tinygo/src/runtime/hashmap.go
Ayke van Laethem f800f7507c reflect: check for access in the Interface method call
This fixes a type system loophole. The following program would
incorrectly run in TinyGo, while it would trigger a panic in Go:

    package main

    import "reflect"

    func main() {
        v := reflect.ValueOf(struct {
            x int
        }{})
        x := v.Field(0).Interface()
        println("x:", x.(int))
    }

Playground link: https://play.golang.org/p/nvvA18XFqFC

The panic in Go is the following:

    panic: reflect.Value.Interface: cannot return value obtained from unexported field or method

I've shortened it in TinyGo to save a little bit of space.
2021-03-24 12:19:16 +01:00

426 строки
14 КиБ
Go

package runtime
// This is a hashmap implementation for the map[T]T type.
// It is very roughly based on the implementation of the Go hashmap:
//
// https://golang.org/src/runtime/map.go
import (
"reflect"
"unsafe"
)
// The underlying hashmap structure for Go.
type hashmap struct {
next *hashmap // hashmap after evacuate (for iterators)
buckets unsafe.Pointer // pointer to array of buckets
count uintptr
keySize uint8 // maybe this can store the key type as well? E.g. keysize == 5 means string?
valueSize uint8
bucketBits uint8
}
// A hashmap bucket. A bucket is a container of 8 key/value pairs: first the
// following two entries, then the 8 keys, then the 8 values. This somewhat odd
// ordering is to make sure the keys and values are well aligned when one of
// them is smaller than the system word size.
type hashmapBucket struct {
tophash [8]uint8
next *hashmapBucket // next bucket (if there are more than 8 in a chain)
// Followed by the actual keys, and then the actual values. These are
// allocated but as they're of variable size they can't be shown here.
}
type hashmapIterator struct {
bucketNumber uintptr
bucket *hashmapBucket
bucketIndex uint8
}
// Get FNV-1a hash of this key.
//
// https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function#FNV-1a_hash
func hashmapHash(ptr unsafe.Pointer, n uintptr) uint32 {
var result uint32 = 2166136261 // FNV offset basis
for i := uintptr(0); i < n; i++ {
c := *(*uint8)(unsafe.Pointer(uintptr(ptr) + i))
result ^= uint32(c) // XOR with byte
result *= 16777619 // FNV prime
}
return result
}
// Get the topmost 8 bits of the hash, without using a special value (like 0).
func hashmapTopHash(hash uint32) uint8 {
tophash := uint8(hash >> 24)
if tophash < 1 {
// 0 means empty slot, so make it bigger.
tophash += 1
}
return tophash
}
// Create a new hashmap with the given keySize and valueSize.
func hashmapMake(keySize, valueSize uint8, sizeHint uintptr) *hashmap {
numBuckets := sizeHint / 8
bucketBits := uint8(0)
for numBuckets != 0 {
numBuckets /= 2
bucketBits++
}
bucketBufSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(keySize)*8 + uintptr(valueSize)*8
buckets := alloc(bucketBufSize * (1 << bucketBits))
return &hashmap{
buckets: buckets,
keySize: keySize,
valueSize: valueSize,
bucketBits: bucketBits,
}
}
// Return the number of entries in this hashmap, called from the len builtin.
// A nil hashmap is defined as having length 0.
//go:inline
func hashmapLen(m *hashmap) int {
if m == nil {
return 0
}
return int(m.count)
}
// wrapper for use in reflect
func hashmapLenUnsafePointer(p unsafe.Pointer) int {
m := (*hashmap)(p)
return hashmapLen(m)
}
// Set a specified key to a given value. Grow the map if necessary.
//go:nobounds
func hashmapSet(m *hashmap, key unsafe.Pointer, value unsafe.Pointer, hash uint32, keyEqual func(x, y unsafe.Pointer, n uintptr) bool) {
tophash := hashmapTopHash(hash)
if m.buckets == nil {
// No bucket was allocated yet, do so now.
m.buckets = unsafe.Pointer(hashmapInsertIntoNewBucket(m, key, value, tophash))
return
}
numBuckets := uintptr(1) << m.bucketBits
bucketNumber := (uintptr(hash) & (numBuckets - 1))
bucketSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*8
bucketAddr := uintptr(m.buckets) + bucketSize*bucketNumber
bucket := (*hashmapBucket)(unsafe.Pointer(bucketAddr))
var lastBucket *hashmapBucket
// See whether the key already exists somewhere.
var emptySlotKey unsafe.Pointer
var emptySlotValue unsafe.Pointer
var emptySlotTophash *byte
for bucket != nil {
for i := uintptr(0); i < 8; i++ {
slotKeyOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*uintptr(i)
slotKey := unsafe.Pointer(uintptr(unsafe.Pointer(bucket)) + slotKeyOffset)
slotValueOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*uintptr(i)
slotValue := unsafe.Pointer(uintptr(unsafe.Pointer(bucket)) + slotValueOffset)
if bucket.tophash[i] == 0 && emptySlotKey == nil {
// Found an empty slot, store it for if we couldn't find an
// existing slot.
emptySlotKey = slotKey
emptySlotValue = slotValue
emptySlotTophash = &bucket.tophash[i]
}
if bucket.tophash[i] == tophash {
// Could be an existing key that's the same.
if keyEqual(key, slotKey, uintptr(m.keySize)) {
// found same key, replace it
memcpy(slotValue, value, uintptr(m.valueSize))
return
}
}
}
lastBucket = bucket
bucket = bucket.next
}
if emptySlotKey == nil {
// Add a new bucket to the bucket chain.
// TODO: rebalance if necessary to avoid O(n) insert and lookup time.
lastBucket.next = (*hashmapBucket)(hashmapInsertIntoNewBucket(m, key, value, tophash))
return
}
m.count++
memcpy(emptySlotKey, key, uintptr(m.keySize))
memcpy(emptySlotValue, value, uintptr(m.valueSize))
*emptySlotTophash = tophash
}
// hashmapInsertIntoNewBucket creates a new bucket, inserts the given key and
// value into the bucket, and returns a pointer to this bucket.
func hashmapInsertIntoNewBucket(m *hashmap, key, value unsafe.Pointer, tophash uint8) *hashmapBucket {
bucketBufSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*8
bucketBuf := alloc(bucketBufSize)
// Insert into the first slot, which is empty as it has just been allocated.
slotKeyOffset := unsafe.Sizeof(hashmapBucket{})
slotKey := unsafe.Pointer(uintptr(bucketBuf) + slotKeyOffset)
slotValueOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8
slotValue := unsafe.Pointer(uintptr(bucketBuf) + slotValueOffset)
m.count++
memcpy(slotKey, key, uintptr(m.keySize))
memcpy(slotValue, value, uintptr(m.valueSize))
bucket := (*hashmapBucket)(bucketBuf)
bucket.tophash[0] = tophash
return bucket
}
// Get the value of a specified key, or zero the value if not found.
//go:nobounds
func hashmapGet(m *hashmap, key, value unsafe.Pointer, valueSize uintptr, hash uint32, keyEqual func(x, y unsafe.Pointer, n uintptr) bool) bool {
if m == nil {
// Getting a value out of a nil map is valid. From the spec:
// > if the map is nil or does not contain such an entry, a[x] is the
// > zero value for the element type of M
memzero(value, uintptr(valueSize))
return false
}
numBuckets := uintptr(1) << m.bucketBits
bucketNumber := (uintptr(hash) & (numBuckets - 1))
bucketSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*8
bucketAddr := uintptr(m.buckets) + bucketSize*bucketNumber
bucket := (*hashmapBucket)(unsafe.Pointer(bucketAddr))
tophash := uint8(hash >> 24)
if tophash < 1 {
// 0 means empty slot, so make it bigger.
tophash += 1
}
// Try to find the key.
for bucket != nil {
for i := uintptr(0); i < 8; i++ {
slotKeyOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*uintptr(i)
slotKey := unsafe.Pointer(uintptr(unsafe.Pointer(bucket)) + slotKeyOffset)
slotValueOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*uintptr(i)
slotValue := unsafe.Pointer(uintptr(unsafe.Pointer(bucket)) + slotValueOffset)
if bucket.tophash[i] == tophash {
// This could be the key we're looking for.
if keyEqual(key, slotKey, uintptr(m.keySize)) {
// Found the key, copy it.
memcpy(value, slotValue, uintptr(m.valueSize))
return true
}
}
}
bucket = bucket.next
}
// Did not find the key.
memzero(value, uintptr(m.valueSize))
return false
}
// Delete a given key from the map. No-op when the key does not exist in the
// map.
//go:nobounds
func hashmapDelete(m *hashmap, key unsafe.Pointer, hash uint32, keyEqual func(x, y unsafe.Pointer, n uintptr) bool) {
if m == nil {
// The delete builtin is defined even when the map is nil. From the spec:
// > If the map m is nil or the element m[k] does not exist, delete is a
// > no-op.
return
}
numBuckets := uintptr(1) << m.bucketBits
bucketNumber := (uintptr(hash) & (numBuckets - 1))
bucketSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*8
bucketAddr := uintptr(m.buckets) + bucketSize*bucketNumber
bucket := (*hashmapBucket)(unsafe.Pointer(bucketAddr))
tophash := uint8(hash >> 24)
if tophash < 1 {
// 0 means empty slot, so make it bigger.
tophash += 1
}
// Try to find the key.
for bucket != nil {
for i := uintptr(0); i < 8; i++ {
slotKeyOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*uintptr(i)
slotKey := unsafe.Pointer(uintptr(unsafe.Pointer(bucket)) + slotKeyOffset)
if bucket.tophash[i] == tophash {
// This could be the key we're looking for.
if keyEqual(key, slotKey, uintptr(m.keySize)) {
// Found the key, delete it.
bucket.tophash[i] = 0
m.count--
return
}
}
}
bucket = bucket.next
}
}
// Iterate over a hashmap.
//go:nobounds
func hashmapNext(m *hashmap, it *hashmapIterator, key, value unsafe.Pointer) bool {
if m == nil {
// Iterating over a nil slice appears to be allowed by the Go spec:
// https://groups.google.com/g/golang-nuts/c/gVgVLQU1FFE?pli=1
// https://play.golang.org/p/S8jxAMytKDB
return false
}
numBuckets := uintptr(1) << m.bucketBits
for {
if it.bucketIndex >= 8 {
// end of bucket, move to the next in the chain
it.bucketIndex = 0
it.bucket = it.bucket.next
}
if it.bucket == nil {
if it.bucketNumber >= numBuckets {
// went through all buckets
return false
}
bucketSize := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*8
bucketAddr := uintptr(m.buckets) + bucketSize*it.bucketNumber
it.bucket = (*hashmapBucket)(unsafe.Pointer(bucketAddr))
it.bucketNumber++ // next bucket
}
if it.bucket.tophash[it.bucketIndex] == 0 {
// slot is empty - move on
it.bucketIndex++
continue
}
bucketAddr := uintptr(unsafe.Pointer(it.bucket))
slotKeyOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*uintptr(it.bucketIndex)
slotKey := unsafe.Pointer(bucketAddr + slotKeyOffset)
slotValueOffset := unsafe.Sizeof(hashmapBucket{}) + uintptr(m.keySize)*8 + uintptr(m.valueSize)*uintptr(it.bucketIndex)
slotValue := unsafe.Pointer(bucketAddr + slotValueOffset)
memcpy(key, slotKey, uintptr(m.keySize))
memcpy(value, slotValue, uintptr(m.valueSize))
it.bucketIndex++
return true
}
}
// Hashmap with plain binary data keys (not containing strings etc.).
func hashmapBinarySet(m *hashmap, key, value unsafe.Pointer) {
hash := hashmapHash(key, uintptr(m.keySize))
hashmapSet(m, key, value, hash, memequal)
}
func hashmapBinaryGet(m *hashmap, key, value unsafe.Pointer, valueSize uintptr) bool {
hash := hashmapHash(key, uintptr(m.keySize))
return hashmapGet(m, key, value, valueSize, hash, memequal)
}
func hashmapBinaryDelete(m *hashmap, key unsafe.Pointer) {
hash := hashmapHash(key, uintptr(m.keySize))
hashmapDelete(m, key, hash, memequal)
}
// Hashmap with string keys (a common case).
func hashmapStringEqual(x, y unsafe.Pointer, n uintptr) bool {
return *(*string)(x) == *(*string)(y)
}
func hashmapStringHash(s string) uint32 {
_s := (*_string)(unsafe.Pointer(&s))
return hashmapHash(unsafe.Pointer(_s.ptr), uintptr(_s.length))
}
func hashmapStringSet(m *hashmap, key string, value unsafe.Pointer) {
hash := hashmapStringHash(key)
hashmapSet(m, unsafe.Pointer(&key), value, hash, hashmapStringEqual)
}
func hashmapStringGet(m *hashmap, key string, value unsafe.Pointer, valueSize uintptr) bool {
hash := hashmapStringHash(key)
return hashmapGet(m, unsafe.Pointer(&key), value, valueSize, hash, hashmapStringEqual)
}
func hashmapStringDelete(m *hashmap, key string) {
hash := hashmapStringHash(key)
hashmapDelete(m, unsafe.Pointer(&key), hash, hashmapStringEqual)
}
// Hashmap with interface keys (for everything else).
// This is a method that is intentionally unexported in the reflect package. It
// is identical to the Interface() method call, except it doesn't check whether
// a field is exported and thus allows circumventing the type system.
// The hash function needs it as it also needs to hash unexported struct fields.
//go:linkname valueInterfaceUnsafe reflect.valueInterfaceUnsafe
func valueInterfaceUnsafe(v reflect.Value) interface{}
func hashmapInterfaceHash(itf interface{}) uint32 {
x := reflect.ValueOf(itf)
if x.RawType() == 0 {
return 0 // nil interface
}
value := (*_interface)(unsafe.Pointer(&itf)).value
ptr := value
if x.RawType().Size() <= unsafe.Sizeof(uintptr(0)) {
// Value fits in pointer, so it's directly stored in the pointer.
ptr = unsafe.Pointer(&value)
}
switch x.RawType().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return hashmapHash(ptr, x.RawType().Size())
case reflect.Bool, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return hashmapHash(ptr, x.RawType().Size())
case reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
// It should be possible to just has the contents. However, NaN != NaN
// so if you're using lots of NaNs as map keys (you shouldn't) then hash
// time may become exponential. To fix that, it would be better to
// return a random number instead:
// https://research.swtch.com/randhash
return hashmapHash(ptr, x.RawType().Size())
case reflect.String:
return hashmapStringHash(x.String())
case reflect.Chan, reflect.Ptr, reflect.UnsafePointer:
// It might seem better to just return the pointer, but that won't
// result in an evenly distributed hashmap. Instead, hash the pointer
// like most other types.
return hashmapHash(ptr, x.RawType().Size())
case reflect.Array:
var hash uint32
for i := 0; i < x.Len(); i++ {
hash |= hashmapInterfaceHash(valueInterfaceUnsafe(x.Index(i)))
}
return hash
case reflect.Struct:
var hash uint32
for i := 0; i < x.NumField(); i++ {
hash |= hashmapInterfaceHash(valueInterfaceUnsafe(x.Field(i)))
}
return hash
default:
runtimePanic("comparing un-comparable type")
return 0 // unreachable
}
}
func hashmapInterfaceEqual(x, y unsafe.Pointer, n uintptr) bool {
return *(*interface{})(x) == *(*interface{})(y)
}
func hashmapInterfaceSet(m *hashmap, key interface{}, value unsafe.Pointer) {
hash := hashmapInterfaceHash(key)
hashmapSet(m, unsafe.Pointer(&key), value, hash, hashmapInterfaceEqual)
}
func hashmapInterfaceGet(m *hashmap, key interface{}, value unsafe.Pointer, valueSize uintptr) bool {
hash := hashmapInterfaceHash(key)
return hashmapGet(m, unsafe.Pointer(&key), value, valueSize, hash, hashmapInterfaceEqual)
}
func hashmapInterfaceDelete(m *hashmap, key interface{}) {
hash := hashmapInterfaceHash(key)
hashmapDelete(m, unsafe.Pointer(&key), hash, hashmapInterfaceEqual)
}