tinygo/compiler/asserts.go
Ayke van Laethem d8cc48b09b compiler: remove ir package
This package was long making the design of the compiler more complicated
than it needs to be. Previously this package implemented several
optimization passes, but those passes have since moved to work directly
with LLVM IR instead of Go SSA. The only remaining pass is the SimpleDCE
pass.

This commit removes the *ir.Function type that permeated the whole
compiler and instead switches to use *ssa.Function directly. The
SimpleDCE pass is kept but is far less tightly coupled to the rest of
the compiler so that it can easily be removed once the switch to
building and caching packages individually happens.
2021-01-24 15:39:15 +01:00

229 строки
8,4 КиБ
Go

package compiler
// This file implements functions that do certain safety checks that are
// required by the Go programming language.
import (
"fmt"
"go/token"
"go/types"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// createLookupBoundsCheck emits a bounds check before doing a lookup into a
// slice. This is required by the Go language spec: an index out of bounds must
// cause a panic.
func (b *builder) createLookupBoundsCheck(arrayLen, index llvm.Value, indexType types.Type) {
if b.info.nobounds {
// The //go:nobounds pragma was added to the function to avoid bounds
// checking.
return
}
if index.Type().IntTypeWidth() < arrayLen.Type().IntTypeWidth() {
// Sometimes, the index can be e.g. an uint8 or int8, and we have to
// correctly extend that type.
if indexType.Underlying().(*types.Basic).Info()&types.IsUnsigned == 0 {
index = b.CreateZExt(index, arrayLen.Type(), "")
} else {
index = b.CreateSExt(index, arrayLen.Type(), "")
}
} else if index.Type().IntTypeWidth() > arrayLen.Type().IntTypeWidth() {
// The index is bigger than the array length type, so extend it.
arrayLen = b.CreateZExt(arrayLen, index.Type(), "")
}
// Now do the bounds check: index >= arrayLen
outOfBounds := b.CreateICmp(llvm.IntUGE, index, arrayLen, "")
b.createRuntimeAssert(outOfBounds, "lookup", "lookupPanic")
}
// createSliceBoundsCheck emits a bounds check before a slicing operation to make
// sure it is within bounds.
//
// This function is both used for slicing a slice (low and high have their
// normal meaning) and for creating a new slice, where 'capacity' means the
// biggest possible slice capacity, 'low' means len and 'high' means cap. The
// logic is the same in both cases.
func (b *builder) createSliceBoundsCheck(capacity, low, high, max llvm.Value, lowType, highType, maxType *types.Basic) {
if b.info.nobounds {
// The //go:nobounds pragma was added to the function to avoid bounds
// checking.
return
}
// Extend the capacity integer to be at least as wide as low and high.
capacityType := capacity.Type()
if low.Type().IntTypeWidth() > capacityType.IntTypeWidth() {
capacityType = low.Type()
}
if high.Type().IntTypeWidth() > capacityType.IntTypeWidth() {
capacityType = high.Type()
}
if max.Type().IntTypeWidth() > capacityType.IntTypeWidth() {
capacityType = max.Type()
}
if capacityType != capacity.Type() {
capacity = b.CreateZExt(capacity, capacityType, "")
}
// Extend low and high to be the same size as capacity.
if low.Type().IntTypeWidth() < capacityType.IntTypeWidth() {
if lowType.Info()&types.IsUnsigned != 0 {
low = b.CreateZExt(low, capacityType, "")
} else {
low = b.CreateSExt(low, capacityType, "")
}
}
if high.Type().IntTypeWidth() < capacityType.IntTypeWidth() {
if highType.Info()&types.IsUnsigned != 0 {
high = b.CreateZExt(high, capacityType, "")
} else {
high = b.CreateSExt(high, capacityType, "")
}
}
if max.Type().IntTypeWidth() < capacityType.IntTypeWidth() {
if maxType.Info()&types.IsUnsigned != 0 {
max = b.CreateZExt(max, capacityType, "")
} else {
max = b.CreateSExt(max, capacityType, "")
}
}
// Now do the bounds check: low > high || high > capacity
outOfBounds1 := b.CreateICmp(llvm.IntUGT, low, high, "slice.lowhigh")
outOfBounds2 := b.CreateICmp(llvm.IntUGT, high, max, "slice.highmax")
outOfBounds3 := b.CreateICmp(llvm.IntUGT, max, capacity, "slice.maxcap")
outOfBounds := b.CreateOr(outOfBounds1, outOfBounds2, "slice.lowmax")
outOfBounds = b.CreateOr(outOfBounds, outOfBounds3, "slice.lowcap")
b.createRuntimeAssert(outOfBounds, "slice", "slicePanic")
}
// createChanBoundsCheck creates a bounds check before creating a new channel to
// check that the value is not too big for runtime.chanMake.
func (b *builder) createChanBoundsCheck(elementSize uint64, bufSize llvm.Value, bufSizeType *types.Basic, pos token.Pos) {
if b.info.nobounds {
// The //go:nobounds pragma was added to the function to avoid bounds
// checking.
return
}
// Check whether the bufSize parameter must be cast to a wider integer for
// comparison.
if bufSize.Type().IntTypeWidth() < b.uintptrType.IntTypeWidth() {
if bufSizeType.Info()&types.IsUnsigned != 0 {
// Unsigned, so zero-extend to uint type.
bufSizeType = types.Typ[types.Uint]
bufSize = b.CreateZExt(bufSize, b.intType, "")
} else {
// Signed, so sign-extend to int type.
bufSizeType = types.Typ[types.Int]
bufSize = b.CreateSExt(bufSize, b.intType, "")
}
}
// Calculate (^uintptr(0)) >> 1, which is the max value that fits in an
// uintptr if uintptrs were signed.
maxBufSize := llvm.ConstLShr(llvm.ConstNot(llvm.ConstInt(b.uintptrType, 0, false)), llvm.ConstInt(b.uintptrType, 1, false))
if elementSize > maxBufSize.ZExtValue() {
b.addError(pos, fmt.Sprintf("channel element type is too big (%v bytes)", elementSize))
return
}
// Avoid divide-by-zero.
if elementSize == 0 {
elementSize = 1
}
// Make the maxBufSize actually the maximum allowed value (in number of
// elements in the channel buffer).
maxBufSize = llvm.ConstUDiv(maxBufSize, llvm.ConstInt(b.uintptrType, elementSize, false))
// Make sure maxBufSize has the same type as bufSize.
if maxBufSize.Type() != bufSize.Type() {
maxBufSize = llvm.ConstZExt(maxBufSize, bufSize.Type())
}
// Do the check for a too large (or negative) buffer size.
bufSizeTooBig := b.CreateICmp(llvm.IntUGE, bufSize, maxBufSize, "")
b.createRuntimeAssert(bufSizeTooBig, "chan", "chanMakePanic")
}
// createNilCheck checks whether the given pointer is nil, and panics if it is.
// It has no effect in well-behaved programs, but makes sure no uncaught nil
// pointer dereferences exist in valid Go code.
func (b *builder) createNilCheck(inst ssa.Value, ptr llvm.Value, blockPrefix string) {
// Check whether we need to emit this check at all.
if !ptr.IsAGlobalValue().IsNil() {
return
}
switch inst := inst.(type) {
case *ssa.IndexAddr:
// This pointer is the result of an index operation into a slice or
// array. Such slices/arrays are already bounds checked so the pointer
// must be a valid (non-nil) pointer. No nil checking is necessary.
return
case *ssa.Convert:
// This is a pointer that comes from a conversion from unsafe.Pointer.
// Don't do nil checking because this is unsafe code and the code should
// know what it is doing.
// Note: all *ssa.Convert instructions that result in a pointer must
// come from unsafe.Pointer. Testing here for unsafe.Pointer to be sure.
if inst.X.Type() == types.Typ[types.UnsafePointer] {
return
}
}
// Compare against nil.
// We previously used a hack to make sure this wouldn't break escape
// analysis, but this is not necessary anymore since
// https://reviews.llvm.org/D60047 has been merged.
nilptr := llvm.ConstPointerNull(ptr.Type())
isnil := b.CreateICmp(llvm.IntEQ, ptr, nilptr, "")
// Emit the nil check in IR.
b.createRuntimeAssert(isnil, blockPrefix, "nilPanic")
}
// createNegativeShiftCheck creates an assertion that panics if the given shift value is negative.
// This function assumes that the shift value is signed.
func (b *builder) createNegativeShiftCheck(shift llvm.Value) {
if b.info.nobounds {
// Function disabled bounds checking - skip shift check.
return
}
// isNegative = shift < 0
isNegative := b.CreateICmp(llvm.IntSLT, shift, llvm.ConstInt(shift.Type(), 0, false), "")
b.createRuntimeAssert(isNegative, "shift", "negativeShiftPanic")
}
// createRuntimeAssert is a common function to create a new branch on an assert
// bool, calling an assert func if the assert value is true (1).
func (b *builder) createRuntimeAssert(assert llvm.Value, blockPrefix, assertFunc string) {
// Check whether we can resolve this check at compile time.
if !assert.IsAConstantInt().IsNil() {
val := assert.ZExtValue()
if val == 0 {
// Everything is constant so the check does not have to be emitted
// in IR. This avoids emitting some redundant IR.
return
}
}
faultBlock := b.ctx.AddBasicBlock(b.llvmFn, blockPrefix+".throw")
nextBlock := b.ctx.AddBasicBlock(b.llvmFn, blockPrefix+".next")
b.blockExits[b.currentBlock] = nextBlock // adjust outgoing block for phi nodes
// Now branch to the out-of-bounds or the regular block.
b.CreateCondBr(assert, faultBlock, nextBlock)
// Fail: the assert triggered so panic.
b.SetInsertPointAtEnd(faultBlock)
b.createRuntimeCall(assertFunc, nil, "")
b.CreateUnreachable()
// Ok: assert didn't trigger so continue normally.
b.SetInsertPointAtEnd(nextBlock)
}