
For now, this is just an extra flag that can be used to print stack frame information, but this is intended to provide a way to determine stack sizes for goroutines at compile time in many cases. Stack sizes are often somewhere around 350 bytes so are in fact not all that big usually. Once this can be determined at compile time in many cases, it is possible to use this information when available and as a result increase the fallback stack size if the size cannot be determined at compile time. This should reduce stack overflows while at the same time reducing RAM consumption in many cases. Interesting output for testdata/channel.go: function stack usage (in bytes) Reset_Handler 332 .Lcommand-line-arguments.fastreceiver 220 .Lcommand-line-arguments.fastsender 192 .Lcommand-line-arguments.iterator 192 .Lcommand-line-arguments.main$1 184 .Lcommand-line-arguments.main$2 200 .Lcommand-line-arguments.main$3 200 .Lcommand-line-arguments.main$4 328 .Lcommand-line-arguments.receive 176 .Lcommand-line-arguments.selectDeadlock 72 .Lcommand-line-arguments.selectNoOp 72 .Lcommand-line-arguments.send 184 .Lcommand-line-arguments.sendComplex 192 .Lcommand-line-arguments.sender 192 .Lruntime.run$1 548 This shows that the stack size (if these numbers are correct) can in fact be determined automatically in many cases, especially for small goroutines. One of the great things about Go is lightweight goroutines, and reducing stack sizes is very important to make goroutines lightweight on microcontrollers.
280 строки
7 КиБ
Go
280 строки
7 КиБ
Go
package stacksize
|
|
|
|
// This file implements parsing DWARF call frame information and interpreting
|
|
// the CFI bytecode, or enough of it for most practical code.
|
|
|
|
import (
|
|
"bytes"
|
|
"debug/elf"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
)
|
|
|
|
// dwarfCIE represents one DWARF Call Frame Information structure.
|
|
type dwarfCIE struct {
|
|
bytecode []byte
|
|
codeAlignmentFactor uint64
|
|
}
|
|
|
|
// parseFrames parses all call frame information from a .debug_frame section and
|
|
// provides the passed in symbols map with frame size information.
|
|
func parseFrames(f *elf.File, data []byte, symbols map[uint64]*CallNode) error {
|
|
if f.Class != elf.ELFCLASS32 {
|
|
// TODO: ELF64
|
|
return fmt.Errorf("expected ELF32")
|
|
}
|
|
cies := make(map[uint32]*dwarfCIE)
|
|
|
|
// Read each entity.
|
|
r := bytes.NewBuffer(data)
|
|
for {
|
|
start := len(data) - r.Len()
|
|
var length uint32
|
|
err := binary.Read(r, binary.LittleEndian, &length)
|
|
if err == io.EOF {
|
|
return nil
|
|
}
|
|
if err != nil {
|
|
return err
|
|
}
|
|
var cie uint32
|
|
err = binary.Read(r, binary.LittleEndian, &cie)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if cie == 0xffffffff {
|
|
// This is a CIE.
|
|
var fields struct {
|
|
Version uint8
|
|
Augmentation uint8
|
|
AddressSize uint8
|
|
SegmentSize uint8
|
|
}
|
|
err = binary.Read(r, binary.LittleEndian, &fields)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if fields.Version != 4 {
|
|
return fmt.Errorf("unimplemented: .debug_frame version %d", fields.Version)
|
|
}
|
|
if fields.Augmentation != 0 {
|
|
return fmt.Errorf("unimplemented: .debug_frame with augmentation")
|
|
}
|
|
if fields.SegmentSize != 0 {
|
|
return fmt.Errorf("unimplemented: .debug_frame with segment size")
|
|
}
|
|
codeAlignmentFactor, err := readULEB128(r)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, err = readSLEB128(r) // data alignment factor
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, err = readULEB128(r) // return address register
|
|
if err != nil {
|
|
return err
|
|
}
|
|
rest := (start + int(length) + 4) - (len(data) - r.Len())
|
|
bytecode := r.Next(rest)
|
|
cies[uint32(start)] = &dwarfCIE{
|
|
codeAlignmentFactor: codeAlignmentFactor,
|
|
bytecode: bytecode,
|
|
}
|
|
} else {
|
|
// This is a FDE.
|
|
var fields struct {
|
|
InitialLocation uint32
|
|
AddressRange uint32
|
|
}
|
|
err = binary.Read(r, binary.LittleEndian, &fields)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if _, ok := cies[cie]; !ok {
|
|
return fmt.Errorf("could not find CIE 0x%x in .debug_frame section", cie)
|
|
}
|
|
frame := frameInfo{
|
|
cie: cies[cie],
|
|
start: uint64(fields.InitialLocation),
|
|
loc: uint64(fields.InitialLocation),
|
|
length: uint64(fields.AddressRange),
|
|
}
|
|
rest := (start + int(length) + 4) - (len(data) - r.Len())
|
|
bytecode := r.Next(rest)
|
|
|
|
if frame.start == 0 {
|
|
// Not sure where these come from but they don't seem to be
|
|
// important.
|
|
continue
|
|
}
|
|
|
|
_, err = frame.exec(frame.cie.bytecode)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
entries, err := frame.exec(bytecode)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
var maxFrameSize uint64
|
|
for _, entry := range entries {
|
|
switch f.Machine {
|
|
case elf.EM_ARM:
|
|
if entry.cfaRegister != 13 { // r13 or sp
|
|
// something other than a stack pointer (on ARM)
|
|
return fmt.Errorf("%08x..%08x: unknown CFA register number %d", frame.start, frame.start+frame.length, entry.cfaRegister)
|
|
}
|
|
default:
|
|
return fmt.Errorf("unknown architecture: %s", f.Machine)
|
|
}
|
|
if entry.cfaOffset > maxFrameSize {
|
|
maxFrameSize = entry.cfaOffset
|
|
}
|
|
}
|
|
node := symbols[frame.start]
|
|
if node.Size != frame.length {
|
|
return fmt.Errorf("%s: symtab gives symbol length %d while DWARF gives symbol length %d", node, node.Size, frame.length)
|
|
}
|
|
node.FrameSize = maxFrameSize
|
|
node.FrameSizeType = Bounded
|
|
if debugPrint {
|
|
fmt.Printf("%08x..%08x: frame size %4d %s\n", frame.start, frame.start+frame.length, maxFrameSize, node)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// frameInfo contains the state of executing call frame information bytecode.
|
|
type frameInfo struct {
|
|
cie *dwarfCIE
|
|
start uint64
|
|
loc uint64
|
|
length uint64
|
|
cfaRegister uint64
|
|
cfaOffset uint64
|
|
}
|
|
|
|
// frameInfoLine represents one line in the frame table (.debug_frame) at one
|
|
// point in the execution of the bytecode.
|
|
type frameInfoLine struct {
|
|
loc uint64
|
|
cfaRegister uint64
|
|
cfaOffset uint64
|
|
}
|
|
|
|
func (fi *frameInfo) newLine() frameInfoLine {
|
|
return frameInfoLine{
|
|
loc: fi.loc,
|
|
cfaRegister: fi.cfaRegister,
|
|
cfaOffset: fi.cfaOffset,
|
|
}
|
|
}
|
|
|
|
// exec executes the given bytecode in the CFI. Most CFI bytecode is actually
|
|
// very simple and provides a way to determine the maximum call frame size.
|
|
//
|
|
// The frame size often changes multiple times in a function, for example the
|
|
// frame size may be adjusted in the prologue and epilogue. Each frameInfoLine
|
|
// may contain such a change.
|
|
func (fi *frameInfo) exec(bytecode []byte) ([]frameInfoLine, error) {
|
|
var entries []frameInfoLine
|
|
r := bytes.NewBuffer(bytecode)
|
|
for {
|
|
op, err := r.ReadByte()
|
|
if err != nil {
|
|
if err == io.EOF {
|
|
entries = append(entries, fi.newLine())
|
|
return entries, nil
|
|
}
|
|
return nil, err
|
|
}
|
|
highBits := op >> 6 // high order 2 bits
|
|
lowBits := op & 0x1f
|
|
switch highBits {
|
|
case 1: // DW_CFA_advance_loc
|
|
fi.loc += uint64(lowBits) * fi.cie.codeAlignmentFactor
|
|
entries = append(entries, fi.newLine())
|
|
case 2: // DW_CFA_offset
|
|
// This indicates where a register is saved on the stack in the
|
|
// prologue. We can ignore that for our purposes.
|
|
_, err := readULEB128(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
case 0:
|
|
switch lowBits {
|
|
case 0: // DW_CFA_nop
|
|
// no operation
|
|
case 0x0c: // DW_CFA_def_cfa
|
|
register, err := readULEB128(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
offset, err := readULEB128(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
fi.cfaRegister = register
|
|
fi.cfaOffset = offset
|
|
case 0x0e: // DW_CFA_def_cfa_offset
|
|
offset, err := readULEB128(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
fi.cfaOffset = offset
|
|
default:
|
|
return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x", op)
|
|
}
|
|
default:
|
|
return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x", op)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Source: https://en.wikipedia.org/wiki/LEB128#Decode_unsigned_integer
|
|
func readULEB128(r *bytes.Buffer) (result uint64, err error) {
|
|
// TODO: guard against overflowing 64-bit integers.
|
|
var shift uint8
|
|
for {
|
|
b, err := r.ReadByte()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
result |= uint64(b&0x7f) << shift
|
|
if b&0x80 == 0 {
|
|
break
|
|
}
|
|
shift += 7
|
|
}
|
|
return
|
|
}
|
|
|
|
// Source: https://en.wikipedia.org/wiki/LEB128#Decode_signed_integer
|
|
func readSLEB128(r *bytes.Buffer) (result int64, err error) {
|
|
var shift uint8
|
|
|
|
var b byte
|
|
var rawResult uint64
|
|
for {
|
|
b, err = r.ReadByte()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
rawResult |= uint64(b&0x7f) << shift
|
|
shift += 7
|
|
if b&0x80 == 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
// sign bit of byte is second high order bit (0x40)
|
|
if shift < 64 && b&0x40 != 0 {
|
|
// sign extend
|
|
rawResult |= ^uint64(0) << shift
|
|
}
|
|
result = int64(rawResult)
|
|
|
|
return
|
|
}
|