimeNanoseconds = 125
|
|
|
|
// wire bus states
|
|
wireUnknownState = 0
|
|
wireIdleState = 1
|
|
wireOwnerState = 2
|
|
wireBusyState = 3
|
|
|
|
// wire commands
|
|
wireCmdNoAction = 0
|
|
wireCmdRepeatStart = 1
|
|
wireCmdRead = 2
|
|
wireCmdStop = 3
|
|
)
|
|
|
|
const i2cTimeout = 1000
|
|
|
|
// Configure is intended to setup the I2C interface.
|
|
func (i2c I2C) Configure(config I2CConfig) error {
|
|
// Default I2C bus speed is 100 kHz.
|
|
if config.Frequency == 0 {
|
|
config.Frequency = TWI_FREQ_100KHZ
|
|
}
|
|
|
|
// Use default I2C pins if not set.
|
|
if config.SDA == 0 && config.SCL == 0 {
|
|
config.SDA = SDA_PIN
|
|
config.SCL = SCL_PIN
|
|
}
|
|
|
|
sclPinMode, sclPad, ok := findPinPadMapping(i2c.SERCOM, config.SCL)
|
|
if !ok || sclPad != 1 {
|
|
// SCL must be on pad 1, according to section 36.4 of the datasheet.
|
|
// Note: this is not an exhaustive test for I2C support on the pin: not
|
|
// all pins support I2C.
|
|
return ErrInvalidClockPin
|
|
}
|
|
sdaPinMode, sdaPad, ok := findPinPadMapping(i2c.SERCOM, config.SDA)
|
|
if !ok || sdaPad != 0 {
|
|
// SDA must be on pad 0, according to section 36.4 of the datasheet.
|
|
// Note: this is not an exhaustive test for I2C support on the pin: not
|
|
// all pins support I2C.
|
|
return ErrInvalidDataPin
|
|
}
|
|
|
|
// reset SERCOM
|
|
i2c.Bus.CTRLA.SetBits(sam.SERCOM_I2CM_CTRLA_SWRST)
|
|
for i2c.Bus.CTRLA.HasBits(sam.SERCOM_I2CM_CTRLA_SWRST) ||
|
|
i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SWRST) {
|
|
}
|
|
|
|
// Set i2c master mode
|
|
//SERCOM_I2CM_CTRLA_MODE( I2C_MASTER_OPERATION )
|
|
// sam.SERCOM_I2CM_CTRLA_MODE_I2C_MASTER = 5?
|
|
i2c.Bus.CTRLA.Set(5 << sam.SERCOM_I2CM_CTRLA_MODE_Pos) // |
|
|
|
|
i2c.SetBaudRate(config.Frequency)
|
|
|
|
// Enable I2CM port.
|
|
// sercom->USART.CTRLA.bit.ENABLE = 0x1u;
|
|
i2c.Bus.CTRLA.SetBits(sam.SERCOM_I2CM_CTRLA_ENABLE)
|
|
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_ENABLE) {
|
|
}
|
|
|
|
// set bus idle mode
|
|
i2c.Bus.STATUS.SetBits(wireIdleState << sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos)
|
|
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
|
|
}
|
|
|
|
// enable pins
|
|
config.SDA.Configure(PinConfig{Mode: sdaPinMode})
|
|
config.SCL.Configure(PinConfig{Mode: sclPinMode})
|
|
|
|
return nil
|
|
}
|
|
|
|
// SetBaudRate sets the communication speed for the I2C.
|
|
func (i2c I2C) SetBaudRate(br uint32) {
|
|
// Synchronous arithmetic baudrate, via Adafruit SAMD51 implementation:
|
|
// sercom->I2CM.BAUD.bit.BAUD = SERCOM_FREQ_REF / ( 2 * baudrate) - 1 ;
|
|
baud := SERCOM_FREQ_REF/(2*br) - 1
|
|
i2c.Bus.BAUD.Set(baud)
|
|
}
|
|
|
|
// Tx does a single I2C transaction at the specified address.
|
|
// It clocks out the given address, writes the bytes in w, reads back len(r)
|
|
// bytes and stores them in r, and generates a stop condition on the bus.
|
|
func (i2c I2C) Tx(addr uint16, w, r []byte) error {
|
|
var err error
|
|
if len(w) != 0 {
|
|
// send start/address for write
|
|
i2c.sendAddress(addr, true)
|
|
|
|
// wait until transmission complete
|
|
timeout := i2cTimeout
|
|
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
|
|
timeout--
|
|
if timeout == 0 {
|
|
return errors.New("I2C timeout on ready to write data")
|
|
}
|
|
}
|
|
|
|
// ACK received (0: ACK, 1: NACK)
|
|
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
|
|
return errors.New("I2C write error: expected ACK not NACK")
|
|
}
|
|
|
|
// write data
|
|
for _, b := range w {
|
|
err = i2c.WriteByte(b)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
err = i2c.signalStop()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if len(r) != 0 {
|
|
// send start/address for read
|
|
i2c.sendAddress(addr, false)
|
|
|
|
// wait transmission complete
|
|
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_SB) {
|
|
// If the slave NACKS the address, the MB bit will be set.
|
|
// In that case, send a stop condition and return error.
|
|
if i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
|
|
i2c.Bus.CTRLB.SetBits(wireCmdStop << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Stop condition
|
|
return errors.New("I2C read error: expected ACK not NACK")
|
|
}
|
|
}
|
|
|
|
// ACK received (0: ACK, 1: NACK)
|
|
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
|
|
return errors.New("I2C read error: expected ACK not NACK")
|
|
}
|
|
|
|
// read first byte
|
|
r[0] = i2c.readByte()
|
|
for i := 1; i < len(r); i++ {
|
|
// Send an ACK
|
|
i2c.Bus.CTRLB.ClearBits(sam.SERCOM_I2CM_CTRLB_ACKACT)
|
|
|
|
i2c.signalRead()
|
|
|
|
// Read data and send the ACK
|
|
r[i] = i2c.readByte()
|
|
}
|
|
|
|
// Send NACK to end transmission
|
|
i2c.Bus.CTRLB.SetBits(sam.SERCOM_I2CM_CTRLB_ACKACT)
|
|
|
|
err = i2c.signalStop()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// WriteByte writes a single byte to the I2C bus.
|
|
func (i2c I2C) WriteByte(data byte) error {
|
|
// Send data byte
|
|
i2c.Bus.DATA.Set(data)
|
|
|
|
// wait until transmission successful
|
|
timeout := i2cTimeout
|
|
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_MB) {
|
|
// check for bus error
|
|
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_BUSERR) {
|
|
return errors.New("I2C bus error")
|
|
}
|
|
timeout--
|
|
if timeout == 0 {
|
|
return errors.New("I2C timeout on write data")
|
|
}
|
|
}
|
|
|
|
if i2c.Bus.STATUS.HasBits(sam.SERCOM_I2CM_STATUS_RXNACK) {
|
|
return errors.New("I2C write error: expected ACK not NACK")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// sendAddress sends the address and start signal
|
|
func (i2c I2C) sendAddress(address uint16, write bool) error {
|
|
data := (address << 1)
|
|
if !write {
|
|
data |= 1 // set read flag
|
|
}
|
|
|
|
// wait until bus ready
|
|
timeout := i2cTimeout
|
|
for !i2c.Bus.STATUS.HasBits(wireIdleState<<sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos) &&
|
|
!i2c.Bus.STATUS.HasBits(wireOwnerState<<sam.SERCOM_I2CM_STATUS_BUSSTATE_Pos) {
|
|
timeout--
|
|
if timeout == 0 {
|
|
return errors.New("I2C timeout on bus ready")
|
|
}
|
|
}
|
|
i2c.Bus.ADDR.Set(uint32(data))
|
|
|
|
return nil
|
|
}
|
|
|
|
func (i2c I2C) signalStop() error {
|
|
i2c.Bus.CTRLB.SetBits(wireCmdStop << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Stop command
|
|
timeout := i2cTimeout
|
|
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
|
|
timeout--
|
|
if timeout == 0 {
|
|
return errors.New("I2C timeout on signal stop")
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (i2c I2C) signalRead() error {
|
|
i2c.Bus.CTRLB.SetBits(wireCmdRead << sam.SERCOM_I2CM_CTRLB_CMD_Pos) // Read command
|
|
timeout := i2cTimeout
|
|
for i2c.Bus.SYNCBUSY.HasBits(sam.SERCOM_I2CM_SYNCBUSY_SYSOP) {
|
|
timeout--
|
|
if timeout == 0 {
|
|
return errors.New("I2C timeout on signal read")
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (i2c I2C) readByte() byte {
|
|
for !i2c.Bus.INTFLAG.HasBits(sam.SERCOM_I2CM_INTFLAG_SB) {
|
|
}
|
|
return byte(i2c.Bus.DATA.Get())
|
|
}
|
|
|
|
// SPI
|
|
type SPI struct {
|
|
Bus *sam.SERCOM_SPIM_Type
|
|
SERCOM uint8
|
|
}
|
|
|
|
// SPIConfig is used to store config info for SPI.
|
|
type SPIConfig struct {
|
|
Frequency uint32
|
|
SCK Pin
|
|
MOSI Pin
|
|
MISO Pin
|
|
LSBFirst bool
|
|
Mode uint8
|
|
}
|
|
|
|
// Configure is intended to setup the SPI interface.
|
|
func (spi SPI) Configure(config SPIConfig) error {
|
|
// Use default pins if not set.
|
|
if config.SCK == 0 && config.MOSI == 0 && config.MISO == 0 {
|
|
config.SCK = SPI0_SCK_PIN
|
|
config.MOSI = SPI0_MOSI_PIN
|
|
config.MISO = SPI0_MISO_PIN
|
|
}
|
|
|
|
// set default frequency
|
|
if config.Frequency == 0 {
|
|
config.Frequency = 4000000
|
|
}
|
|
|
|
// Determine the input pinout (for MISO).
|
|
var dataInPinout uint32
|
|
misoPinMode, misoPad, ok := findPinPadMapping(spi.SERCOM, config.MISO)
|
|
if config.MISO != NoPin {
|
|
if !ok {
|
|
return ErrInvalidInputPin
|
|
}
|
|
dataInPinout = misoPad // mapped directly
|
|
}
|
|
|
|
// Determine the output pinout (for MOSI/SCK).
|
|
// See DOPO field in the CTRLA register on page 986 of the datasheet.
|
|
var dataOutPinout uint32
|
|
sckPinMode, sckPad, ok := findPinPadMapping(spi.SERCOM, config.SCK)
|
|
if !ok || sckPad != 1 {
|
|
// SCK pad must always be 1
|
|
return ErrInvalidOutputPin
|
|
}
|
|
mosiPinMode, mosiPad, ok := findPinPadMapping(spi.SERCOM, config.MOSI)
|
|
if !ok {
|
|
return ErrInvalidOutputPin
|
|
}
|
|
switch mosiPad {
|
|
case 0:
|
|
dataOutPinout = 0x0
|
|
case 3:
|
|
dataOutPinout = 0x2
|
|
default:
|
|
return ErrInvalidOutputPin
|
|
}
|
|
|
|
// Disable SPI port.
|
|
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_ENABLE)
|
|
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPIM_SYNCBUSY_ENABLE) {
|
|
}
|
|
|
|
// enable pins
|
|
config.SCK.Configure(PinConfig{Mode: sckPinMode})
|
|
config.MOSI.Configure(PinConfig{Mode: mosiPinMode})
|
|
if config.MISO != NoPin {
|
|
config.MISO.Configure(PinConfig{Mode: misoPinMode})
|
|
}
|
|
|
|
// reset SERCOM
|
|
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPIM_CTRLA_SWRST)
|
|
for spi.Bus.CTRLA.HasBits(sam.SERCOM_SPIM_CTRLA_SWRST) ||
|
|
spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPIM_SYNCBUSY_SWRST) {
|
|
}
|
|
|
|
// set bit transfer order
|
|
dataOrder := uint32(0)
|
|
if config.LSBFirst {
|
|
dataOrder = 1
|
|
}
|
|
|
|
// Set SPI master
|
|
// SERCOM_SPIM_CTRLA_MODE_SPI_MASTER = 3
|
|
spi.Bus.CTRLA.Set((3 << sam.SERCOM_SPIM_CTRLA_MODE_Pos) |
|
|
(dataOutPinout << sam.SERCOM_SPIM_CTRLA_DOPO_Pos) |
|
|
(dataInPinout << sam.SERCOM_SPIM_CTRLA_DIPO_Pos) |
|
|
(dataOrder << sam.SERCOM_SPIM_CTRLA_DORD_Pos))
|
|
|
|
spi.Bus.CTRLB.SetBits((0 << sam.SERCOM_SPIM_CTRLB_CHSIZE_Pos) | // 8bit char size
|
|
sam.SERCOM_SPIM_CTRLB_RXEN) // receive enable
|
|
|
|
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPIM_SYNCBUSY_CTRLB) {
|
|
}
|
|
|
|
// set mode
|
|
switch config.Mode {
|
|
case 0:
|
|
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPHA)
|
|
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPOL)
|
|
case 1:
|
|
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPIM_CTRLA_CPHA)
|
|
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPOL)
|
|
case 2:
|
|
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPHA)
|
|
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPIM_CTRLA_CPOL)
|
|
case 3:
|
|
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPIM_CTRLA_CPHA | sam.SERCOM_SPIM_CTRLA_CPOL)
|
|
default: // to mode 0
|
|
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPHA)
|
|
spi.Bus.CTRLA.ClearBits(sam.SERCOM_SPIM_CTRLA_CPOL)
|
|
}
|
|
|
|
// Set synch speed for SPI
|
|
baudRate := SERCOM_FREQ_REF / (2 * config.Frequency)
|
|
spi.Bus.BAUD.Set(uint8(baudRate))
|
|
|
|
// Enable SPI port.
|
|
spi.Bus.CTRLA.SetBits(sam.SERCOM_SPIM_CTRLA_ENABLE)
|
|
for spi.Bus.SYNCBUSY.HasBits(sam.SERCOM_SPIM_SYNCBUSY_ENABLE) {
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Transfer writes/reads a single byte using the SPI interface.
|
|
func (spi SPI) Transfer(w byte) (byte, error) {
|
|
// write data
|
|
spi.Bus.DATA.Set(uint32(w))
|
|
|
|
// wait for receive
|
|
for !spi.Bus.INTFLAG.HasBits(sam.SERCOM_SPIM_INTFLAG_RXC) {
|
|
}
|
|
|
|
// return data
|
|
return byte(spi.Bus.DATA.Get()), nil
|
|
}
|
|
|
|
// The QSPI peripheral on ATSAMD51 is only available on the following pins
|
|
const (
|
|
QSPI_SCK = PB10
|
|
QSPI_CS = PB11
|
|
QSPI_DATA0 = PA08
|
|
QSPI_DATA1 = PA09
|
|
QSPI_DATA2 = PA10
|
|
QSPI_DATA3 = PA11
|
|
)
|
|
|
|
// PWM
|
|
const period = 0xFFFF
|
|
|
|
// Configure configures a PWM pin for output.
|
|
func (pwm PWM) Configure() {
|
|
// Set pin as output
|
|
sam.PORT.GROUP[0].DIRSET.Set(1 << uint8(pwm.Pin))
|
|
// Set pin to low
|
|
sam.PORT.GROUP[0].OUTCLR.Set(1 << uint8(pwm.Pin))
|
|
|
|
// Enable the port multiplexer for pin
|
|
pwm.setPinCfg(sam.PORT_GROUP_PINCFG_PMUXEN)
|
|
|
|
// Connect timer/mux to pin.
|
|
pwmConfig := pwm.getMux()
|
|
|
|
if pwm.Pin&1 > 0 {
|
|
// odd pin, so save the even pins
|
|
val := pwm.getPMux() & sam.PORT_GROUP_PMUX_PMUXE_Msk
|
|
pwm.setPMux(val | uint8(pwmConfig<<sam.PORT_GROUP_PMUX_PMUXO_Pos))
|
|
} else {
|
|
// even pin, so save the odd pins
|
|
val := pwm.getPMux() & sam.PORT_GROUP_PMUX_PMUXO_Msk
|
|
pwm.setPMux(val | uint8(pwmConfig<<sam.PORT_GROUP_PMUX_PMUXE_Pos))
|
|
}
|
|
|
|
// figure out which TCCX timer for this pin
|
|
timer := pwm.getTimer()
|
|
|
|
// disable timer
|
|
timer.CTRLA.ClearBits(sam.TCC_CTRLA_ENABLE)
|
|
// Wait for synchronization
|
|
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_ENABLE) {
|
|
}
|
|
|
|
// Set prescaler to 1/256
|
|
// TCCx->CTRLA.reg = TCC_CTRLA_PRESCALER_DIV256 | TCC_CTRLA_PRESCSYNC_GCLK;
|
|
timer.CTRLA.SetBits(sam.TCC_CTRLA_PRESCALER_DIV256 | sam.TCC_CTRLA_PRESCSYNC_GCLK)
|
|
|
|
// Use "Normal PWM" (single-slope PWM)
|
|
timer.WAVE.SetBits(sam.TCC_WAVE_WAVEGEN_NPWM)
|
|
// Wait for synchronization
|
|
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_WAVE) {
|
|
}
|
|
|
|
// while (TCCx->SYNCBUSY.bit.CC0 || TCCx->SYNCBUSY.bit.CC1);
|
|
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_CC0) ||
|
|
timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_CC1) {
|
|
}
|
|
|
|
// Set the initial value
|
|
// TCCx->CC[tcChannel].reg = (uint32_t) value;
|
|
pwm.setChannel(0)
|
|
|
|
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_CC0) ||
|
|
timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_CC1) {
|
|
}
|
|
|
|
// Set the period (the number to count to (TOP) before resetting timer)
|
|
//TCC0->PER.reg = period;
|
|
timer.PER.Set(period)
|
|
// Wait for synchronization
|
|
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_PER) {
|
|
}
|
|
|
|
// enable timer
|
|
timer.CTRLA.SetBits(sam.TCC_CTRLA_ENABLE)
|
|
// Wait for synchronization
|
|
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_ENABLE) {
|
|
}
|
|
}
|
|
|
|
// Set turns on the duty cycle for a PWM pin using the provided value.
|
|
func (pwm PWM) Set(value uint16) {
|
|
// figure out which TCCX timer for this pin
|
|
timer := pwm.getTimer()
|
|
|
|
// Wait for synchronization
|
|
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_CTRLB) {
|
|
}
|
|
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_CC0) ||
|
|
timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_CC1) {
|
|
}
|
|
|
|
// TCCx->CCBUF[tcChannel].reg = (uint32_t) value;
|
|
pwm.setChannelBuffer(uint32(value))
|
|
|
|
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_CC0) ||
|
|
timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_CC1) {
|
|
}
|
|
|
|
// TCCx->CTRLBCLR.bit.LUPD = 1;
|
|
timer.CTRLBCLR.SetBits(sam.TCC_CTRLBCLR_LUPD)
|
|
for timer.SYNCBUSY.HasBits(sam.TCC_SYNCBUSY_CTRLB) {
|
|
}
|
|
}
|
|
|
|
// getPMux returns the value for the correct PMUX register for this pin.
|
|
func (pwm PWM) getPMux() uint8 {
|
|
return pwm.Pin.getPMux()
|
|
}
|
|
|
|
// setPMux sets the value for the correct PMUX register for this pin.
|
|
func (pwm PWM) setPMux(val uint8) {
|
|
pwm.Pin.setPMux(val)
|
|
}
|
|
|
|
// getPinCfg returns the value for the correct PINCFG register for this pin.
|
|
func (pwm PWM) getPinCfg() uint8 {
|
|
return pwm.Pin.getPinCfg()
|
|
}
|
|
|
|
// setPinCfg sets the value for the correct PINCFG register for this pin.
|
|
func (pwm PWM) setPinCfg(val uint8) {
|
|
pwm.Pin.setPinCfg(val)
|
|
}
|
|
|
|
// setChannel sets the value for the correct channel for PWM on this pin
|
|
func (pwm PWM) setChannel(val uint32) {
|
|
switch pwm.Pin {
|
|
case PA16:
|
|
pwm.getTimer().CC[0].Set(val)
|
|
case PA17:
|
|
pwm.getTimer().CC[1].Set(val)
|
|
case PA14:
|
|
pwm.getTimer().CC[0].Set(val)
|
|
case PA15:
|
|
pwm.getTimer().CC[1].Set(val)
|
|
case PA18:
|
|
pwm.getTimer().CC[2].Set(val)
|
|
case PA19:
|
|
pwm.getTimer().CC[3].Set(val)
|
|
case PA20:
|
|
pwm.getTimer().CC[0].Set(val)
|
|
case PA21:
|
|
pwm.getTimer().CC[1].Set(val)
|
|
case PA23:
|
|
pwm.getTimer().CC[3].Set(val)
|
|
case PA22:
|
|
pwm.getTimer().CC[2].Set(val)
|
|
case PB31:
|
|
pwm.getTimer().CC[1].Set(val)
|
|
default:
|
|
return // not supported on this pin
|
|
}
|
|
}
|
|
|
|
// setChannelBuffer sets the value for the correct channel buffer for PWM on this pin
|
|
func (pwm PWM) setChannelBuffer(val uint32) {
|
|
switch pwm.Pin {
|
|
case PA16:
|
|
pwm.getTimer().CCBUF[0].Set(val)
|
|
case PA17:
|
|
pwm.getTimer().CCBUF[1].Set(val)
|
|
case PA14:
|
|
pwm.getTimer().CCBUF[0].Set(val)
|
|
case PA15:
|
|
pwm.getTimer().CCBUF[1].Set(val)
|
|
case PA18:
|
|
pwm.getTimer().CCBUF[2].Set(val)
|
|
case PA19:
|
|
pwm.getTimer().CCBUF[3].Set(val)
|
|
case PA20:
|
|
pwm.getTimer().CCBUF[0].Set(val)
|
|
case PA21:
|
|
pwm.getTimer().CCBUF[1].Set(val)
|
|
case PA23:
|
|
pwm.getTimer().CCBUF[3].Set(val)
|
|
case PA22:
|
|
pwm.getTimer().CCBUF[2].Set(val)
|
|
case PB31:
|
|
pwm.getTimer().CCBUF[1].Set(val)
|
|
default:
|
|
return // not supported on this pin
|
|
}
|
|
}
|
|
|
|
// getMux returns the pin mode mux to be used for PWM on this pin.
|
|
func (pwm PWM) getMux() PinMode {
|
|
switch pwm.Pin {
|
|
case PA16:
|
|
return PinPWMF
|
|
case PA17:
|
|
return PinPWMF
|
|
case PA14:
|
|
return PinPWMF
|
|
case PA15:
|
|
return PinPWMF
|
|
case PA18:
|
|
return PinPWMF
|
|
case PA19:
|
|
return PinPWMF
|
|
case PA20:
|
|
return PinPWMG
|
|
case PA21:
|
|
return PinPWMG
|
|
case PA23:
|
|
return PinPWMG
|
|
case PA22:
|
|
return PinPWMG
|
|
case PB31:
|
|
return PinPWMF
|
|
default:
|
|
return 0 // not supported on this pin
|
|
}
|
|
}
|
|
|
|
// USBCDC is the USB CDC aka serial over USB interface on the SAMD21.
|
|
type USBCDC struct {
|
|
Buffer *RingBuffer
|
|
}
|
|
|
|
// WriteByte writes a byte of data to the USB CDC interface.
|
|
func (usbcdc USBCDC) WriteByte(c byte) error {
|
|
// Supposedly to handle problem with Windows USB serial ports?
|
|
if usbLineInfo.lineState > 0 {
|
|
// set the data
|
|
udd_ep_in_cache_buffer[usb_CDC_ENDPOINT_IN][0] = c
|
|
|
|
usbEndpointDescriptors[usb_CDC_ENDPOINT_IN].DeviceDescBank[1].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_in_cache_buffer[usb_CDC_ENDPOINT_IN]))))
|
|
|
|
// clean multi packet size of bytes already sent
|
|
usbEndpointDescriptors[usb_CDC_ENDPOINT_IN].DeviceDescBank[1].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Mask << usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos)
|
|
|
|
// set count of bytes to be sent
|
|
usbEndpointDescriptors[usb_CDC_ENDPOINT_IN].DeviceDescBank[1].PCKSIZE.SetBits((1 & usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask) << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
|
|
|
|
// clear transfer complete flag
|
|
setEPINTFLAG(usb_CDC_ENDPOINT_IN, sam.USB_DEVICE_ENDPOINT_EPINTFLAG_TRCPT1)
|
|
|
|
// send data by setting bank ready
|
|
setEPSTATUSSET(usb_CDC_ENDPOINT_IN, sam.USB_DEVICE_ENDPOINT_EPSTATUSSET_BK1RDY)
|
|
|
|
// wait for transfer to complete
|
|
timeout := 3000
|
|
for (getEPINTFLAG(usb_CDC_ENDPOINT_IN) & sam.USB_DEVICE_ENDPOINT_EPINTFLAG_TRCPT1) == 0 {
|
|
timeout--
|
|
if timeout == 0 {
|
|
return errors.New("USBCDC write byte timeout")
|
|
}
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (usbcdc USBCDC) DTR() bool {
|
|
return (usbLineInfo.lineState & usb_CDC_LINESTATE_DTR) > 0
|
|
}
|
|
|
|
func (usbcdc USBCDC) RTS() bool {
|
|
return (usbLineInfo.lineState & usb_CDC_LINESTATE_RTS) > 0
|
|
}
|
|
|
|
const (
|
|
// these are SAMD51 specific.
|
|
usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos = 0
|
|
usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask = 0x3FFF
|
|
|
|
usb_DEVICE_PCKSIZE_SIZE_Pos = 28
|
|
usb_DEVICE_PCKSIZE_SIZE_Mask = 0x7
|
|
|
|
usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos = 14
|
|
usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Mask = 0x3FFF
|
|
)
|
|
|
|
var (
|
|
usbEndpointDescriptors [8]usbDeviceDescriptor
|
|
|
|
udd_ep_in_cache_buffer [7][128]uint8
|
|
udd_ep_out_cache_buffer [7][128]uint8
|
|
|
|
isEndpointHalt = false
|
|
isRemoteWakeUpEnabled = false
|
|
endPoints = []uint32{usb_ENDPOINT_TYPE_CONTROL,
|
|
(usb_ENDPOINT_TYPE_INTERRUPT | usbEndpointIn),
|
|
(usb_ENDPOINT_TYPE_BULK | usbEndpointOut),
|
|
(usb_ENDPOINT_TYPE_BULK | usbEndpointIn)}
|
|
|
|
usbConfiguration uint8
|
|
usbSetInterface uint8
|
|
usbLineInfo = cdcLineInfo{115200, 0x00, 0x00, 0x08, 0x00}
|
|
)
|
|
|
|
// Configure the USB CDC interface. The config is here for compatibility with the UART interface.
|
|
func (usbcdc USBCDC) Configure(config UARTConfig) {
|
|
// reset USB interface
|
|
sam.USB_DEVICE.CTRLA.SetBits(sam.USB_DEVICE_CTRLA_SWRST)
|
|
for sam.USB_DEVICE.SYNCBUSY.HasBits(sam.USB_DEVICE_SYNCBUSY_SWRST) ||
|
|
sam.USB_DEVICE.SYNCBUSY.HasBits(sam.USB_DEVICE_SYNCBUSY_ENABLE) {
|
|
}
|
|
|
|
sam.USB_DEVICE.DESCADD.Set(uint32(uintptr(unsafe.Pointer(&usbEndpointDescriptors))))
|
|
|
|
// configure pins
|
|
USBCDC_DM_PIN.Configure(PinConfig{Mode: PinCom})
|
|
USBCDC_DP_PIN.Configure(PinConfig{Mode: PinCom})
|
|
|
|
// performs pad calibration from store fuses
|
|
handlePadCalibration()
|
|
|
|
// run in standby
|
|
sam.USB_DEVICE.CTRLA.SetBits(sam.USB_DEVICE_CTRLA_RUNSTDBY)
|
|
|
|
// set full speed
|
|
sam.USB_DEVICE.CTRLB.SetBits(sam.USB_DEVICE_CTRLB_SPDCONF_FS << sam.USB_DEVICE_CTRLB_SPDCONF_Pos)
|
|
|
|
// attach
|
|
sam.USB_DEVICE.CTRLB.ClearBits(sam.USB_DEVICE_CTRLB_DETACH)
|
|
|
|
// enable interrupt for end of reset
|
|
sam.USB_DEVICE.INTENSET.SetBits(sam.USB_DEVICE_INTENSET_EORST)
|
|
|
|
// enable interrupt for start of frame
|
|
sam.USB_DEVICE.INTENSET.SetBits(sam.USB_DEVICE_INTENSET_SOF)
|
|
|
|
// enable USB
|
|
sam.USB_DEVICE.CTRLA.SetBits(sam.USB_DEVICE_CTRLA_ENABLE)
|
|
|
|
// enable IRQ at highest priority
|
|
interrupt.New(sam.IRQ_USB_OTHER, handleUSBIRQ).Enable()
|
|
interrupt.New(sam.IRQ_USB_SOF_HSOF, handleUSBIRQ).Enable()
|
|
interrupt.New(sam.IRQ_USB_TRCPT0, handleUSBIRQ).Enable()
|
|
interrupt.New(sam.IRQ_USB_TRCPT1, handleUSBIRQ).Enable()
|
|
}
|
|
|
|
func handlePadCalibration() {
|
|
// Load Pad Calibration data from non-volatile memory
|
|
// This requires registers that are not included in the SVD file.
|
|
// Modeled after defines from samd21g18a.h and nvmctrl.h:
|
|
//
|
|
// #define NVMCTRL_OTP4 0x00806020
|
|
//
|
|
// #define USB_FUSES_TRANSN_ADDR (NVMCTRL_OTP4 + 4)
|
|
// #define USB_FUSES_TRANSN_Pos 13 /**< \brief (NVMCTRL_OTP4) USB pad Transn calibration */
|
|
// #define USB_FUSES_TRANSN_Msk (0x1Fu << USB_FUSES_TRANSN_Pos)
|
|
// #define USB_FUSES_TRANSN(value) ((USB_FUSES_TRANSN_Msk & ((value) << USB_FUSES_TRANSN_Pos)))
|
|
|
|
// #define USB_FUSES_TRANSP_ADDR (NVMCTRL_OTP4 + 4)
|
|
// #define USB_FUSES_TRANSP_Pos 18 /**< \brief (NVMCTRL_OTP4) USB pad Transp calibration */
|
|
// #define USB_FUSES_TRANSP_Msk (0x1Fu << USB_FUSES_TRANSP_Pos)
|
|
// #define USB_FUSES_TRANSP(value) ((USB_FUSES_TRANSP_Msk & ((value) << USB_FUSES_TRANSP_Pos)))
|
|
|
|
// #define USB_FUSES_TRIM_ADDR (NVMCTRL_OTP4 + 4)
|
|
// #define USB_FUSES_TRIM_Pos 23 /**< \brief (NVMCTRL_OTP4) USB pad Trim calibration */
|
|
// #define USB_FUSES_TRIM_Msk (0x7u << USB_FUSES_TRIM_Pos)
|
|
// #define USB_FUSES_TRIM(value) ((USB_FUSES_TRIM_Msk & ((value) << USB_FUSES_TRIM_Pos)))
|
|
//
|
|
fuse := *(*uint32)(unsafe.Pointer(uintptr(0x00806020) + 4))
|
|
calibTransN := uint16(fuse>>13) & uint16(0x1f)
|
|
calibTransP := uint16(fuse>>18) & uint16(0x1f)
|
|
calibTrim := uint16(fuse>>23) & uint16(0x7)
|
|
|
|
if calibTransN == 0x1f {
|
|
calibTransN = 5
|
|
}
|
|
sam.USB_DEVICE.PADCAL.SetBits(calibTransN << sam.USB_DEVICE_PADCAL_TRANSN_Pos)
|
|
|
|
if calibTransP == 0x1f {
|
|
calibTransP = 29
|
|
}
|
|
sam.USB_DEVICE.PADCAL.SetBits(calibTransP << sam.USB_DEVICE_PADCAL_TRANSP_Pos)
|
|
|
|
if calibTrim == 0x7 {
|
|
calibTransN = 3
|
|
}
|
|
sam.USB_DEVICE.PADCAL.SetBits(calibTrim << sam.USB_DEVICE_PADCAL_TRIM_Pos)
|
|
}
|
|
|
|
func handleUSBIRQ(interrupt.Interrupt) {
|
|
// reset all interrupt flags
|
|
flags := sam.USB_DEVICE.INTFLAG.Get()
|
|
sam.USB_DEVICE.INTFLAG.Set(flags)
|
|
|
|
// End of reset
|
|
if (flags & sam.USB_DEVICE_INTFLAG_EORST) > 0 {
|
|
// Configure control endpoint
|
|
initEndpoint(0, usb_ENDPOINT_TYPE_CONTROL)
|
|
|
|
// Enable Setup-Received interrupt
|
|
setEPINTENSET(0, sam.USB_DEVICE_ENDPOINT_EPINTENSET_RXSTP)
|
|
|
|
usbConfiguration = 0
|
|
|
|
// ack the End-Of-Reset interrupt
|
|
sam.USB_DEVICE.INTFLAG.Set(sam.USB_DEVICE_INTFLAG_EORST)
|
|
}
|
|
|
|
// Start of frame
|
|
if (flags & sam.USB_DEVICE_INTFLAG_SOF) > 0 {
|
|
// if you want to blink LED showing traffic, this would be the place...
|
|
}
|
|
|
|
// Endpoint 0 Setup interrupt
|
|
if getEPINTFLAG(0)&sam.USB_DEVICE_ENDPOINT_EPINTFLAG_RXSTP > 0 {
|
|
// ack setup received
|
|
setEPINTFLAG(0, sam.USB_DEVICE_ENDPOINT_EPINTFLAG_RXSTP)
|
|
|
|
// parse setup
|
|
setup := newUSBSetup(udd_ep_out_cache_buffer[0][:])
|
|
|
|
// Clear the Bank 0 ready flag on Control OUT
|
|
setEPSTATUSCLR(0, sam.USB_DEVICE_ENDPOINT_EPSTATUSCLR_BK0RDY)
|
|
usbEndpointDescriptors[0].DeviceDescBank[0].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
|
|
|
|
ok := false
|
|
if (setup.bmRequestType & usb_REQUEST_TYPE) == usb_REQUEST_STANDARD {
|
|
// Standard Requests
|
|
ok = handleStandardSetup(setup)
|
|
} else {
|
|
// Class Interface Requests
|
|
if setup.wIndex == usb_CDC_ACM_INTERFACE {
|
|
ok = cdcSetup(setup)
|
|
}
|
|
}
|
|
|
|
if ok {
|
|
// set Bank1 ready
|
|
setEPSTATUSSET(0, sam.USB_DEVICE_ENDPOINT_EPSTATUSSET_BK1RDY)
|
|
} else {
|
|
// Stall endpoint
|
|
setEPSTATUSSET(0, sam.USB_DEVICE_ENDPOINT_EPINTFLAG_STALL1)
|
|
}
|
|
|
|
if getEPINTFLAG(0)&sam.USB_DEVICE_ENDPOINT_EPINTFLAG_STALL1 > 0 {
|
|
// ack the stall
|
|
setEPINTFLAG(0, sam.USB_DEVICE_ENDPOINT_EPINTFLAG_STALL1)
|
|
|
|
// clear stall request
|
|
setEPINTENCLR(0, sam.USB_DEVICE_ENDPOINT_EPINTENCLR_STALL1)
|
|
}
|
|
}
|
|
|
|
// Now the actual transfer handlers, ignore endpoint number 0 (setup)
|
|
var i uint32
|
|
for i = 1; i < uint32(len(endPoints)); i++ {
|
|
// Check if endpoint has a pending interrupt
|
|
epFlags := getEPINTFLAG(i)
|
|
if (epFlags&sam.USB_DEVICE_ENDPOINT_EPINTFLAG_TRCPT0) > 0 ||
|
|
(epFlags&sam.USB_DEVICE_ENDPOINT_EPINTFLAG_TRCPT1) > 0 {
|
|
switch i {
|
|
case usb_CDC_ENDPOINT_OUT:
|
|
handleEndpoint(i)
|
|
setEPINTFLAG(i, epFlags)
|
|
case usb_CDC_ENDPOINT_IN, usb_CDC_ENDPOINT_ACM:
|
|
setEPSTATUSCLR(i, sam.USB_DEVICE_ENDPOINT_EPSTATUSCLR_BK1RDY)
|
|
setEPINTFLAG(i, sam.USB_DEVICE_ENDPOINT_EPINTFLAG_TRCPT1)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func initEndpoint(ep, config uint32) {
|
|
switch config {
|
|
case usb_ENDPOINT_TYPE_INTERRUPT | usbEndpointIn:
|
|
// set packet size
|
|
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.SetBits(epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos)
|
|
|
|
// set data buffer address
|
|
usbEndpointDescriptors[ep].DeviceDescBank[1].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_in_cache_buffer[ep]))))
|
|
|
|
// set endpoint type
|
|
setEPCFG(ep, ((usb_ENDPOINT_TYPE_INTERRUPT + 1) << sam.USB_DEVICE_ENDPOINT_EPCFG_EPTYPE1_Pos))
|
|
|
|
case usb_ENDPOINT_TYPE_BULK | usbEndpointOut:
|
|
// set packet size
|
|
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.SetBits(epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos)
|
|
|
|
// set data buffer address
|
|
usbEndpointDescriptors[ep].DeviceDescBank[0].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_out_cache_buffer[ep]))))
|
|
|
|
// set endpoint type
|
|
setEPCFG(ep, ((usb_ENDPOINT_TYPE_BULK + 1) << sam.USB_DEVICE_ENDPOINT_EPCFG_EPTYPE0_Pos))
|
|
|
|
// receive interrupts when current transfer complete
|
|
setEPINTENSET(ep, sam.USB_DEVICE_ENDPOINT_EPINTENSET_TRCPT0)
|
|
|
|
// set byte count to zero, we have not received anything yet
|
|
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
|
|
|
|
// ready for next transfer
|
|
setEPSTATUSCLR(ep, sam.USB_DEVICE_ENDPOINT_EPSTATUSCLR_BK0RDY)
|
|
|
|
case usb_ENDPOINT_TYPE_INTERRUPT | usbEndpointOut:
|
|
// TODO: not really anything, seems like...
|
|
|
|
case usb_ENDPOINT_TYPE_BULK | usbEndpointIn:
|
|
// set packet size
|
|
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.SetBits(epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos)
|
|
|
|
// set data buffer address
|
|
usbEndpointDescriptors[ep].DeviceDescBank[1].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_in_cache_buffer[ep]))))
|
|
|
|
// set endpoint type
|
|
setEPCFG(ep, ((usb_ENDPOINT_TYPE_BULK + 1) << sam.USB_DEVICE_ENDPOINT_EPCFG_EPTYPE1_Pos))
|
|
|
|
// NAK on endpoint IN, the bank is not yet filled in.
|
|
setEPSTATUSCLR(ep, sam.USB_DEVICE_ENDPOINT_EPSTATUSCLR_BK1RDY)
|
|
|
|
case usb_ENDPOINT_TYPE_CONTROL:
|
|
// Control OUT
|
|
// set packet size
|
|
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.SetBits(epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos)
|
|
|
|
// set data buffer address
|
|
usbEndpointDescriptors[ep].DeviceDescBank[0].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_out_cache_buffer[ep]))))
|
|
|
|
// set endpoint type
|
|
setEPCFG(ep, getEPCFG(ep)|((usb_ENDPOINT_TYPE_CONTROL+1)<<sam.USB_DEVICE_ENDPOINT_EPCFG_EPTYPE0_Pos))
|
|
|
|
// Control IN
|
|
// set packet size
|
|
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.SetBits(epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos)
|
|
|
|
// set data buffer address
|
|
usbEndpointDescriptors[ep].DeviceDescBank[1].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_in_cache_buffer[ep]))))
|
|
|
|
// set endpoint type
|
|
setEPCFG(ep, getEPCFG(ep)|((usb_ENDPOINT_TYPE_CONTROL+1)<<sam.USB_DEVICE_ENDPOINT_EPCFG_EPTYPE1_Pos))
|
|
|
|
// Prepare OUT endpoint for receive
|
|
// set multi packet size for expected number of receive bytes on control OUT
|
|
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.SetBits(64 << usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos)
|
|
|
|
// set byte count to zero, we have not received anything yet
|
|
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
|
|
|
|
// NAK on endpoint OUT to show we are ready to receive control data
|
|
setEPSTATUSSET(ep, sam.USB_DEVICE_ENDPOINT_EPSTATUSSET_BK0RDY)
|
|
}
|
|
}
|
|
|
|
func handleStandardSetup(setup usbSetup) bool {
|
|
switch setup.bRequest {
|
|
case usb_GET_STATUS:
|
|
buf := []byte{0, 0}
|
|
|
|
if setup.bmRequestType != 0 { // endpoint
|
|
// TODO: actually check if the endpoint in question is currently halted
|
|
if isEndpointHalt {
|
|
buf[0] = 1
|
|
}
|
|
}
|
|
|
|
sendUSBPacket(0, buf)
|
|
return true
|
|
|
|
case usb_CLEAR_FEATURE:
|
|
if setup.wValueL == 1 { // DEVICEREMOTEWAKEUP
|
|
isRemoteWakeUpEnabled = false
|
|
} else if setup.wValueL == 0 { // ENDPOINTHALT
|
|
isEndpointHalt = false
|
|
}
|
|
sendZlp(0)
|
|
return true
|
|
|
|
case usb_SET_FEATURE:
|
|
if setup.wValueL == 1 { // DEVICEREMOTEWAKEUP
|
|
isRemoteWakeUpEnabled = true
|
|
} else if setup.wValueL == 0 { // ENDPOINTHALT
|
|
isEndpointHalt = true
|
|
}
|
|
sendZlp(0)
|
|
return true
|
|
|
|
case usb_SET_ADDRESS:
|
|
// set packet size 64 with auto Zlp after transfer
|
|
usbEndpointDescriptors[0].DeviceDescBank[1].PCKSIZE.Set((epPacketSize(64) << usb_DEVICE_PCKSIZE_SIZE_Pos) |
|
|
uint32(1<<31)) // autozlp
|
|
|
|
// ack the transfer is complete from the request
|
|
setEPINTFLAG(0, sam.USB_DEVICE_ENDPOINT_EPINTFLAG_TRCPT1)
|
|
|
|
// set bank ready for data
|
|
setEPSTATUSSET(0, sam.USB_DEVICE_ENDPOINT_EPSTATUSSET_BK1RDY)
|
|
|
|
// wait for transfer to complete
|
|
timeout := 3000
|
|
for (getEPINTFLAG(0) & sam.USB_DEVICE_ENDPOINT_EPINTFLAG_TRCPT1) == 0 {
|
|
timeout--
|
|
if timeout == 0 {
|
|
return true
|
|
}
|
|
}
|
|
|
|
// last, set the device address to that requested by host
|
|
sam.USB_DEVICE.DADD.SetBits(setup.wValueL)
|
|
sam.USB_DEVICE.DADD.SetBits(sam.USB_DEVICE_DADD_ADDEN)
|
|
|
|
return true
|
|
|
|
case usb_GET_DESCRIPTOR:
|
|
sendDescriptor(setup)
|
|
return true
|
|
|
|
case usb_SET_DESCRIPTOR:
|
|
return false
|
|
|
|
case usb_GET_CONFIGURATION:
|
|
buff := []byte{usbConfiguration}
|
|
sendUSBPacket(0, buff)
|
|
return true
|
|
|
|
case usb_SET_CONFIGURATION:
|
|
if setup.bmRequestType&usb_REQUEST_RECIPIENT == usb_REQUEST_DEVICE {
|
|
for i := 1; i < len(endPoints); i++ {
|
|
initEndpoint(uint32(i), endPoints[i])
|
|
}
|
|
|
|
usbConfiguration = setup.wValueL
|
|
|
|
// Enable interrupt for CDC control messages from host (OUT packet)
|
|
setEPINTENSET(usb_CDC_ENDPOINT_ACM, sam.USB_DEVICE_ENDPOINT_EPINTENSET_TRCPT1)
|
|
|
|
// Enable interrupt for CDC data messages from host
|
|
setEPINTENSET(usb_CDC_ENDPOINT_OUT, sam.USB_DEVICE_ENDPOINT_EPINTENSET_TRCPT0)
|
|
|
|
sendZlp(0)
|
|
return true
|
|
} else {
|
|
return false
|
|
}
|
|
|
|
case usb_GET_INTERFACE:
|
|
buff := []byte{usbSetInterface}
|
|
sendUSBPacket(0, buff)
|
|
return true
|
|
|
|
case usb_SET_INTERFACE:
|
|
usbSetInterface = setup.wValueL
|
|
|
|
sendZlp(0)
|
|
return true
|
|
|
|
default:
|
|
return true
|
|
}
|
|
}
|
|
|
|
func cdcSetup(setup usbSetup) bool {
|
|
if setup.bmRequestType == usb_REQUEST_DEVICETOHOST_CLASS_INTERFACE {
|
|
if setup.bRequest == usb_CDC_GET_LINE_CODING {
|
|
b := make([]byte, 7)
|
|
b[0] = byte(usbLineInfo.dwDTERate)
|
|
b[1] = byte(usbLineInfo.dwDTERate >> 8)
|
|
b[2] = byte(usbLineInfo.dwDTERate >> 16)
|
|
b[3] = byte(usbLineInfo.dwDTERate >> 24)
|
|
b[4] = byte(usbLineInfo.bCharFormat)
|
|
b[5] = byte(usbLineInfo.bParityType)
|
|
b[6] = byte(usbLineInfo.bDataBits)
|
|
|
|
sendUSBPacket(0, b)
|
|
return true
|
|
}
|
|
}
|
|
|
|
if setup.bmRequestType == usb_REQUEST_HOSTTODEVICE_CLASS_INTERFACE {
|
|
if setup.bRequest == usb_CDC_SET_LINE_CODING {
|
|
b := receiveUSBControlPacket()
|
|
usbLineInfo.dwDTERate = uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
|
|
usbLineInfo.bCharFormat = b[4]
|
|
usbLineInfo.bParityType = b[5]
|
|
usbLineInfo.bDataBits = b[6]
|
|
}
|
|
|
|
if setup.bRequest == usb_CDC_SET_CONTROL_LINE_STATE {
|
|
usbLineInfo.lineState = setup.wValueL
|
|
}
|
|
|
|
if setup.bRequest == usb_CDC_SET_LINE_CODING || setup.bRequest == usb_CDC_SET_CONTROL_LINE_STATE {
|
|
// auto-reset into the bootloader
|
|
if usbLineInfo.dwDTERate == 1200 && usbLineInfo.lineState&usb_CDC_LINESTATE_DTR == 0 {
|
|
ResetProcessor()
|
|
} else {
|
|
// TODO: cancel any reset
|
|
}
|
|
sendZlp(0)
|
|
}
|
|
|
|
if setup.bRequest == usb_CDC_SEND_BREAK {
|
|
// TODO: something with this value?
|
|
// breakValue = ((uint16_t)setup.wValueH << 8) | setup.wValueL;
|
|
// return false;
|
|
sendZlp(0)
|
|
}
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func sendUSBPacket(ep uint32, data []byte) {
|
|
copy(udd_ep_in_cache_buffer[ep][:], data)
|
|
|
|
// Set endpoint address for sending data
|
|
usbEndpointDescriptors[ep].DeviceDescBank[1].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_in_cache_buffer[ep]))))
|
|
|
|
// clear multi-packet size which is total bytes already sent
|
|
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Mask << usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos)
|
|
|
|
// set byte count, which is total number of bytes to be sent
|
|
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.SetBits(uint32((len(data) & usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask) << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos))
|
|
}
|
|
|
|
func receiveUSBControlPacket() []byte {
|
|
// address
|
|
usbEndpointDescriptors[0].DeviceDescBank[0].ADDR.Set(uint32(uintptr(unsafe.Pointer(&udd_ep_out_cache_buffer[0]))))
|
|
|
|
// set byte count to zero
|
|
usbEndpointDescriptors[0].DeviceDescBank[0].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
|
|
|
|
// set ready for next data
|
|
setEPSTATUSCLR(0, sam.USB_DEVICE_ENDPOINT_EPSTATUSCLR_BK0RDY)
|
|
|
|
// Wait until OUT transfer is ready.
|
|
timeout := 300000
|
|
for (getEPSTATUS(0) & sam.USB_DEVICE_ENDPOINT_EPSTATUS_BK0RDY) == 0 {
|
|
timeout--
|
|
if timeout == 0 {
|
|
return []byte{}
|
|
}
|
|
}
|
|
|
|
// Wait until OUT transfer is completed.
|
|
timeout = 300000
|
|
for (getEPINTFLAG(0) & sam.USB_DEVICE_ENDPOINT_EPINTFLAG_TRCPT1) == 0 {
|
|
timeout--
|
|
if timeout == 0 {
|
|
return []byte{}
|
|
}
|
|
}
|
|
|
|
// get data
|
|
bytesread := uint32((usbEndpointDescriptors[0].DeviceDescBank[0].PCKSIZE.Get() >>
|
|
usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos) & usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask)
|
|
|
|
data := make([]byte, bytesread)
|
|
copy(data, udd_ep_out_cache_buffer[0][:])
|
|
|
|
return data
|
|
}
|
|
|
|
// sendDescriptor creates and sends the various USB descriptor types that
|
|
// can be requested by the host.
|
|
func sendDescriptor(setup usbSetup) {
|
|
switch setup.wValueH {
|
|
case usb_CONFIGURATION_DESCRIPTOR_TYPE:
|
|
sendConfiguration(setup)
|
|
return
|
|
case usb_DEVICE_DESCRIPTOR_TYPE:
|
|
if setup.wLength == 8 {
|
|
// composite descriptor requested, so only send 8 bytes
|
|
dd := NewDeviceDescriptor(0xEF, 0x02, 0x01, 64, usb_VID, usb_PID, 0x100, usb_IMANUFACTURER, usb_IPRODUCT, usb_ISERIAL, 1)
|
|
sendUSBPacket(0, dd.Bytes()[:8])
|
|
} else {
|
|
// complete descriptor requested so send entire packet
|
|
dd := NewDeviceDescriptor(0x02, 0x00, 0x00, 64, usb_VID, usb_PID, 0x100, usb_IMANUFACTURER, usb_IPRODUCT, usb_ISERIAL, 1)
|
|
sendUSBPacket(0, dd.Bytes())
|
|
}
|
|
return
|
|
|
|
case usb_STRING_DESCRIPTOR_TYPE:
|
|
switch setup.wValueL {
|
|
case 0:
|
|
b := make([]byte, 4)
|
|
b[0] = 0x04
|
|
b[1] = 0x03
|
|
b[2] = 0x09
|
|
b[3] = 0x04
|
|
sendUSBPacket(0, b)
|
|
return
|
|
|
|
case usb_IPRODUCT:
|
|
prod := []byte(usb_STRING_PRODUCT)
|
|
b := make([]byte, len(prod)*2+2)
|
|
b[0] = byte(len(prod)*2 + 2)
|
|
b[1] = 0x03
|
|
|
|
for i, val := range prod {
|
|
b[i*2+2] = val
|
|
b[i*2+3] = 0
|
|
}
|
|
|
|
sendUSBPacket(0, b)
|
|
return
|
|
|
|
case usb_IMANUFACTURER:
|
|
prod := []byte(usb_STRING_MANUFACTURER)
|
|
b := make([]byte, len(prod)*2+2)
|
|
b[0] = byte(len(prod)*2 + 2)
|
|
b[1] = 0x03
|
|
|
|
for i, val := range prod {
|
|
b[i*2+2] = val
|
|
b[i*2+3] = 0
|
|
}
|
|
|
|
sendUSBPacket(0, b)
|
|
return
|
|
|
|
case usb_ISERIAL:
|
|
// TODO: allow returning a product serial number
|
|
sendZlp(0)
|
|
}
|
|
|
|
// send final zero length packet and return
|
|
sendZlp(0)
|
|
return
|
|
}
|
|
|
|
// do not know how to handle this message, so return zero
|
|
sendZlp(0)
|
|
return
|
|
}
|
|
|
|
// sendConfiguration creates and sends the configuration packet to the host.
|
|
func sendConfiguration(setup usbSetup) {
|
|
if setup.wLength == 9 {
|
|
sz := uint16(configDescriptorSize + cdcSize)
|
|
config := NewConfigDescriptor(sz, 2)
|
|
sendUSBPacket(0, config.Bytes())
|
|
} else {
|
|
iad := NewIADDescriptor(0, 2, usb_CDC_COMMUNICATION_INTERFACE_CLASS, usb_CDC_ABSTRACT_CONTROL_MODEL, 0)
|
|
|
|
cif := NewInterfaceDescriptor(usb_CDC_ACM_INTERFACE, 1, usb_CDC_COMMUNICATION_INTERFACE_CLASS, usb_CDC_ABSTRACT_CONTROL_MODEL, 0)
|
|
|
|
header := NewCDCCSInterfaceDescriptor(usb_CDC_HEADER, usb_CDC_V1_10&0xFF, (usb_CDC_V1_10>>8)&0x0FF)
|
|
|
|
controlManagement := NewACMFunctionalDescriptor(usb_CDC_ABSTRACT_CONTROL_MANAGEMENT, 6)
|
|
|
|
functionalDescriptor := NewCDCCSInterfaceDescriptor(usb_CDC_UNION, usb_CDC_ACM_INTERFACE, usb_CDC_DATA_INTERFACE)
|
|
|
|
callManagement := NewCMFunctionalDescriptor(usb_CDC_CALL_MANAGEMENT, 1, 1)
|
|
|
|
cifin := NewEndpointDescriptor((usb_CDC_ENDPOINT_ACM | usbEndpointIn), usb_ENDPOINT_TYPE_INTERRUPT, 0x10, 0x10)
|
|
|
|
dif := NewInterfaceDescriptor(usb_CDC_DATA_INTERFACE, 2, usb_CDC_DATA_INTERFACE_CLASS, 0, 0)
|
|
|
|
out := NewEndpointDescriptor((usb_CDC_ENDPOINT_OUT | usbEndpointOut), usb_ENDPOINT_TYPE_BULK, usbEndpointPacketSize, 0)
|
|
|
|
in := NewEndpointDescriptor((usb_CDC_ENDPOINT_IN | usbEndpointIn), usb_ENDPOINT_TYPE_BULK, usbEndpointPacketSize, 0)
|
|
|
|
cdc := NewCDCDescriptor(iad,
|
|
cif,
|
|
header,
|
|
controlManagement,
|
|
functionalDescriptor,
|
|
callManagement,
|
|
cifin,
|
|
dif,
|
|
out,
|
|
in)
|
|
|
|
sz := uint16(configDescriptorSize + cdcSize)
|
|
config := NewConfigDescriptor(sz, 2)
|
|
|
|
buf := make([]byte, 0)
|
|
buf = append(buf, config.Bytes()...)
|
|
buf = append(buf, cdc.Bytes()...)
|
|
|
|
sendUSBPacket(0, buf)
|
|
}
|
|
}
|
|
|
|
func handleEndpoint(ep uint32) {
|
|
// get data
|
|
count := int((usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.Get() >>
|
|
usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos) & usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask)
|
|
|
|
// move to ring buffer
|
|
for i := 0; i < count; i++ {
|
|
UART0.Receive(byte((udd_ep_out_cache_buffer[ep][i] & 0xFF)))
|
|
}
|
|
|
|
// set byte count to zero
|
|
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
|
|
|
|
// set multi packet size to 64
|
|
usbEndpointDescriptors[ep].DeviceDescBank[0].PCKSIZE.SetBits(64 << usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos)
|
|
|
|
// set ready for next data
|
|
setEPSTATUSCLR(ep, sam.USB_DEVICE_ENDPOINT_EPSTATUSCLR_BK0RDY)
|
|
}
|
|
|
|
func sendZlp(ep uint32) {
|
|
usbEndpointDescriptors[ep].DeviceDescBank[1].PCKSIZE.ClearBits(usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask << usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos)
|
|
}
|
|
|
|
func epPacketSize(size uint16) uint32 {
|
|
switch size {
|
|
case 8:
|
|
return 0
|
|
case 16:
|
|
return 1
|
|
case 32:
|
|
return 2
|
|
case 64:
|
|
return 3
|
|
case 128:
|
|
return 4
|
|
case 256:
|
|
return 5
|
|
case 512:
|
|
return 6
|
|
case 1023:
|
|
return 7
|
|
default:
|
|
return 0
|
|
}
|
|
}
|
|
|
|
func getEPCFG(ep uint32) uint8 {
|
|
return sam.USB_DEVICE.DEVICE_ENDPOINT[ep].EPCFG.Get()
|
|
}
|
|
|
|
func setEPCFG(ep uint32, val uint8) {
|
|
sam.USB_DEVICE.DEVICE_ENDPOINT[ep].EPCFG.Set(val)
|
|
}
|
|
|
|
func setEPSTATUSCLR(ep uint32, val uint8) {
|
|
sam.USB_DEVICE.DEVICE_ENDPOINT[ep].EPSTATUSCLR.Set(val)
|
|
}
|
|
|
|
func setEPSTATUSSET(ep uint32, val uint8) {
|
|
sam.USB_DEVICE.DEVICE_ENDPOINT[ep].EPSTATUSSET.Set(val)
|
|
}
|
|
|
|
func getEPSTATUS(ep uint32) uint8 {
|
|
return sam.USB_DEVICE.DEVICE_ENDPOINT[ep].EPSTATUS.Get()
|
|
}
|
|
|
|
func getEPINTFLAG(ep uint32) uint8 {
|
|
return sam.USB_DEVICE.DEVICE_ENDPOINT[ep].EPINTFLAG.Get()
|
|
}
|
|
|
|
func setEPINTFLAG(ep uint32, val uint8) {
|
|
sam.USB_DEVICE.DEVICE_ENDPOINT[ep].EPINTFLAG.Set(val)
|
|
}
|
|
|
|
func setEPINTENCLR(ep uint32, val uint8) {
|
|
sam.USB_DEVICE.DEVICE_ENDPOINT[ep].EPINTENCLR.Set(val)
|
|
}
|
|
|
|
func setEPINTENSET(ep uint32, val uint8) {
|
|
sam.USB_DEVICE.DEVICE_ENDPOINT[ep].EPINTENSET.Set(val)
|
|
}
|
|
|
|
// ResetProcessor should perform a system reset in preparation
|
|
// to switch to the bootloader to flash new firmware.
|
|
func ResetProcessor() {
|
|
arm.DisableInterrupts()
|
|
|
|
// Perform magic reset into bootloader, as mentioned in
|
|
// https://github.com/arduino/ArduinoCore-samd/issues/197
|
|
*(*uint32)(unsafe.Pointer(uintptr(0x20000000 + HSRAM_SIZE - 4))) = RESET_MAGIC_VALUE
|
|
|
|
arm.SystemReset()
|
|
}
|