tinygo/compiler/intrinsics.go
Ayke van Laethem e1052f921c compiler: define atomic intrinsic functions directly
This changes the compiler from treating calls to sync/atomic.* functions
as special calls (emitted directly at the call site) to actually
defining their declarations when there is no Go SSA implementation. And
rely on the inliner to inline these very small functions.
This works a bit better in practice. For example, this makes it possible
to use these functions in deferred function calls.

This commit is a bit large because it also needs to refactor a few
things to make it possible to define such intrinsic functions.
2022-06-24 11:10:24 +02:00

126 строки
4,7 КиБ
Go

package compiler
// This file contains helper functions to create calls to LLVM intrinsics.
import (
"go/token"
"strconv"
"strings"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// Define unimplemented intrinsic functions.
//
// Some functions are either normally implemented in Go assembly (like
// sync/atomic functions) or intentionally left undefined to be implemented
// directly in the compiler (like runtime/volatile functions). Either way, look
// for these and implement them if this is the case.
func (b *builder) defineIntrinsicFunction() {
name := b.fn.RelString(nil)
switch {
case strings.HasPrefix(name, "sync/atomic.") && token.IsExported(b.fn.Name()):
b.createFunctionStart()
returnValue := b.createAtomicOp(b.fn.Name())
if !returnValue.IsNil() {
b.CreateRet(returnValue)
} else {
b.CreateRetVoid()
}
}
}
// createMemoryCopyCall creates a call to a builtin LLVM memcpy or memmove
// function, declaring this function if needed. These calls are treated
// specially by optimization passes possibly resulting in better generated code,
// and will otherwise be lowered to regular libc memcpy/memmove calls.
func (b *builder) createMemoryCopyCall(fn *ssa.Function, args []ssa.Value) (llvm.Value, error) {
fnName := "llvm." + fn.Name() + ".p0i8.p0i8.i" + strconv.Itoa(b.uintptrType.IntTypeWidth())
llvmFn := b.mod.NamedFunction(fnName)
if llvmFn.IsNil() {
fnType := llvm.FunctionType(b.ctx.VoidType(), []llvm.Type{b.i8ptrType, b.i8ptrType, b.uintptrType, b.ctx.Int1Type()}, false)
llvmFn = llvm.AddFunction(b.mod, fnName, fnType)
}
var params []llvm.Value
for _, param := range args {
params = append(params, b.getValue(param))
}
params = append(params, llvm.ConstInt(b.ctx.Int1Type(), 0, false))
b.CreateCall(llvmFn, params, "")
return llvm.Value{}, nil
}
// createMemoryZeroCall creates calls to llvm.memset.* to zero a block of
// memory, declaring the function if needed. These calls will be lowered to
// regular libc memset calls if they aren't optimized out in a different way.
func (b *builder) createMemoryZeroCall(args []ssa.Value) (llvm.Value, error) {
fnName := "llvm.memset.p0i8.i" + strconv.Itoa(b.uintptrType.IntTypeWidth())
llvmFn := b.mod.NamedFunction(fnName)
if llvmFn.IsNil() {
fnType := llvm.FunctionType(b.ctx.VoidType(), []llvm.Type{b.i8ptrType, b.ctx.Int8Type(), b.uintptrType, b.ctx.Int1Type()}, false)
llvmFn = llvm.AddFunction(b.mod, fnName, fnType)
}
params := []llvm.Value{
b.getValue(args[0]),
llvm.ConstInt(b.ctx.Int8Type(), 0, false),
b.getValue(args[1]),
llvm.ConstInt(b.ctx.Int1Type(), 0, false),
}
b.CreateCall(llvmFn, params, "")
return llvm.Value{}, nil
}
var mathToLLVMMapping = map[string]string{
"math.Sqrt": "llvm.sqrt.f64",
"math.Floor": "llvm.floor.f64",
"math.Ceil": "llvm.ceil.f64",
"math.Trunc": "llvm.trunc.f64",
}
// createMathOp tries to lower the given call as a LLVM math intrinsic, if
// possible. It returns the call result if possible, and a boolean whether it
// succeeded. If it doesn't succeed, the architecture doesn't support the given
// intrinsic.
func (b *builder) createMathOp(call *ssa.CallCommon) (llvm.Value, bool) {
// Check whether this intrinsic is supported on the given GOARCH.
// If it is unsupported, this can have two reasons:
//
// 1. LLVM can expand the intrinsic inline (using float instructions), but
// the result doesn't pass the tests of the math package.
// 2. LLVM cannot expand the intrinsic inline, will therefore lower it as a
// libm function call, but the libm function call also fails the math
// package tests.
//
// Whatever the implementation, it must pass the tests in the math package
// so unfortunately only the below intrinsic+architecture combinations are
// supported.
name := call.StaticCallee().RelString(nil)
switch name {
case "math.Ceil", "math.Floor", "math.Trunc":
if b.GOARCH != "wasm" && b.GOARCH != "arm64" {
return llvm.Value{}, false
}
case "math.Sqrt":
if b.GOARCH != "wasm" && b.GOARCH != "amd64" && b.GOARCH != "386" {
return llvm.Value{}, false
}
default:
return llvm.Value{}, false // only the above functions are supported.
}
llvmFn := b.mod.NamedFunction(mathToLLVMMapping[name])
if llvmFn.IsNil() {
// The intrinsic doesn't exist yet, so declare it.
// At the moment, all supported intrinsics have the form "double
// foo(double %x)" so we can hardcode the signature here.
llvmType := llvm.FunctionType(b.ctx.DoubleType(), []llvm.Type{b.ctx.DoubleType()}, false)
llvmFn = llvm.AddFunction(b.mod, mathToLLVMMapping[name], llvmType)
}
// Create a call to the intrinsic.
args := make([]llvm.Value, len(call.Args))
for i, arg := range call.Args {
args[i] = b.getValue(arg)
}
return b.CreateCall(llvmFn, args, ""), true
}