
This reduces current consumption from 500-1000µA to very low (<10µA) current consumption. This change is important for battery powered devices, especially devices that may be running for long periods of time.
271 строка
8,7 КиБ
Go
271 строка
8,7 КиБ
Go
// Derivative work of Teensyduino Core Library
|
|
// http://www.pjrc.com/teensy/
|
|
// Copyright (c) 2017 PJRC.COM, LLC.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining
|
|
// a copy of this software and associated documentation files (the
|
|
// "Software"), to deal in the Software without restriction, including
|
|
// without limitation the rights to use, copy, modify, merge, publish,
|
|
// distribute, sublicense, and/or sell copies of the Software, and to
|
|
// permit persons to whom the Software is furnished to do so, subject to
|
|
// the following conditions:
|
|
//
|
|
// 1. The above copyright notice and this permission notice shall be
|
|
// included in all copies or substantial portions of the Software.
|
|
//
|
|
// 2. If the Software is incorporated into a build system that allows
|
|
// selection among a list of target devices, then similar target
|
|
// devices manufactured by PJRC.COM must be included in the list of
|
|
// target devices and selectable in the same manner.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
|
|
// +build nxp,mk66f18
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"device/arm"
|
|
"device/nxp"
|
|
"machine"
|
|
)
|
|
|
|
const (
|
|
watchdogUnlockSequence1 = 0xC520
|
|
watchdogUnlockSequence2 = 0xD928
|
|
|
|
_DEFAULT_FTM_MOD = 61440 - 1
|
|
_DEFAULT_FTM_PRESCALE = 1
|
|
)
|
|
|
|
const (
|
|
_SIM_SOPT2_IRC48SEL = 3 << nxp.SIM_SOPT2_PLLFLLSEL_Pos
|
|
_SMC_PMCTRL_HSRUN = 3 << nxp.SMC_PMCTRL_RUNM_Pos
|
|
_SMC_PMSTAT_HSRUN = 0x80 << nxp.SMC_PMSTAT_PMSTAT_Pos
|
|
)
|
|
|
|
//go:export Reset_Handler
|
|
func main() {
|
|
initSystem()
|
|
arm.Asm("CPSIE i")
|
|
initInternal()
|
|
|
|
run()
|
|
abort()
|
|
}
|
|
|
|
func initSystem() {
|
|
// from: ResetHandler
|
|
|
|
nxp.WDOG.UNLOCK.Set(watchdogUnlockSequence1)
|
|
nxp.WDOG.UNLOCK.Set(watchdogUnlockSequence2)
|
|
arm.Asm("nop")
|
|
arm.Asm("nop")
|
|
// TODO: hook for overriding? 'startupEarlyHook'
|
|
nxp.WDOG.STCTRLH.Set(nxp.WDOG_STCTRLH_ALLOWUPDATE)
|
|
|
|
// enable clocks to always-used peripherals
|
|
nxp.SIM.SCGC3.Set(nxp.SIM_SCGC3_ADC1 | nxp.SIM_SCGC3_FTM2 | nxp.SIM_SCGC3_FTM3)
|
|
nxp.SIM.SCGC5.Set(0x00043F82) // clocks active to all GPIO
|
|
nxp.SIM.SCGC6.Set(nxp.SIM_SCGC6_RTC | nxp.SIM_SCGC6_FTM0 | nxp.SIM_SCGC6_FTM1 | nxp.SIM_SCGC6_ADC0 | nxp.SIM_SCGC6_FTF)
|
|
nxp.SystemControl.CPACR.Set(0x00F00000)
|
|
nxp.LMEM.PCCCR.Set(0x85000003)
|
|
|
|
// release I/O pins hold, if we woke up from VLLS mode
|
|
if nxp.PMC.REGSC.HasBits(nxp.PMC_REGSC_ACKISO) {
|
|
nxp.PMC.REGSC.SetBits(nxp.PMC_REGSC_ACKISO)
|
|
}
|
|
|
|
// since this is a write once register, make it visible to all F_CPU's
|
|
// so we can into other sleep modes in the future at any speed
|
|
nxp.SMC.PMPROT.Set(nxp.SMC_PMPROT_AHSRUN | nxp.SMC_PMPROT_AVLP | nxp.SMC_PMPROT_ALLS | nxp.SMC_PMPROT_AVLLS)
|
|
|
|
preinit()
|
|
|
|
// copy the vector table to RAM default all interrupts to medium priority level
|
|
// for (i=0; i < NVIC_NUM_INTERRUPTS + 16; i++) _VectorsRam[i] = _VectorsFlash[i];
|
|
for i := uint32(0); i <= nxp.IRQ_max; i++ {
|
|
arm.SetPriority(i, 128)
|
|
}
|
|
// SCB_VTOR = (uint32_t)_VectorsRam; // use vector table in RAM
|
|
|
|
// hardware always starts in FEI mode
|
|
// C1[CLKS] bits are written to 00
|
|
// C1[IREFS] bit is written to 1
|
|
// C6[PLLS] bit is written to 0
|
|
// MCG_SC[FCDIV] defaults to divide by two for internal ref clock
|
|
// I tried changing MSG_SC to divide by 1, it didn't work for me
|
|
// enable capacitors for crystal
|
|
nxp.OSC.CR.Set(nxp.OSC_CR_SC8P | nxp.OSC_CR_SC2P | nxp.OSC_CR_ERCLKEN)
|
|
// enable osc, 8-32 MHz range, low power mode
|
|
nxp.MCG.C2.Set(uint8((2 << nxp.MCG_C2_RANGE_Pos) | nxp.MCG_C2_EREFS))
|
|
// switch to crystal as clock source, FLL input = 16 MHz / 512
|
|
nxp.MCG.C1.Set(uint8((2 << nxp.MCG_C1_CLKS_Pos) | (4 << nxp.MCG_C1_FRDIV_Pos)))
|
|
// wait for crystal oscillator to begin
|
|
for !nxp.MCG.S.HasBits(nxp.MCG_S_OSCINIT0) {
|
|
}
|
|
// wait for FLL to use oscillator
|
|
for nxp.MCG.S.HasBits(nxp.MCG_S_IREFST) {
|
|
}
|
|
// wait for MCGOUT to use oscillator
|
|
for (nxp.MCG.S.Get() & nxp.MCG_S_CLKST_Msk) != (2 << nxp.MCG_S_CLKST_Pos) {
|
|
}
|
|
|
|
// now in FBE mode
|
|
// C1[CLKS] bits are written to 10
|
|
// C1[IREFS] bit is written to 0
|
|
// C1[FRDIV] must be written to divide xtal to 31.25-39 kHz
|
|
// C6[PLLS] bit is written to 0
|
|
// C2[LP] is written to 0
|
|
// we need faster than the crystal, turn on the PLL (F_CPU > 120000000)
|
|
nxp.SMC.PMCTRL.Set(_SMC_PMCTRL_HSRUN) // enter HSRUN mode
|
|
for nxp.SMC.PMSTAT.Get() != _SMC_PMSTAT_HSRUN {
|
|
} // wait for HSRUN
|
|
nxp.MCG.C5.Set((1 << nxp.MCG_C5_PRDIV_Pos))
|
|
nxp.MCG.C6.Set(nxp.MCG_C6_PLLS | (29 << nxp.MCG_C6_VDIV_Pos))
|
|
|
|
// wait for PLL to start using xtal as its input
|
|
for !nxp.MCG.S.HasBits(nxp.MCG_S_PLLST) {
|
|
}
|
|
// wait for PLL to lock
|
|
for !nxp.MCG.S.HasBits(nxp.MCG_S_LOCK0) {
|
|
}
|
|
// now we're in PBE mode
|
|
|
|
// now program the clock dividers
|
|
// config divisors: 180 MHz core, 60 MHz bus, 25.7 MHz flash, USB = IRC48M
|
|
nxp.SIM.CLKDIV1.Set((0 << nxp.SIM_CLKDIV1_OUTDIV1_Pos) | (2 << nxp.SIM_CLKDIV1_OUTDIV2_Pos) | (0 << nxp.SIM_CLKDIV1_OUTDIV1_Pos) | (6 << nxp.SIM_CLKDIV1_OUTDIV4_Pos))
|
|
nxp.SIM.CLKDIV2.Set((0 << nxp.SIM_CLKDIV2_USBDIV_Pos))
|
|
|
|
// switch to PLL as clock source, FLL input = 16 MHz / 512
|
|
nxp.MCG.C1.Set((0 << nxp.MCG_C1_CLKS_Pos) | (4 << nxp.MCG_C1_FRDIV_Pos))
|
|
// wait for PLL clock to be used
|
|
for (nxp.MCG.S.Get() & nxp.MCG_S_CLKST_Msk) != (3 << nxp.MCG_S_CLKST_Pos) {
|
|
}
|
|
// now we're in PEE mode
|
|
// trace is CPU clock, CLKOUT=OSCERCLK0
|
|
// USB uses IRC48
|
|
nxp.SIM.SOPT2.Set(nxp.SIM_SOPT2_USBSRC | _SIM_SOPT2_IRC48SEL | nxp.SIM_SOPT2_TRACECLKSEL | (6 << nxp.SIM_SOPT2_CLKOUTSEL_Pos))
|
|
|
|
// If the RTC oscillator isn't enabled, get it started. For Teensy 3.6
|
|
// we don't do this early. See comment above about slow rising power.
|
|
if !nxp.RTC.CR.HasBits(nxp.RTC_CR_OSCE) {
|
|
nxp.RTC.SR.Set(0)
|
|
nxp.RTC.CR.Set(nxp.RTC_CR_SC16P | nxp.RTC_CR_SC4P | nxp.RTC_CR_OSCE)
|
|
}
|
|
|
|
// initialize the SysTick counter
|
|
initSysTick()
|
|
}
|
|
|
|
func initInternal() {
|
|
// from: _init_Teensyduino_internal_
|
|
// arm.EnableIRQ(nxp.IRQ_PORTA)
|
|
// arm.EnableIRQ(nxp.IRQ_PORTB)
|
|
// arm.EnableIRQ(nxp.IRQ_PORTC)
|
|
// arm.EnableIRQ(nxp.IRQ_PORTD)
|
|
// arm.EnableIRQ(nxp.IRQ_PORTE)
|
|
|
|
nxp.FTM0.CNT.Set(0)
|
|
nxp.FTM0.MOD.Set(_DEFAULT_FTM_MOD)
|
|
nxp.FTM0.C0SC.Set(0x28) // MSnB:MSnA = 10, ELSnB:ELSnA = 10
|
|
nxp.FTM0.C1SC.Set(0x28)
|
|
nxp.FTM0.C2SC.Set(0x28)
|
|
nxp.FTM0.C3SC.Set(0x28)
|
|
nxp.FTM0.C4SC.Set(0x28)
|
|
nxp.FTM0.C5SC.Set(0x28)
|
|
nxp.FTM0.C6SC.Set(0x28)
|
|
nxp.FTM0.C7SC.Set(0x28)
|
|
|
|
nxp.FTM3.C0SC.Set(0x28)
|
|
nxp.FTM3.C1SC.Set(0x28)
|
|
nxp.FTM3.C2SC.Set(0x28)
|
|
nxp.FTM3.C3SC.Set(0x28)
|
|
nxp.FTM3.C4SC.Set(0x28)
|
|
nxp.FTM3.C5SC.Set(0x28)
|
|
nxp.FTM3.C6SC.Set(0x28)
|
|
nxp.FTM3.C7SC.Set(0x28)
|
|
|
|
nxp.FTM0.SC.Set((1 << nxp.FTM_SC_CLKS_Pos) | (_DEFAULT_FTM_PRESCALE << nxp.FTM_SC_PS_Pos))
|
|
nxp.FTM1.CNT.Set(0)
|
|
nxp.FTM1.MOD.Set(_DEFAULT_FTM_MOD)
|
|
nxp.FTM1.C0SC.Set(0x28)
|
|
nxp.FTM1.C1SC.Set(0x28)
|
|
nxp.FTM1.SC.Set((1 << nxp.FTM_SC_CLKS_Pos) | (_DEFAULT_FTM_PRESCALE << nxp.FTM_SC_PS_Pos))
|
|
|
|
// causes a data bus error for unknown reasons
|
|
// nxp.FTM2.CNT.Set(0)
|
|
// nxp.FTM2.MOD.Set(_DEFAULT_FTM_MOD)
|
|
// nxp.FTM2.C0SC.Set(0x28)
|
|
// nxp.FTM2.C1SC.Set(0x28)
|
|
// nxp.FTM2.SC.Set((1 << nxp.FTM_SC_CLKS_Pos) | (_DEFAULT_FTM_PRESCALE << nxp.FTM_SC_PS_Pos))
|
|
|
|
nxp.FTM3.CNT.Set(0)
|
|
nxp.FTM3.MOD.Set(_DEFAULT_FTM_MOD)
|
|
nxp.FTM3.C0SC.Set(0x28)
|
|
nxp.FTM3.C1SC.Set(0x28)
|
|
nxp.FTM3.SC.Set((1 << nxp.FTM_SC_CLKS_Pos) | (_DEFAULT_FTM_PRESCALE << nxp.FTM_SC_PS_Pos))
|
|
|
|
nxp.SIM.SCGC2.SetBits(nxp.SIM_SCGC2_TPM1)
|
|
nxp.SIM.SOPT2.SetBits((2 << nxp.SIM_SOPT2_TPMSRC_Pos))
|
|
nxp.TPM1.CNT.Set(0)
|
|
nxp.TPM1.MOD.Set(32767)
|
|
nxp.TPM1.C0SC.Set(0x28)
|
|
nxp.TPM1.C1SC.Set(0x28)
|
|
nxp.TPM1.SC.Set((1 << nxp.FTM_SC_CLKS_Pos) | (0 << nxp.FTM_SC_PS_Pos))
|
|
|
|
// configure the sleep timer
|
|
initSleepTimer()
|
|
|
|
// analog_init();
|
|
}
|
|
|
|
func postinit() {}
|
|
|
|
func putchar(c byte) {
|
|
machine.PutcharUART(&machine.UART0, c)
|
|
}
|
|
|
|
// ???
|
|
const asyncScheduler = false
|
|
|
|
func abort() {
|
|
println("!!! ABORT !!!")
|
|
|
|
m := arm.DisableInterrupts()
|
|
arm.Asm("mov r12, #1")
|
|
arm.Asm("msr basepri, r12") // only execute interrupts of priority 0
|
|
nxp.SystemControl.SHPR3.ClearBits(nxp.SystemControl_SHPR3_PRI_15_Msk) // set systick to priority 0
|
|
arm.EnableInterrupts(m)
|
|
|
|
machine.LED.Configure(machine.PinConfig{Mode: machine.PinOutput})
|
|
|
|
var v bool
|
|
for {
|
|
machine.LED.Set(v)
|
|
v = !v
|
|
|
|
t := millisSinceBoot()
|
|
for millisSinceBoot()-t < 60 {
|
|
arm.Asm("wfi")
|
|
}
|
|
|
|
// keep polling some communication while in fault
|
|
// mode, so we don't completely die.
|
|
// machine.PollUSB(&machine.USB0)
|
|
machine.PollUART(&machine.UART0)
|
|
machine.PollUART(&machine.UART1)
|
|
machine.PollUART(&machine.UART2)
|
|
}
|
|
}
|
|
|
|
func waitForEvents() {
|
|
arm.Asm("wfe")
|
|
}
|